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Abstract

Soils contain up to 1010 bacteria g–1 soil. Due to this high species diversity and the difficult

distinction between free bacterial DNA, inactive and active bacteria by next generation se-

quencing, soils harbour one of the most complex bacterial communities. Moreover, spatial

heterogeneity and temporal trends influence soil bacterial interaction with the environment

and between cells. Spatial effects influence bacterial interaction by high spatial heterogene-

ity due to soil structure, pore distribution nutrient and water availability having a patchy

distribution in soil in unsaturated water conditions. In addition, soil bacterial communities

are influenced by the soil environment and climate on larger spatial scales. On a global

scale, recent studies showed that the influence of climatic conditions was exceeding the

impact of established predictors such as pH. Furthermore, environmental predictors exert

lagged effects on bacterial communities, called legacy effects, representing the delayed in-

fluence of past environmental or climatic conditions on the current microbial community.

It is challenging to distinct all the above mentioned effects in microbial community analysis.

In this thesis, I present two studies examining the environmental, spatial and tempo-

ral effects in bacterial communities of arable, grassland and forest soils under temperate

climate conditions. First, I examined how temporal variation, climatic predictors and cli-

mate change affect bacterial communities of grassland and forest soils, taking the effects of

edaphic predictors into account. This project was part of the Biodiversity Exploratories,

a large-scale, long-term monitoring project, focussing on the interaction between land use,

land use intensity and multitrophic biodiversity across three regions in Germany.

I could show that bacterial alpha diversity is declining in German grassland and forest

soils from 2011 to 2017. Soil warming could in part explain this decline. Furthermore, soil

moisture and soil temperature contained legacy effects, showing delayed reactions of soil

bacteria to soil temperature and soil moisture changes. This is the first observational study

showing that changes in climate decline soil bacterial diversity in Germany, without exper-

imental manipulation introducing strong drought or soil warming treatments. In contrast

to alpha diversity, beta diversity was more stable over time. Soil bacterial communities

are considered robust and stable over time. Hence, this emphasizes the importance of the

results reported here.

In the second study, bacteria from an agricultural long-term fertilization experiment were

extracted from soil and separated by bacterial life-style. Thereby the free-living bacteria,

living in the aqueous pore space, and the surface-associated bacteria, living attached to soil

particles, were compared. Furthermore, the potential activity of the free-living and surface-

associated bacteria were determined. This experiment examined the long-term influence
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of different nitrogen fertilization treatments on bacterial life-style and activity in an arable

soil. Theory suggests that biofilm formation and a surface-associated life-style support

bacterial activity. However little evidence is available how the distinction in bacterial life-

style affects community composition and bacterial activity in soil. In contrast to literature,

I could show that active bacteria dominated the free-living community. Moreover, the

induced changes in community composition by nitrogen fertilization were larger for the

active free-living and surface-associated communities compared to the total communities,

containing active and non-active bacteria. This leads to the conclusion that bacterial

activity is determined by other parameters than life-style in bulk soil.
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Zusammenfassung

Böden enthalten bis zu 1010 Bakterien g–1 Boden. Neben dieser hohen Abundanz und der

schwierigen methodischen Trennung zwischen freier bakterieller DNS, inaktiven und ak-

tiven Bakterien mittels Sequenzierung, enthalten Böden eine der komplexesten bakteriellen

Gemeinschaften. Zudem beeinflussen die gegebene räumliche Heterogenität in Böden und

die zeitliche Variabilität bakterielle Interaktionen mit der Bodenumgebung und zwischen

einzelnen Bakterien. Weiterhin beeinflussen das Klima und die Bodenumgebung die bak-

terielle Gemeinschaft. Derzeitiger Stand des Wissens ist, dass, auf globaler Ebene, Kli-

mafaktoren wichtiger für die Zusammensetzung der bakteriellen Gemeinschaft im Boden

sind als etablierte Bodenparameter wie der pH. Es stellt eine große Herausforderung für

die Analyse der mikrobiellen Gemeinschaft dar, all diese Effekte voneinander zu trennen.

Räumliche Effekte beeinflussen bakterielle Interaktionen durch hohe räumliche Variabilität,

Bodenstruktur und Porenverteilung. Außerdem zeigt sich unter ungesättigten Bedingun-

gen, eine ungleichmäßige Verteilung der Wasser- und Nährstoffverfügbarkeit. Darüber

hinaus können Umweltfaktoren wie Klima zeitlich verzögert Einfluss auf die bakterielle

Gemeinschaft im Boden ausüben, wobei vergangene Klimabedingungen die derzeitige Bak-

teriengemeinschaft stärker beeinflussen können als die derzeitigen Bedingungen.

In dieser Arbeit präsentiere ich zwei Einzelstudien, die die räumlichen und zeitlichen Ef-

fekte auf die bakterielle Gemeinschaft in landwirtschaftlich genutzen, sowie Grünland- und

Waldböden in Deutschland untersuchen. In der ersten Studie untersuche ich, wie sich

die Bodenbakterien in Grünland- und Waldböden unter Berücksichtigung der bodenbürti-

gen Umweltfaktoren, im Hinblick auf den Zeitverlauf, die klimatischen Bedingungen und

Klimawandel verhalten. Dieses Projekt war Teil der Biodiversitätsexploratorien, einem

Langzeitprojekt, das die Erforschung von multitrophischer Diversität verteilt über drei

Regionen in Deutschland in Bezug auf Landnutzung und Landnutzungsintensität unter-

sucht.

Ich konnte zeigen, dass die bakterielle Alphadiversität in Grünland- und Waldböden von

2011 bis 2017 signifikant abnahm. Ein Anstieg der Bodentemperaturen ist zum Teil für

diesen Effekt verantwortlich. Außerdem reagiereten die Bodenbakterien verzögert auf

Änderungen der Bodentemperatur und -feuchte. Dies ist die erste Monitoringstudie in

Deutschland die eine Abnahme der bakteriellen Alphadiverisität unter den derzeitigen

Klimabedingungen ohne experimentelle Manipulation nachweist.

Im Gegensatz dazu war die bakterielle Betadiversität stabiler. Es traten zwar signifikante

zeitliche Effekte auf, allerdings waren die Auswirkungen auf die Änderung der Zusam-
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mensetzung der bakteriellen Gemeinschaft geringer als für die Alphadiversität. Aufgrund

der erwarteten zeitlichen Stabilität von Bakteriengemeinschaften in Böden sind diese Ergeb-

nisse von Bedeutung für die kommende Entwicklung unter sich zunehmend ändernden

Klimabedingungen.

In der zweiten Studie wurden die Bodenbakterien aus einem landwirtschaftlichen Langzeit-

düngeexperiment nach Lebensstil getrennt und aus dem Boden extrahiert. Dieses Exper-

iment untersucht die Langzeiteffekte unterschiedlicher Stickstoffdüngeintensität auf den

Lebensstil und die Aktivität von Bakterien in einem landwirtschaftlich genutzten Boden.

Dabei wurde die freilebende bakterielle Gemeinschaft, die sich im Porenraum des Bodens

befindet, und die oberflächenassoziierte Gemeinschaft, die angeheftet an Bodenpartikel

lebt, verglichen. Darüber hinaus wurden die Anteile und die Zusammensetzung an aktiven

Bakterien in den jeweiligen Gemeinschaften untersucht.

Die Theorie besagt bisher, dass die Ausbildung von Biofilmen, unabhängig vom Leben-

sraum, bakterielle Aktivität in einem oberflächenassoziierten Lebensstil unterstützt. Allerd-

ings gibt es kaum experimentelle Ergebnisse, die diese These für Böden stützen. Im Gegen-

satz zu den Erwartungen konnte ich zeigen, dass aktive Bakterien die freilebende bakterielle

Gemeinschaft im Boden dominierten. Außerdem waren die Änderungen der Artzusam-

mensetzung durch die Unterschiede in der Stickstoffdüngung größer für die jeweilige aktive

Gemeinschaft als die gesamte Gemeinschaft, die sowohl potentiell aktive als auch inak-

tive Bakterien enthält. Diese Ergebnisse legen nahe, dass für die bakterielle Aktivität in

Oberböden landwirtschaftlich genutzter Flächen andere Einflussfaktoren als der Lebensstil

von Bedeutung sind.
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1 Introduction

Soils are diverse multitrophic environments. Especially microorganisms are highly abun-

dant in soil. More than 1010 bacteria can live in a single gram of soil (Torsvik et al., 1989)

harbouring up to 106 bacterial phylotypes (Thompson et al., 2017; Bahram et al., 2018).

However, this immense diversity was not know for a long time, since cultivation provided

the only access to soil bacterial diversity. Another rough estimate of bacterial diversity

in soil is the analysis of phospholipid fatty acid composition, denaturating gradient elec-

trophoresis and terminal restriction fragment length polymorphism. These methods share

the property that they are not able to capture the vast bacterial diversity in soil, e.g. whole

phyla escaped cultivation and hence recognition in microbial ecology. A great proportion

of the progress gained in the last decades in microbial ecology was enabled by next genera-

tion sequencing. The in depth analysis of marker genes such as variable regions of the 16S

ribosomal RNA gene and transcripts unravelled the sheer magnitude of bacterial diversity

in soils (Thompson et al., 2017). However, the majority of bacterial phylotypes remain

uncultivated to this day (Overmann et al., 2017). Inferring the physiological properties

of soil bacteria by targeted cultivation and ecological functions from sequencing data by

marker gene analysis, metagenomics and transcriptomics is a major aim of soil microbial

ecology.

1.1 Next generation sequencing of soil bacterial communities

The culture independent approach of next generation sequencing technology offers deep

insights in bacterial diversity in soil. In addition, it enables in situ analysis of experimental

or observational studies of soil bacterial diversity.

Initially, analysis of sequencing data was performed after assigning sequences to operational

taxonomic units (OTUs). However, over the last years, lower error rates of sequencing plat-

forms and reference-free sequencing error removal calls for the change from operational

taxonomic unit clustering to amplicon sequence variants (SV). Those can resolve bacterial

phylotypes down to single nucleotide differences. Furthermore, SV are comparable and

reproducible across studies, since they are independent of a reference database (Callahan

et al., 2017).

The achieved progress, however, could not resolve intrinsic limitations of next generation

sequencing data. SV are usually mapped using a taxonomic reference data base to infer

the taxonomic community composition and estimate traits of community members. The

underlying hypothesis is that phenotypic traits are assumed to be more similar for related
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bacteria (Allison, 2019). Morrissey et al. (2019) could show that evolutionary history and

taxonomic groupings were more predictive for soil bacteria than the ecosystem type. How-

ever, the conservation of traits depends on the complexity, with traits involving more genes

being more deeply conserved on higher taxonomic levels than traits including less traits (Al-

lison, 2019). Another approach is the prediction of functional profiles from metagenomic

data bases by matching the sequenced regions of the 16S rRNA gene (Aßhauer et al.,

2015). Both approaches can only serve as a very rough estimate of potential properties

from bacterial communities. A more precise functional profile of microbial communities

can be gained by metagenomics or metatranscriptomics allowing for the analysis of the

community’s genetic and functional potential or the transcribed genes, respectively.

1.2 Determination of bacterial activity in soil

Sequencing analysis of marker genes cannot differentiate active from non-active bacteria.

This is important, since the vast majority of soil bacteria is estimated to be dormant,

non-active or simply dead (Blagodatskaya and Kuzyakov, 2013), remaining as cell debris

in soil, harbouring relic DNA which can still be sequenced (Carini et al., 2016). The

major cause for the dominance of dormancy are unfavourable environmental conditions,

such as lack of nutrients (Jones and Lennon, 2010). To avoid the bias introduced by

dormant community members, different approaches were developed estimating bacterial

activity. However, most methods are not capable of high-throughput and are limited to

a rather small sample size or scale such as nano-scale secondary ion mass spectrometry,

bromodeoxyuridine incorporation, (quantitative) stable isotope probing and cell staining

methods, e.g. using 5-cyano-2,3-ditolyl tetrazolium chloride. All those methods rely on the

uptake of a labelling compound into the cells or incorporation into metabolites or DNA,

indicating an active cell metabolism or bacterial growth. Another early attempt accessing

the active community was to sequence rRNA transcripts instead of the rRNA gene, since

the content of rRNA and growth rates correlated well in pure culture studies (Kerkhof and

Ward, 1993; Blazewicz et al., 2013). However, it was shown that inactive cells can maintain

substantial ribosomal content (Sukenik et al., 2012; Blazewicz et al., 2013). Nonetheless,

the analysis of rRNA transcripts avoids bias introduced by dead bacterial cells or relic

DNA, providing a more realistic representation of the live bacteria.

Normalizing the rRNA transcripts by rRNA gene abundance is another widely used method

to determine bacterial activity (Campbell et al., 2011; Bowsher et al., 2019). In a second

step, bacterial activity is determined for each SV by applying a threshold to the respective

rRNA:rDNA ratio. To a great advantage, this method relying on the rRNA:rDNA ratio

offers high throughput at comparable low costs (Bowsher et al., 2019). In this thesis, I use

a new dynamic threshold to determine bacteria activity in soil.
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1.3 Temporal variation and climate change of bacterial communities in

soil

The majority of studies dealing with temporal variation of soil bacteria measured the reac-

tion of bacterial biomass (Fierer et al., 2009), enzyme activities or soil carbon mineraliza-

tion to climate change, but did not access bacterial diversity in depth (Lipson et al., 2002;

Lipson, 2007; Fierer et al., 2010; Melillo et al., 2017). The reaction of those parameters

examined is quite consistent, showing sensitivity towards soil warming (Romero-Olivares

et al., 2017; Walker et al., 2018). Carbon mineralization in response to experimental warm-

ing over more than 20 years revealed a multistage process (Melillo et al., 2017), starting

with a short term increase in mineralization (Davidson et al., 2012), followed by a reduc-

tion in carbon mineralisation back to control levels (Melillo et al., 2002, 2017) and reduced

biomass. In contrast, soil bacteria community composition is considered to be one of the

most stable over time (Lauber et al., 2013; Shade et al., 2013). In studies using next gen-

eration sequencing, this might be biased by relic DNA obscuring temporal pattern (Carini

et al., 2016). With respect to climate change, which could induce changes over time, the

reaction of soil bacterial diversity is inconsistent. No significant change in soil bacterial

community composition was found after 20 years of experimental warming (DeAngelis

et al., 2015). Others confirmed no effect on soil bacteria after up to 5 years of warming

(Andrade-Linares et al., 2021; Sünnemann et al., 2021). In contrast, if the trends are

of sufficient duration and strength, community composition is reactive to climate (Cruz-

Mart́ınez et al., 2009; Zhou et al., 2020). Furthermore, Guo et al. (2018) found a significant

effect of warming on beta diversity. This difference in results might be a consequence of

several reasons: either differences in experimental design, local climate conditions, dura-

tion and strength of the applied treatments or fundamental differences in the examined

ecosystem types, since the response of microbial communities to temporal variation is not

similar between ecosystem types (Blankinship et al., 2011; Pold et al., 2015; Kivlin and

Hawkes, 2020). For example, Hermans et al. (2020) showed that temporal variation was

higher for grassland than forest communities. Furthermore, local climate conditions might

affect the response of bacterial diversity to climate change. It was shown that warming

decreases the abundance of soil biota in regions with lower mean annual temperature and

mean annual precipitation (Blankinship et al., 2011).

In conclusion, temporal variation of bacterial diversity in soil is still understudied (Hermans

et al., 2020; Carini et al., 2020), since detailed community analyses tracking bacterial di-

versity over several years are still rare. If available, the effect of climate change on bacterial

diversity is assessed using manipulation experiments, applying rather strong climate gradi-

ents or treatments (DeAngelis et al., 2015; Nottingham et al., 2022). Those experimental

studies project future climate conditions diverging strongly from current climate. However,
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observational studies are lacking exploring the impact of current climatic development in

long-term experiments to determine if present climate change is already affecting bacterial

diversity in soil. In addition, tracking the temporal variation cannot be considered in iso-

lation from spatial variation (Hermans et al., 2020). Representative sampling of sampling

sites is pivotal to detect temporal variation. If considered, accounting for spatial variation

even makes short term variation detectable (Carini et al., 2020).

1.4 Spatial variation of soil bacteria

Soils are by no means homogeneous environments. Aggregation of soil organic matter and

mineral particles produces a large variety of habitats differing in aeration, pore size distri-

bution, water availability and retention, nutrient availability and quality, considering soil

organic matter. Therefore bacterial life in soil is heterogeneously distributed. Bacterial

communities differ on the pore scale with different bacterial communities preferring differ-

ent aggregate size classes (Neumann et al., 2013; Hemkemeyer et al., 2018; Szoboszlay and

Tebbe, 2021). Moreover, soil bacteria live in patches and the cell density declines with dis-

tance to soil pores (Nunan et al., 2003). The distances between bacterial cells range from

0.5 to 12.5 µm (Raynaud and Nunan, 2014; Probandt et al., 2018). Therefore, cell interac-

tions are limited due to the limited number of cells close-by (Raynaud and Nunan, 2014).

Furthermore, the pore size distribution and water content is influencing the fragmentation

of aqueous phases in soil, limiting bacterial interaction (Wang and Or, 2013; Bickel and Or,

2020) as well as dispersal, which is rapidly limited under reduced soil moisture conditions

<-2 kPa (Dechesne et al., 2010; Ebrahimi and Or, 2014).

Most studies neglect these differentiations among soil bacterial communities on the pore

scale. However, the high spatial differentiation between bacteria on the pore scale is im-

possible to implement in large scale studies due to the extensive workload during sample

processing and sequencing. Homogenized and well replicated samples of bulk soil are con-

veniently considered as good representations of soil bacterial communities, representative

for a sampling site. Thereby the microscale effect of soil structure is averaged out by

sieving the bulk soil material. A good sample replication is inevitable to provide a good

representation of the sampling site and avoid effects based on spatial small scale variation

(Armstrong et al., 2016; Hermans et al., 2020).

Another aspect of spatial heterogeneity neglected so far for soils is life-style separating soil

bacterial communities. In marine environments, the existence of planktonic free-living and

particle-associated bacteria is widely recognized (Simon et al., 2014; Denef et al., 2016;

Mestre et al., 2017). Those distinct communities differ in genome size (Swan et al., 2013).

Furthermore, free-living bacteria are more adapted to low nutrient environments, providing

lower metabolic potential (Dupont et al., 2012). In contrast particle-associated bacteria
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show higher metabolic potential (Simon et al., 2014).

For soils, this differentiation in life-style between free-living bacteria living in the aque-

ous phase of the soil and the surface-associated community, attached to particles, is

unanswered. So far only a single study differentiated soil bacterial communities by life-

style, showing that the free-living and surface-associated communities in soil are separable.

Thereby most bacteria occurred in both communities, showing no definite separation be-

tween communities (Bystrianský et al., 2019). However, no evidence is available if the

activity of bacteria differs between free-living and surface-associated communities in soil.

1.5 Aim of this work

The analysis of spatial and temporal pattern is heavily researched in soil microbial ecology.

However, specific aspects causing spatial and temporal variation in soil bacterial commu-

nities are still neglected. Therefore, I investigate two specific aspects of soil bacterial

diversity:

First, I will investigate the first 6 years of a long-term and large-scale study in Germany,

spanning 300 grassland and forest sites. The analysed data are not the result of experimen-

tal manipulation of the sampling sites, but of observational data tracking the development

of multitrophic diversity over time. More specifically, I want to investigate how temporal

variation is affecting bacterial diversity and examine if effects of climate over time, i.e.

climate change, influence the soil bacterial diversity of forest and grassland communities

in Germany.

Second, spatial heterogeneity in soil is not considered in most work analysing soil bacterial

diversity. It is unknown for soils, how a differentiation by life-style between the free-

living and surface-associated communities affect the respective bacterial activity. Also, I

investigate how bacterial life-style is reacting to nutrient availability, examining the free-

living and surface-associated community along a gradient of soil nitrogen content in a

German long-term fertilization experiment.
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2 Does climate change affect soil bacterial communities al-

ready? Results from a German large scale study

2.1 Starting point of the investigation

Climate change can already be measured on a global scale. The mean land surface air

temperature has risen by 1.53 °C since the pre-industrial period. This climate change

includes an increase in frequency and intensity of extremes (Pörtner et al., 2022). This

rise in temperature and the occurrence of accelerated heatwave trends is recently shown

to be three to four times faster for Europe than the northern midlatitudes (Rousi et al.,

2022). As a result, climate change is starting to affect cropland and grassland productivity

in Germany. The increase in maximum summer temperature is already threatening wheat

production in Germany (Pinke et al., 2022). Similarly, maize production is predicted to

decline for the next 30 years (Peichl et al., 2019). In grassland systems, yield is coupled

to aridity. Induced by an observed rise in temperature and decrease in precipitation, this

is threatening grassland productivity in northern Germany (Emadodin et al., 2021). More

importantly, temperate grasslands might have lost their CO2 sink function already over

the last 100 years due to climate change (Baca Cabrera et al., 2021). Furthermore, a loss

of plant diversity in Europe is anticipated (Bellard et al., 2012). However, a potential re-

duction in plant diversity does not affect belowground diversity (Delgado-Baquerizo et al.,

2019).

So far, no information is available if climate change already affects soil bacterial commu-

nities in Germany. To this point, recent examination of next generation sequencing data

has identified a comprehensive set of predictors shaping soil bacterial communities. On a

global scale, climate, pH, soil carbon and other nutrients, C/N ratio, land use type as well

as soil texture are confirmed as major drivers of bulk soil bacterial communities (Fierer

and Jackson, 2006; Chau et al., 2011; Delgado-Baquerizo et al., 2016; Bahram et al., 2018;

Ladau et al., 2018; Bickel et al., 2019; Delgado-Baquerizo and Eldridge, 2019). It has to be

considered that climate predictors are often more important than soil texture (Delgado-

Baquerizo and Eldridge, 2019) or even pH (Delgado-Baquerizo et al., 2016).

A closer look at climate-induced change in bacterial diversity shows that different aspects

of climate affect soil bacterial diversity. Diurnal temperature range, mean annual tem-

perature, aridity, mean annual precipitation and climatic water content influence bacterial

diversity (Delgado-Baquerizo et al., 2016). Most notably, predictors representing soil mois-

ture are more important than temperature related predictors (Bickel et al., 2019).

These global studies revealed that bacterial diversity is peaking in temperate grasslands

(Bahram et al., 2018). Tropic, boreal and dessert biomes or temperate forests harbour less
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bacterial species (Delgado-Baquerizo and Eldridge, 2019). Hence, under climate change

scenarios, with increasing temperature and reduced precipitation, the maximum bacterial

diversity observed for temperate grasslands will face a potential decline.

This is of major importance since soil biodiversity loss is threatening ecosystem multi-

functionality (Wagg et al., 2014) and influencing aboveground diversity (Bardgett and van

der Putten, 2014). Recently it was shown that long-term warming in subarctic grasslands

leads to a reduction in soil C and nutrient concentrations (Söllinger et al., 2022). However,

transcriptomic data suggested that the level of CO2 emission was maintained, although ri-

bosomal content and protein biosynthesis were reduced. Moreover, taxonomic composition

and diversity did not differ significantly, although a trend towards a reduction in richness

was observed. This is supported by DeAngelis et al. (2015), who found no effect of warming

on bacterial diversity in bulk soil after 20 years. Other experiments showed that bacterial

diversity declined under experimental warming (Nottingham et al., 2022; Wu et al., 2022).

This effect is most likely influenced by a concomitant reduction in soil moisture (Guo et al.,

2018). Apparently the soil temperature causing a reduction in richness is depending on

the climatic legacy of the soil and was between 27-30°C for alpine soils (Pietikäinen et al.,

2005). This is in line with results from Ladau et al. (2018) showing that bacterial com-

munities were more closely adapted to historic than recent climate conditions. The fact

that conditions preceding the actual sampling period still influence current soil bacterial

communities is well documented and called legacy effects (Hariharan et al., 2017; Ladau

et al., 2018; Schmid et al., 2021).

In contrast to temperature, the effects of changes in precipitation pattern and subsequently

soil moisture on bacterial diversity are even less clear. Literature suggests that short-term

precipitation manipulation has little effects on bacterial diversity (Stres et al., 2008; Cruz-

Mart́ınez et al., 2009; Engelhardt et al., 2018) or bacterial abundance (Waring and Hawkes,

2018). This might be a consequence of bacterial resistance to short-term drought (Lennon

et al., 2012; Meisner et al., 2017). Furthermore, responses on ecosystem scale are difficult to

estimate due to small-scale controls of soil moisture (Jansson and Hofmockel, 2020). Simi-

lar to temperature, legacy effects play an important role for bacterial responses to changes

in soil moisture (Banerjee et al., 2016; Jansson and Hofmockel, 2020). However, Zhang

et al. (2013) could show the soil moisture effects were higher than temperature effects for

grassland steppe soils in Inner Mongolia. Besides, Acidobacteria were the least resistant

phylum to changes in soil moisture (Castro et al., 2010; Zhang et al., 2013). Moreover,

Huber et al. (2022) showed that particularly dessication decreased the fraction of active

Acidobacteria. In conclusion, most evidence for the effects of warming and changes in

soil moisture over time on bacterial diversity is either coming from extreme environments,

short-term experiments or the effects on bacterial diversity were not analysed in depth,

since the focus was on C cycling and fluxes.
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Studies analysing the effects of climate on bacterial diversity revealed contrasting results

and no clear conclusion is reached how rare and abundant bacteria are affected by climate.

For example, bacterial richness was reported to decrease with increasing temperature and

decreasing soil moisture (Liang et al., 2015; Prober et al., 2015; Wu et al., 2022). In soils,

most bacteria are rare in abundance (Curtis et al., 2002; Delgado-Baquerizo et al., 2018).

Therefore, bacterial richness, the total number of species in a sample, is dominated by

rare bacteria. Furthermore, rare species were reported to be more sensitive to climate

than abundant species (Bickel et al., 2019). Albeit, a higher sensitivity of rare species to

climate change must not lead to a reduction in richness (Zhang et al., 2013; Zhou et al.,

2020). In addition, abundant but not rare bacteria were found to be sensitive to climate

as well (Liu et al., 2019).

Moreover, the analysis of effects of climate change requires longitudinal data. This involves

temporal variability and stochasticity, although soil bacteria are amongst the most stable

communities over time (Ladau et al., 2018; Shade et al., 2013). Thereby, soil bacterial com-

munities showed a high resistance to climate change over a 10 month period (Waring and

Hawkes, 2018). However, soil bacteria communities decreased with change in temperature

over the course of several years (Liang et al., 2015). This emphasizes that the duration

of climate change is important, with longer duration implying stronger reactions (Seaton

et al., 2021). Nevertheless, there is still a lack of knowledge, how temporal variation affect

bacterial diversity (Hermans et al., 2020). Furthermore, a common property of climate

predictors is their correlation with other climatic and edaphic predictors. This property

is called multicollinearity (Dormann et al., 2013). Although constituting independent bi-

ological drivers, correlated predictors represent the same signal from a statistical point of

view (Ellis et al., 2012). Therefore, it is difficult to dissect effects of correlated predictors

in modelling. Another obstacle is that a generalization of global results or smaller scale

studies is difficult due to a high variability of predictors on regional scales and spatial

correlation, which can influences soil bacteria more than temporal variation (Mod et al.,

2021). On the plot scale, bacterial communities are quite stable over time and space,

with spatial variation explaining more variance than time (Richter-Heitmann et al., 2020).

Furthermore, effective global predictors like mean annual precipitation and mean annual

temperature are ineffective on a regional scale, providing only minor variability.

In conclusion, literature suggests that soil warming will most likely reduce bacterial rich-

ness, but we lack information whether rare and abundant bacteria react similarly. More-

over, we lack in depth information which aspects of climate affect soil bacteria. Evidence

from global studies cannot be transferred to more regional scales, since the main predic-

tors used, e.g. mean annual precipitation and mean annual temperature, do not differ

sufficiently between sampling sites to induce relevant changes in bacterial diversity. Identi-

fying the relevant aspects of climate is essential to predict community shifts under climate
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change scenarios and gain more insights on how soil bacteria react to climate change. So

far, no observational long-term study from Germany is available, examining whether and

how soil bacterial communities change over time.

In this study, I present first results from the Biodiversity Exploratories, a large scale and

long term experimental setup in Germany. The focus of this interdisciplinary network is the

interaction between land use type and intensity, biodiversity and ecosystem functioning on

multiple trophic levels (Fischer et al., 2010). In 3 regions across Germany, 300 experimen-

tal plots were established and soil bacterial communities are monitored every 3 years. The

regions are located in the south-west (Schwäbische Alb), center (Hainich) and north-east

(Schorfheide) of Germany. Each region contains 50 grassland and 50 forest sites, respec-

tively. A preceding study in the Biodiversity Exploratories network, analysing bacterial

diversity confirmed that pH, soil texture, soil water content, C/N ratio, soil type and the

main tree species affected bacterial community composition on grassland and forest sites

in 2011 (Kaiser et al., 2016). The effects of land use type and intensity are not consistent

between studies. None (Nacke et al., 2011) or little effects of land use type are reported

(Kaiser et al., 2016). Besides, land use intensity (LUI) of grassland sites, estimated as the

joint influence of N-fertilization, grazing and mowing, showed neglectable influence on soil

bacteria (Gossner et al., 2016; Kaiser et al., 2016). These effects are apparently higher for

rhizosphere communities than bulk soil communities (Schöps et al., 2018). Interestingly,

the effect of LUI was found to have a delayed effect on bacterial communities, with the

LUI of the past year being stronger correlated to bacterial diversity than the LUI of the

sampling year (Boeddinghaus et al., 2019).

For the above mentioned reasons, the aim of this work is to identify the effects of climate,

edaphic predictors and time on soil bacterial alpha and beta diversity taking spatial cor-

relation structures into account. Alpha diversity is commonly understood as measure of

average single-location diversity, i.e the diversity in a sample. Beta diversity is a measure

of the relative change in species composition between locations (Jost, 2007).

Moreover, different aspects of alpha and beta diversity were analysed. As mentioned above,

rare and abundant bacterial species might react differently to environmental predictors and

time. Therefore richness and inverse Simpson indices were chosen to represent rare and

abundant bacteria (Hill, 1973; Jost, 2006; Alberdi and Gilbert, 2019). Likewise, two in-

dependent approaches were used to analyse beta diversity. First, modelling Bray-Curtis

dissimilarity in a distance based approach to track community turnover along gradients

(Ferrier et al., 2007) and second, modelling each bacterial species separately to allow for

an in depth analysis of specific groups or parts of a community (Ellis et al., 2012). This

species specific modelling approach might give deeper insight into niche differentiation be-

tween soil bacteria based on the predictors retrieved as influential on bacterial community

turnover along predictor gradients.
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Bacterial communities were analysed from bulk soil of the Biodiversity Exploratories from

May 2011, 2014 and 2017 using next generation sequencing of the V3 region of 16S rRNA.

The analysis of RNA based communities avoids potentially obscuring pattern from relic

DNA in soil (Carini et al., 2016), especially when analysing spatial and temporal pattern

(Carini et al., 2020).

With this approach, I want to tackle the following questions: Which climatic aspect of soil

moisture, soil temperature and precipitation affect alpha and beta diversity in grassland

and forest soils in Germany? Does soil bacterial diversity change over time? If so, is

climate change causing changes over time in bacterial diversity? Furthermore, I want to

examine potential legacy effects of climate and LUI on bacterial diversity. Furthermore,

which edaphic predictors shape bacterial diversity for this data set? Can niches of soil

bacteria be identified by relevant predictors emerging from gradientForest modelling of

beta diversity?
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2.2 Material and Methods

2.2.1 Study design

The Biodiversity Exploratories comprise of 300 sites, located in 3 regions across Germany

(Fig. 1). Each region in the Schwäbische Alb, Hainich and Schorfheide harbours 50 forest

and grassland sites, respectively.

Figure 1: Distribution of the Biodiversity Exploratory regions across Germany.

Bulk soil of all 300 sites was sampled in May 2011, 2014 and 2017 during a joint sampling

campaign from members of different institutes. At each site, 14 sub-samples of top soil

samples of 0-10 cm depth were mixed and homogenized through 2 mm mesh sieve. Plant

roots and stones were removed and samples immediately flash frozen in liquid nitrogen to

preserve soil bacterial RNA communities. Until sample processing, soil samples were kept

in liquid nitrogen.

2.2.2 Nucleic acid extraction and library preparation

RNA and DNA were co-extracted from soil following the protocol by Lueders et al. (2003)

implementing changes according to Wüst et al. (2016).

Cell lysis for 0.6 g of soil was performed in 750 µl of 120 mM Na2HPO4 (pH 8) and 250 µl
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Tris-HCl (pH 8) using 0.7 g zirconium beads (0.1 mm diameter) for 45 s at 6.5 m/s on

a bead beater. After centrifugation at 20000 xg for 20 min, the supernatant containing

nucleic acids was mixed with 500 µl Phenol/Chloroform/Isoamylalcohol (25:24:1, v/v) of

pH 8 and centrifuged at max. speed for 5 min. The resulting supernatant was mixed with

Chlorofom/Isoamyalcohol (24:1, v/v) and centrifuged for 5 min at 20000 xg. The super-

natant was precipitated with 1 ml 60 % PEG and centrifuged for 90 min at 20000 xg. The

nucleic acid pellet was washed in 500 µl ice cold 70 % ethanol and centrifuged again for

30 min at 20000 xg. All supernatant was removed and DNA and RNA were resuspended

in 50 µl 100 mM Tris-HCl (pH 8) and stored at -80 ◦C. DNA was digested using DNAse I

from the Turbo DNA-free kit (ThermoFischer ) according to the manufacturer protocol.

Recovered RNA was precipitated with 0.1 volume 3 M sodium acetate (pH 5.2) and 2 vol-

umes isopropanol for 1 h and centrifuged for 5 min at 20000 xg at room temperature.

The RNA pellet was resuspended in 50 µL RNAse-free water. Reverse transcription of

RNA to cDNA was accomplished using the GoScript reverse transcription kit (Promega)

according to the manufacturer protocol. RNA was reverse transcribed using 4 µl of RNA

extracts. Next, 1 µl of Random Hexamers were added and heated on a PCR-cycler for

5 min at 70 ◦C. The mixture was cooled on ice for 5 min. Afterwards, 15 µL of PCR-buffer

(1x GoScript reaction buffer, 3 mM MgCl2, 0.5 mM nucleotide mix, 0.05 U µl–1 GoScript

reverse transcriptase) was added. The reverse transcription continued for 5 min at 25 ◦C,

1 h at 42 ◦C, 5 min at 70 ◦C and finished with a cooldown to 4 ◦C.

The library preparation was executed as described in Bartram et al. (2011) on the V3

region of the 16 S rRNA. For each sample, 3 technical replicates were processed. 5 µl of re-

verse transcription product were added to 45 µl PCR-buffer (1x HF Phusion buffer, 0.2 mM

nucleotide mix, 3.5 mM MgCl2, 5 % DMSO, 0.4 mg/ml BSA, 0.2 pmol/µl 341f forward

(5’- CCTACGGGWGGCWGCAG-3’) and 515r reverse (5’-CCGCGGCTGCTGGCAC-3’)

primers, and 0.04 U/µl Phusion HotStart II High Fidelity DNA Polymerase (Thermo Sci-

entific, Waltham, USA). Reverse primers contained a variable index to facilitate sample

demultiplexing after sequencing. After initial denaturation for 30 s at 98 ◦C, denaturation

for 10 s at 98 ◦C, annealing for 10 s at 59 ◦C and elongation for 45 s at 72 ◦C were

repeated for 15 cycles, followed by a final elongation for 7 min at 72 ◦C and a cooldown

to 4 ◦C. All amplification products were gel-purified to remove dimers on a 2 % agarose

gel (Lonza group, Basel, Switzerland) in 1x TAE buffer for 2.5 h at 120 V at 4 ◦C. The

PCR product of 150 base pair length was cut out and purified using the NucleoSpin Gel

and PCR Clean-up Kit (Macherey-Nagel, Düren, Germany) according to the instructions

of the manufacturer.

In preparation of the sequencing run, sample libraries were quantified with the Qubit

dsDNA HS Assay Kit (Life Technologies, Carlsbad, CA, US) and 4nM of each sample

were pooled. All runs were spiked with 15 % PhiX. Samples of 2011 were sequenced on
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a HighSeq 2500 platform (Illumina, San Diego, CA, USA). For 2014 and 2017 samples,

the NextSeq 500 platform (Illumina, San Diego, CA, USA) was used with a 150 base pair

paired-end-run.

2.2.3 Bioinformatic processing of sequencing data

After sequencing, sample libraries were demultiplexed according to the varying indices in

each sequencing run. The demultiplexed sequences were processed using the Python based

QIIME2 2019.1 bioinformatic pipeline (Caporaso et al., 2010; Bolyen et al., 2019) run in

a Linux environment on a high performance cluster with default settings if not stated

otherwise. All pipeline code can be found in detail in Supplementary Materials (page 141).

Bacteria were distinguished at the level of single nucleotide differences as exact sequence

variants (SV), defined as a specific nucleotide sequence of the V3 16S rRNA gene region

(Callahan et al., 2017).

In short, the demultiplexed paired-end reads were joined using plugin vsearch. Joined reads

were processed using plugin quality-filter (Bokulich et al., 2013). Reads having a quality

score below 25 over at least 75 % of the read length were discarded. Plugin deblur (Amir

et al., 2017) was used for denoising the joined sequences and checking for chimera.

First, all sequences were trimmed to a length of 165 base pairs. Second, all sequences were

discarded occurring less than 10 times in all samples and less than 2 times in each sample.

For sequence alignment MAFFT (Katoh and Standley, 2013) was used. The phylogenetic

tree was calculated using the FastTree plugin (Price et al., 2010). The taxonomy was

annotated with the plugin feature-classifier, using a Näıve Bayes classifier trained on the

SILVA 132 database (Quast et al., 2013; Yilmaz et al., 2014) for the V3 region. In a final

step, sequences of mitochondria and chloroplast were removed and the abundance data,

taxonomy table and phylogenetic tree - in Newick format - were retrieved and exported to

R ({R Core Team}, 2021). Bacteria were differentiated on the level of sequencing variants

(SV). However, the concept of species is the bottom line of diversity analysis. Bacterial

species are defined as a threshold of 70 % DNA-DNA hybridization (Wayne et al., 1987).

Hence, the term sequence variant has to be used instead of ”species”.

2.2.4 Metadata collection and gap filling

All downstream data preparation and analysis was performed in R, version 4.1.0. All se-

quencing informations were imported into R as a phyloseq-object using package phyloseq.

Package tidyverse was used for data handling and packages ggplot2 and gridExtra

for visualization. Environmental predictors measured on the plot scale and climatic data

of the study region were obtained from BExiS, the central data base of the Biodiversity

Exploratories (https://www.bexis.uni-jena.de/ ). The used metadata can be retrieved via
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the following accession numbers: 19346, 10580, 14686, 16586, 26207, 20626, 19346, 19009,

14446, , 14447, 14448, 17086, 17166, 20040, 20248, 20246, 20250, 19807, 20626, 18386,

18787, 19067, 19366, 20045, 20247, 20249, 20251, 20266, 23906, 23486, 22246, 23846,

24346, 25186, 25408, 25586, 26147.

Generally, predictors containing > 20 % missing values were discarded. Gap filling for

edaphic predictors was based on distance dependent k-nearest neighbour imputation, us-

ing 5 neighbour sites with function VIM::kNN.

The raw data of plot specific climate data contained high proportions of missing values

especially at the beginning of the records (Fig. 2). Therefore the longest possible time-

frame to be analysed for legacy effects was limited to 1067 days before sampling. In case of

small gaps, chained random forests with function missRanger::missRanger were used to

impute missing values, since k-nearest neighbour imputation was not capable of imputing

the cycling nature of climatic predictors. Gap filling is a common practice in meteorology

and time series analysis.

2.2.5 Environmental predictor engineering

Predictor engineering is a potent tool to extract valuable information and aspects from

predictors for modelling (Kuhn and Johnson, 2019). This is true especially for longitudi-

nal data such as climate data, in case methods of time series analysis cannot be applied.

Hence, changes in the data over time have to be aggregated and mapped as discrete pre-

dictors. Generally, calculating any summary statistics, such as the mean, median and

identification of extreme values, is a form of predictor engineering if used as a predictor

for statistical modelling. Soil temperature in 5 cm depth, soil moisture in 10 cm depth es-

timated as volumetric water content via frequency domain reflectometry sondes and radar

precipitation data were aggregated as daily means. Soil moisture data from 5 cm depth was

available as well. However, more data gaps were present. Therefore soil moisture data from

10 cm was selected for analysis due to better raw data quality. The mean daily records

of climatic data were summarised over 14, 30, 90, 180, 365, 730 and 1056 days before

sampling, deciphering potential legacy effects, i.e. delayed effects, of climate on bacterial

communities. For these different temporal aggregations, the median, maximum, minimum

and range of climatic predictors were calculated. Threshold data of soil temperature and

soil moisture represent the number of days in a specific timeframe (see above) in which

the target variable remained above a certain threshold (Frindte et al., 2019). Threshold

data were calculated in increments of 1°C for soil temperature or 1 % for volumetric water

content over a range of -36-29 °C and 1-63 % respectively. Specific for precipitation data,

the sum of rain days was calculated, representing the number of days with precipitation

in a specific timeframe. Moreover, land use intensity (LUI) (Blüthgen et al., 2012) and
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Figure 2: Ranges of soil temperature and soil moisture data separated by land use type
and Exploratory region. Trends in climate data are displayed as linear models.

the respective raw data of grazing, mowing and nitrogen fertilization of grassland sites,

available as annual values, were calculated as means over 1-5 years preliminary to soil

sampling. Furthermore, trends in time series of LUI, soil moisture and temperature were

extracted by fitting a linear model with function lm. The respective model slopes were

extracted and used as predictors, indicating trends in climate data and LUI. An overview

about all engineered predictors is provided in Supplementary materials (Tab. 7, p. 145).

2.2.6 Predictor selection and data structure

In total 296 of 300 forest and grassland sites were examined for 2011, 2014 and 2017.

Four experimental plots were discontinued or replaced and therefore had to be excluded
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from the analysis. Many engineered predictors derived from soil moisture (SM) and soil

temperature (Ts) showed multicollinearity, meaning that some predictors were not inde-

pendent and correlated among each other (Fig. 49, 50). In addition, edaphic predictors

showed multicollinearity as well. Soil nutrients (organic C, total N, total C, organic S,

extractable organic C and N), soil pore content and water retention (Fig. 51-53) were cor-

related. Statistically, collinear predictors represent identical signals towards a response

variable, although the predictors may represent different causal biological drivers. Hence,

all predictors and models were checked for multicollinearity. Moreover, predictors showing

inhomogeneous distributions over the predictor range, not covering the predictor gradient

entirely, were excluded from the analysis. Predictor distributions and correlation were as-

sessed by plotting and visual inspection All available edaphic predictors are presented in

Table 8.

Statistical testing for significant differences between groups for environmental predictors

relied on the vegan package. Differences between groups were tested for significance with

omnibus ANOVA testing and post-hoc TukeyHSD using functions aov and TukeyHSD re-

spectively.

2.2.7 Sequencing data normalization

For the analysis of alpha and beta diversity, coverage-based rarefaction was performed

using the function metagMisc::phyloseq coverage raref. Coverage-based rarefaction

normalizes samples to identical sample completeness rather than identical number of reads

(Chao and Jost, 2012). This approach avoids data loss and consequently loss in precision,

resulting from discarding the amount of reads higher than minimum sequencing depth

(Chao et al., 2020).

2.2.8 Alpha diversity analysis

Alpha diversity is commonly defined as the diversity of species in a sample (Sepkoski,

1988) and is usually estimated as indices related to species counts, their abundance and

phylogeny or combinations thereof (Whittaker, 1972; Chao et al., 2010).

In this stud,y species richness, Shannon and inverse Simpson diversity indices were used.

In more detail, alpha diversity was calculated as Hill numbers using function hill div in

package hilldiv. The concept of Hill numbers was originally developed by Hill (1973),

creating a unifying framework of alpha diversity indices with identical mathematical prop-

erties (Jost, 2006). It was shown that many popular alpha diversity indices are special

cases of
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qD ≡

(
S∑

i=1

p
q
i

) 1
(1–q)

(1)

where D represents the diversity measure, S is the number of species, pi the relative abun-

dance of the ith species and the order of q.

Therefore, estimating the diversity in a sample is dependent only on the order of q and the

species abundance (Jost, 2006). The advantages of Hill numbers are that for q = 0, 1, 2

equation 1 equals richness, the exponential of Shannon entropy and the inverse Simpson

concentration respectively (Chao et al., 2010), integrating different alpha diversity indices

in a unifying framework. In case of q = 1, referring to Shannon entropy, equation 1 is

undefined. Therefore its limit is used as

1D = exp

(
–

S∑
i=1

pi ln pi

)
(2)

Unlike their original counterparts (richness, Shannon and inverse Simpson indices repre-

senting a species count, an entropy and a concentration respectively), Hill numbers of order

(q) represent an ”effective number of species” similar to the alpha diversity level in a sam-

ple (MacArthur, 1965). Hence, the effective number of species between different orders of

q are directly comparable. This is a property no other framework or alpha diversity index

can offer. Besides, this framework obeys the replication principle. The replication prin-

ciple ”for species-neutral diversity states that if we have N equally large, equally diverse

groups with no species in common, the diversity of the pooled groups must be N times the

diversity of a single group” (Chao et al., 2010). Recently, a consensus has grown that Hill

numbers are the method of choice for diversity analysis (Chao et al., 2020).

Richness (q = 0) represents the total number of species in a sample, ignoring relative

abundance. Richness of natural soil bacterial communities is therefore dominated by rare

species, since the majority of SV are rare (Bickel and Or, 2021). In contrast, the Shannon

(q = 1) and Simpson (q = 2) indices take species relative abundance into account (see

equation 1), with Shannon describing the common species (Chao et al., 2010) and the

Simpson index representing highly abundant species due to an exponent of q = 2.

In this work, alpha diversity was analysed for rare and highly abundant species indepen-

dently, represented by richness and Simpson indices respectively. The Shannon index was

excluded from the analysis since this index was highly correlated with both richness and

Simpson indices (Tab. 1). A separate modelling of either index in combination with Shan-

non diversity is a form of pseudo-replication. Moreover, the analysis of the Shannon index

is not advised in diversity analysis, due to a high influence of evenness on species counts
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(Strong, 2016).

Table 1: Pearson correlation coefficient between alpha diversity indices.

Richness Shannon Simpson

Richness 1

Shannon 0.75 1

Simpson 0.52 0.92 1

As an initial analysis, differences in alpha diversity between land use types, sampling years

and Exploratory region were calculated using analysis of variance (ANOVA) with function

aov. Post-hoc pairwise comparisons were tested for significance using Tukey honest sig-

nificant difference (HSD) post-hoc test as in function TukeyHSD. Correction for multiple

testing controlling the false discovery rate is accounted for by using intervals based on the

studentized range statistic as implemented in Tukey HSD (Tukey, 1991).

Richness and Simpson indices were modelled separately for grassland and forest sites. Ad-

ditionally, models of richness and Simpson indices were fit on all samples to take advantage

of the high sample count. Due to their large number of predictors, influential climatic pre-

dictors were preselected by generalized linear models with elastic net regularization using

function caret::train and method ”glmnet”. Generalized linear models with elastic net

regularization can handle co-correlated predictors even in scenarios, where the number of

predictors exceeds the number of samples (Friedman et al., 2010). Elastic net regression

is a mixture of ridge and lasso regression. Thereby linear models were fitted identifying

predictors which affect richness and Simpson indices based on variable importance with

function varImp. Two hyperparameters, λ and α , were tuned automatically using pack-

age caret::train. For richness and Simpson index λ and α corresponded to 31.84 and

1 as well as 12.25 and 0.1, respectively. Before model fitting, all predictors were centred

and scaled. Predictors with near zero variation were removed. Models were trained on

subset of data comprising 2/3 of samples and cross-validated 10 times on 1/3 of the data

to check for model overfitting, comparing the root mean square error. Predictors with a

variable importance >0 were further used for model selection of alpha diversity. However,

remaining predictors were again checked by visual inspection and dropped in case of high

correlation or bad distributions.

Generalised additive models (GAM) were used to fit alpha diversity. GAM models can ac-

count for non-linear fits of predictor variables for richness and Simpson index using function

bam in package mgcv. A negative binomial distribution with log-link function was applied

to control for overfitting, using fast restricted maximum likelihood. Furthermore, model

parameters gamma, scale and rho were set to 1.4, 1 and 0.6 respectively. A sample site

identifier was used in all GAMs as random intercept to account for systematic variation
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between plots not covered by fixed effects. Model selection was done via forward selection,

adding the predictor resulting in the maximum drop in AIC ≥ 5. Continuous predictors

were fit as non-parametric thin plate regression splines. Factor variables were fit as para-

metric terms. The effect of time on alpha diversity was modelled as the sampling year.

Although continuous, sampling year was fit as an ordinal scaled predictor, since only three

time points were available. Spatial autocorrelation in model residuals were accounted for as

the interaction of latitude and longitude of sample site locations in all models. For model

fitting, sample sites were split randomly in a training set for model selection and a test

dataset for cross-validation, comprising 2/3 and 1/3 of data, respectively. Concurvity, the

non-linear extentsion of collinearity, between predictors selected in a GAM was checked by

running function mgcv::concurvity. 10-fold cross-validation with random subsampling

of 80 % of sites from train and test data was used to check for model overfitting. There-

fore root mean square errors were compared. After successful cross-validation, the final

model was applied to all sites. The performance of the model was evaluated using the

proportion of deviance explained for the final model. Deviance is a goodness of fit statistic

and generalization of sum of squares statistics adopted for models fitted using maximum

likelihood.

2.2.9 Beta diversity analysis

Beta diversity is referred to as the diversity between samples (Sepkoski, 1988). In general,

most bacterial species in soils are rare (Nemergut et al., 2013; Lynch and Neufeld, 2015).

Consequently, abundance data of soil bacteria generated by next generation sequencing are

sparse and document the absence of most species in the majority of samples. Hence, it is

difficult to infer the behaviour of rare species to environmental gradients in a statistically

sound way in models based on bacterial abundance data. Therefore, only SV with a rela-

tive abundance of ≥ 0.1 % in at least one sample were selected for beta diversity modelling

following the approach in Szoboszlay and Tebbe (2021). Ordination of principal coordinate

analysis (PCoA) and procrustes rotation in package vegan with function cmdscale and

procrustes were calculated, exploring beta diversity and testing for similarity between

ordinations using function protest. Function procrustes rotates an ordination to max-

imum similarity with another ordination using scaled Y axis and symmetric Procrustes

statistic. Function protest retrieves the Pearson correlation between ordinations rotated

with procrustes and tests for the non-randomness of similarity between ordinations using

999 permutations (Peres-Neto and Jackson, 2001).

In this study, generalised dissimilarity modelling (GDM) (Ferrier et al., 2007) and gra-

dientForest modelling (GF) (Ellis et al., 2012) were applied to analyse changes in beta

diversity and render the results more robust as recommended in Ellis et al. (2012).
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Both methods share the same goal modelling community turnover along environmental

gradients. Thereby, two fundamentally different approaches are compared. GDM is based

on Bray-Curtis dissimilarity (Bray and Curtis, 1957). This distance measure between sam-

ples is widely used to model beta diversity, taking species abundance but not phylogeny

into account (Lozupone and Knight, 2005). Furthermore, a major advantage of GDM

is the capability to incorporate and estimate the influence of spatial pattern, a property

which is not available for GF. Hence, it is possible to estimate community turnover over

spatial distances. GDM is as an extension of matrix regression fitting an I-spline GAM to

Bray-Curtis dissimilarities (Ferrier et al., 2007). This allows for the modelling of non-linear

pattern, similar to the GAMs used for alpha diversity analysis.

On the other hand, GF fits the abundance of each SV individually to environmental pre-

dictors. Turnover can be derived for every modelled SV for each predictor. Community

turnover caused by a specific predictor is derived by averaging the predictor importance

of all SV along the predictor gradient. Generally, both GDM and GF models are non-

parametric models. In more detail, GDMs from function gdm::gdm were used to model

community turnover along environmental gradients. Unfortunately, nominal predictors

cannot be fit and were incorporated as dummy variables. Spatial autocorrelation was

considered by including the pairwise distances between sites. GDM model fitting was per-

formed on training data, comprising 2/3 of the data using random subsampling. Model

selection was performed via backward selection until only significant predictors (p<0.05)

remained, as implemented in function gdm.varImp. Finally, 10-fold cross-validation was

performed on the 1/3 test data, testing for model overfitting, via gdm.crossvalidation.

The final models were fit on all data.

Complementary to GDM, GF random forest models in function gradientForest::gf were

used to analyse contributions of environmental predictors to community turnover (Ellis

et al., 2012). Cross-validation is implemented by excluding observation from modelling,

called out of bag samples (OOB), and testing the prediction accuracy upon OOB. Further-

more, GF is robust towards skewed predictor distributions, due to their structure rooted

in binary decision trees (Breiman, 2001). Moreover, GF can deal with multicollinearity

of environmental predictors by conditional permutation (Ellis et al., 2012). Thereby, a

predictor is randomly permuted, breaking the relation to the response variable. In case

a strong association existed between the unconditioned predictor and the response vari-

able, the prediction accuracy for the OOB values would drop. Thus, variable importance

obtained by conditional permutation are not biased by spurious correlation (Strobl et al.,

2008). Conditional permutation was applied if predictors were correlated >0.5 for a max-

imum number of 64 partitions. Therefore, all initial predictors used for GDM modelling

were fitted simultaneously. 500 trees were calculated for each model. In contrast to GDM,

GF can handle nominal predictors without dummy transformation.
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Moreover, grassland and forest sites of the Biodiversity Exploratory regions were analysed

in separate models for GDM and GF to incorporate predictors being exclusively available

for grassland or forest sites.

2.2.10 Statistical niche modelling

The niche is an abstract n-dimensional space of environmental predictors describing the

presence of a species (Holt, 2009). However, only an educated guess based on literature is

possible which environmental predictors are relevant defining the niches of soil bacteria in

temperate forests and grasslands. Moreover, even if the relevant predictors with biological

meaning to a soil bacterial community can be identified, it is not know how important each

predictor is for each bacterial species.

Here, relevant predictors for mulitdimensional niche space were derived from GF models

for all SV having R2 > 0.5 in GF modelling of grassland and forest communities. Hence,

only SV were analysed for which a minimum threshold of predictive power was provided.

Initially, trajectory clustering in function kmlShape::kml was used to group the fits of

predictor importance for all SV to the most important predictors. However, the retrieved

groups of soil bacteria could only be described by qualitative predictor properties, e.g. low

or high pH optimum in conjunction with low to high importance of pH. Therefore, opti-

mal niche values were estimated along environmental predictor gradients for SV where gF

modelling identified predictive power, retrieving quantitative optimal niche values for each

predictor for each SV. Optimal niche values represent the maximum relative abundance of

a bacterium along a predictor gradient and were determined by fitting hierarchical logistic

regression as in package eHof (Jansen and Oksanen, 2013). In more detail, optimal niche

values were determined with function HOF using a poisson error distribution and 50 boot-

strap samplings to check model robustness. This approach is similar to the method used

in Sikorski et al. (2022). All predictors were scaled between 0 and 1 for direct compara-

bility between predictor gradients. Binomial model types were excluded, allowing only for

model types fitting explicit optimal niche values. After bootstrapping the best model fit

is retrieved.

In addition to optimal niche values, SV specific variable importances were derived from GF

models, estimating the relative importance of each predictor for each SV. Hereby I assume

that not all predictors are equally important for each soil bacterium. I imply a hierarchy

of environmental predictor importance, allowing for a more flexible estimation of bacterial

coexistence in soil, weighted by SV-specific variable importance of optimal niche values.

Data matrices of optimal niche values and predictor importance for each SV were trans-

formed into two separated Euclidean distance matrices representing the position of each

SV in a multidimensional space of optimal niche values and predictor importance. The ef-
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fects of variable importance and optimal niche value were joined by addition of the square

root of squared Euclidean distances for each SV. Like that, the position of each SV in

multidimensional predictor space, defined by its pattern in optimal niche values, is re-

shaped by the pattern in variable importance of each SV for each predictor. These joint

distance matrices were clustered to identify potentially coexisting bacteria sharing regions

of similar predictor space using Density-based spatial clustering of applications with noise

(DBSCAN), available in package dbScan with function dbScan. DBSCAN estimates the

density of other SV around each SV according to a specified eps value and applies a speci-

fied minimum number of points (minPts) to separate different core and noise points (Ester

et al., 1996). SV were joined into a cluster if there is a chain of SV where one falls inside

the eps-neighbourhood of another SV. SV identified as border points were defined as noise.

Ranges of parameters eps and minPts of 0.2-0.3 and 5-15 were scanned respectively for

optimal clustering results. For niche modelling of grassland and forest bacteria, eps and

minPts were 0.25 and 14 and 0.25 and 12, respectively.
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2.3 Results

2.3.1 Data structure

The experimental sites of the Biodiversity Exploratories are organized in three regions

across Germany. Edaphic properties clustered accordingly, e.g. high clay contents in soil

were clustered in the Schwäbische Alb and decreased for Hainich and especially Schorfheide

(Fig. 3). This was already shown by Kaiser et al. (2016). Furthermore, climatic predictors,

e.g. sum of rain days over 1056 days and Ts over 4°C in 1056 days, were clustered by region

as well, with Alb being cooler and having more days with precipitation than Hainich.

Schorfheide was even more dry and warmer than Hainich and Alb. Furthermore, climatic

showed a longitudinal changes as well (Fig. 4). The sum rain days over 1056 d, i.e. the

sum of rain days summed up over a period of 1056 d before sampling in 2011, 2014 and

2017 respectively, decreased on average by 6.3 % between 2011 and 2017. Moreover, the

Ts over 5°C in 1056 d, i.e the number of days with soil temperature over 5°C over a

period of 1056 d before sampling, increased by 8.7 % between 2011 and 2017. Likewise,

SM over 22 % in 365 d decreased on average by 12.17 % from 2011 to 2017- Considering

the respective sample size of 296 sites per time point, those differences were statistically

significant (p<0.05).

In consequence, these examples demonstrate that regions, climate and soil texture proper-

ties showed multicollinearity in this experimental setup, although representing independent

potential drivers for soil bacterial diversity in the Biodiversity Exploratories. This poses

a challenge to statistical modelling, since an identification of the most relevant drivers of

bacterial diversity might be biased.
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Figure 3: Differences of representative environmental predictors between regions of the
Biodiversity Exploratories. Clay = soil clay content, sum rain days in 1056 d = the
number of days with precipitations over 1056 d before sampling, Ts over 4°C in 1056 d =
the number of days with mean soil temperature over 4°C in 1056 d before sampling.
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Figure 4: Differences of representative environmental predictors between sampling years.
Sum rain days in 1056 d = the number of days with precipitations over 1056 d before
sampling, Ts over 4°C in 1056 d = the number of days with mean soil temperature over 4°C
in 1056 d before sampling, SM over 22 % in 365 d = number of days with mean soil moisture
over 22 % in 365 d before sampling. Pairwise comparisons between groups were determined
by Tukey HSD post-hoc testing following ANOVA. Non-significant pairwise comparisons
were marked by ”ns”. All other pairwise comparisons were significant (p<0.05).
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2.3.2 Sequencing results and community data structure

In total 296 forest and grassland sites were examined for 2011, 2014 and 2017. The ex-

perimental sites of the Biodiversity Exploratories are organized in three regions across

Germany. This structure applied also to edaphic predictor properties like soil texture and

climate, differing on average between regions (Fig. 3). This was already shown elsewhere

(Kaiser et al., 2016).

The sequencing of the V3 region of the 16S cDNA resulted in 230,659 SV detected in 888

samples. All samples ranged in sequencing depth from 50,801 to 1,850,110 reads. There

was no systematic difference in sequencing depth between sampling years (Fig. 5).

Figure 5: Raw sequencing depth distribution between years. Samples of 2011 were se-
quenced on HiSeq 2500. Samples of 2014 and 2017 were sequenced on NextSeq 500. Non-
significant differences (p>0.05) in sequencing depth between sampling years are represented
by black bars labelled ”ns” for non-significant. Pairwise comparisons between groups were
determined by Tukey HSD post-hoc testing following ANOVA. Black dots represent inde-
pendent samples.

All samples were coverage rarefied (Chao and Jost, 2012) to a minimum sample coverage of

98.2 %. After sample normalization sequencing depth ranged from 19,197 to 304,705 reads.

Alpha diversity describes the diversity contained in a sample. Here, richness and Simpson

indices were used to represent the total number and highly abundant SV in a sample. The

mean richness over all sites was 8,236 and ranged from 1,049 to 19,161. In comparison,
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Figure 6: Sequencing depth of coverage rarefied samples. Samples of 2011 were sequenced
on HiSeq 2500. Samples of 2014 and 2017 were sequenced on NextSeq 500. Non-significant
differences (p>0.05) in sequencing depth between sampling years are represented by black
bars labelled ”ns” for non-significant. Pairwise comparisons between groups were deter-
mined by Tukey HSD post-hoc testing following ANOVA. Black dots represent independent
samples.

mean Simpson diversity index was 365 SV and ranged from 10 to 1,431 SV.

Moreover, richness and Simpson indices differed between regions. Alb and Hainich were

more similar than Schorfheide. For richness no significant differences between Alb and

Hainich and different land use types were detected. In contrast, Schorfheide had signif-

icantly higher richness for grassland and significantly lower richness for forest sites with

averages 10,744 and 3,126 SV, respectively (Fig. 7A).

A systematic difference between grassland and forest was detected for the Simpson index.

Forest sites of all Exploratories contained significantly less highly abundant species than

grassland sites. Besides, the Simpson index was highest for Alb. Hainch and Schorfheide

contained lower Simpson index values, with Schorfheide harbouring the least number of

abundant species.

Similar to this geographic effect, alpha diversity varied over time (Fig. 7B). Richness dif-

fered significantly between 2011 and 2017. Grassland and forest sites dropped by 1041 and

1500 SV, representing a decline of 10.3 % and 19.5 % respectively.

Again, this pattern was even more pronounced for the Simpson index, declining signifi-
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cantly from 2011 to 2014 and from 2011 to 2017. Though, differences between 2014 and

2017 were not significant. On average, the difference in abundant species between 2011

and 2017 for grassland and forest sites was 95 and 188 SV, corresponding to a reduction

of 30.2 % and 34.2 % respectively.
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Figure 7: Alpha diversity of Biodiversity Exploratory regions separated by land use type
(A) and alpha diversity in Exploratory regions over time separated by land use type (B).
Richness represents all detectable species in a sample irrespective of abundance. The Simp-
son index represents highly abundant species. Transparent circles represent the mean next
to the median displayed as horizontal bars. Vertical axis represents number of species. Dif-
ferences of alpha diversity between land use type in an Exploratory and between Explorato-
ries of an land use type were tested by Tukey HSD post-hoc testing following ANOVA.
Significant differences (p<0.05) between groups are indicated by by black bars.
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In addition to alpha diversity, the aim of this study was to deduce the influence of environ-

mental predictors on community composition and turnover. Principal coordinate analysis

of beta diversity, the diversity between sites, represented by Bray-Curtis dissimilarities

revealed no systematic trajectory of bacterial communities over time (Fig. 8A). Observed

shifts between sampling time points were small as displayed for each site. Together, axis

1 and 2 accounted for 51.8 % of data variation. Pairwise comparisons of beta diversity

ordinations between sampling years revealed that the similarity of ordinations were not

significant (p>0.05) with a Pearson correlation of 0.61 and 0.49 between 2011-2014 and

2014-2017 using procrustes rotation. However, the similarity between 2011-2017 was sig-

nificant with a Pearson correlation of 0.85 and p-value of 0.001. Albeit, an arch-effect of

sample projection was present in the 2-dimensional ordination space. This pattern is com-

mon in bacterial community analysis and indicates niche differentiation and community

turnover along predictor gradients (Morton et al., 2017). Here, the overlay of soil pH onto

beta diversity ordination revealed a clear gradient (Fig. 8B).

Most species in soil bacterial communities are rare and only sporadically abundant (Bickel

and Or, 2021). For that reason, it is statistically challenging to differentiate between bio-

logical signal and random noise for rare SV. Therefore, the analysis of beta diversity was

restricted to SV being ≥ 0.1 % relative abundance in any sample. 6,192 SV were recov-

ered, providing more reliable abundance distributions for statistical analysis (Szoboszlay

et al., 2017). Also, sparsity could be reduced by 20 %. Coverage rarefied sequences and

cropped coverage rarefied sequences were compared using Procrustes rotation and signif-

icance testing, measuring the similarity between ordinations, to see how cropping of SV

affected beta diversity (Fig. 8C). The structure between ordinations was preserved and

significantly (p<0.001) correlated (Pearson = 0.92), but cropped data were drawn closer

to the center for all samples.
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Figure 8: Principal coordinate analysis of Bray-Curtis dissimilarities on coverage rarefied
sequences from 888 samples. Arrows represent the trajectories of each site from sampling
timepoints 2011 to 2014 and 2017 (A). Blue colour gradient depicts soil pH (B). Procrustes
rotation of coverage rarefied sequences (blue) and coverage rarefied sequences cropped to
SV with ≥0.1 % relative abundance in any sample (C). The similarity between ordinations
was significant (p<0.001) and Pearson correlation = 0.92.
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2.3.3 Drivers of alpha diversity

Generalized additive modelling was used to identify environmental drivers for richness and

Simpson index of forest and grassland sites of the Biodiversity Exploratories. It is not know

yet for the present data whether climatic predictors influence alpha diversity and whether

climate change is already affecting soil bacteria. Furthermore, temporal and legacy effects

were examined as well.

GAMs fitted on grassland and forest sites separately did not identify any predictors exclu-

sively available to either data sets (Fig. 54-55 in Supp. Material). Therefore, GAMs were

fitted on all sites independent of land use type for richness (Fig. 9). In case a difference in

alpha diversity is present between grassland and forest sites, land use type was included

as categorical predictor in the model fitting process.

The GAMs of alpha diversity showed independent effects of significant predictors, displayed

as partial effect plots, depicting the model fit for a specific predictor, keeping all other pre-

dictors constant at their median. Randomly selected site 27 of of Hainich grassland was

chosen as reference to account for the random intercept effect. Each fit must be imagined

as a transect through a multi-dimensional sample space, representing a single predictor fit.

Therefore, the obvious misfit of raw data and partial predictor effect is a result of partial

effect plotting. Although spatial pattern were not the scope of this study, the interaction

spline of latitude and longitude of sampling sites were fit in the model to account for spa-

tial autocorrelation between sites in all models. However, effects of spatial autocorrelation

were not analysed further.

Overall, this model accounted for 87.5 % deviance explained. Deviance is a generalization

of sum of squares for models fitted using maximum likelihood. Richness of the Biodiversity

Exploratories was dominated by temporal variation and pH. Richness declined significantly,

indicating a trend over time. Moreover, pH showed a non-linear fit with a maximum rich-

ness around 6.5. Soil texture reduced richness for high sand contents. Below >75 %, no

effect of sand content on richness was visible. However, soil texture was only significant to

a level (p<0.1). Soil moisture (SM), represented in the model as SM >14 % in 1056 d and

Range of SM in 1056 d, increased richness linearly. Soil temperature (Ts), as Ts >15°C in

365 d reduced richness linearly, however the slope was narrow, since maximally 142 d with

Ts >15°C were documented. Similarly, richness dropped for sites having >850 d Ts >4°C
in 1056 d. Dithionite extractable Fe lead to an increase in richness up to 5 g kg–1.

In addition to richness, the alpha diversity of highly abundant bacterial species was anal-

ysed as Simpson diversity index (Fig. 10). Similar to richness, separate models for grassland

and forest sites did not identify any predictor exclusively available to either grassland or

forest data sets (Fig. 57 - 56). Therefore, a GAM for the Simpson index was fitted on

all sites to increase statistical power, by doubling in sample size. Year, bulk density, pH,
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Figure 9: GAM model of bacterial richness fit on all forest and grassland sites. Subplots
show the partial fit of all predictors as black lines in the order of detection by forward
selection. Shaded grey areas represent 95 % confidence intervals. Points display raw data
for each predictor. Variable importance is displayed as partial deviance explained for each
predictor.

range of SM in 365 d, clay content and SM >42 % in 1056 d were selected as significant

predictors. In total 88.8 % of deviance explained was covered by the model. Solely the

soil temperature effect of forest sites was not recovered for all sites. Similar to richness, a

decline of highly abundant species over time was detected. Also, pH and temporal varia-

tion were the most important predictors for the Simpson index. In contrast to richness,

the Simpson index increased linearly with pH. Bulk density reduced the Simpson index

non-linearly. This effect was largest for low density soils. SM led to an increase in Simpson

index, indicated by the range or number of days >42 % in 1056 d. Soil texture represented

by clay content was least important, increasing the abundance of highly abundant species

with increasing clay content.

Deviance explained by climatic predictors was larger than soil texture in all models, em-

phasizing the impact of climate on bacterial alpha diversity in soil. For richness those

predictors were Ts >4 °C in 1056 d, Ts >15 °C in 365 d and SM over 14 % in 1056 d. For

the Simpson index, SM >42 % in 1056 d and the range of SM over 1056d were more impor-

tant than soil texture. Those climatic predictors retained by GAMs, were only moderately

correlated with each other or did not occur in the same model (Fig. 11). Hence, no multi-

collinearity was retained in the final alpha diversity models. This is important to mention

since multicollinearity between climate predictors occurred (Fig. 49 in Supp. material)

and could obscure model results. As an interesting property, Ts threshold data showed
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Figure 10: GAM fitted to Simpson diversity index of all sites. Subplots show the partial
fit of all significant predictors as black lines in the order of detection by forward selection.
Shaded grey areas represent 95 % confidence intervals. Points display raw data for each
predictor. Variable importance is displayed as partial deviance explained for each predictor.

changes over time as highlighted in Fig. 11 and 12. ANOVA and Tukey HDS post-hoc

testing revealed a significant increase in the number of days with soil temperature >4 °C
and >15 °C over the years. Moreover, during initial model fitting, the predictor ”sum rain

days” was always selected during model fitting. This predictor declined significantly over

time as well, which indicates a consequence of climate change (Fig. 12). However, this

promising predictor had to be excluded from models due to collinearity with soil texture

data, caused by the grouping of similar precipitation pattern as well as the soil texture

composition in the same Exploratory regions (data not shown). A significant decline in soil

moisture over time could only be observed for Alb, indicated by the number of days with

SM >42 %. Although significant, the differences between SM >14 % were neglectable.

Range of SM declined significantly for Hainich and Schorfheide between 2011 and 2017.

Alb however increased between 2011 and 2017. There was no indication in the underlying

data if either minimum or maximum SM influenced SM range (data not shown).
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Figure 11: Pearson correlation coefficients of significant predictors retained by GAM for-
ward selection in alpha diversity modelling.
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Figure 12: Significance testing of climate predictors between years retrieved by alpha di-
versity modelling. Pairwise comparisons between years were tested for each Exploratory
separately. For better readability, black bars represent either significant (p<0.05) differ-
ences indicated by ∗ ∗ ∗ or non-significant differences indicated by ”ns”.
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2.3.4 Generalized dissimilarity modelling of beta diversity for grassland and

forest sites

Beta diversity of the Biodiversity Exploratories for 2011, 2014 and 2017 were analysed

separately for grassland and forest sites due to large number of predictors solely available

for either group using generalized dissimilarity modelling (GDM).

In GDM, beta diversity was modelled as a distance matrix on Bray-Curtis dissimilarity.

9 predictors affected beta diversity of grassland sites significantly (Fig. 13) and explained

65.79 % of model deviance. pH was by far the most important predictor and shaped com-

munity turnover constantly over the whole gradient. Similarly, the fungal to bacteria ratio

of phospholipid fatty acid (PLFA) data linearly influenced the bacterial community data,

however retrieved only half the importance of variable pH. Porosity gained importance

for beta diversity especially for soils with high pore space. Also, soil moisture (SM) as

median SM in 1067 days before sampling was of similar importance as porosity, with high

average SM having more impact on community turnover, whereas low SM was of no ef-

fect. Dithionite extractable Al shaped beta diversity mostly for concentrations < 5 g kg–1.

Geographic distance between sites influenced community composition up to a distance of

200 km. Again, geographic distance was included to account for spatial autocorrelation.

Soil texture in form of clay content shaped bacterial community up to 40 %, higher con-

tents were of no effect for beta diversity. Community turnover over time from 2011 to

2017 implied a constant bacterial turnover rate. However, variable importance was small.

GDM cannot model categorical predictors. Therefore soil type was dummy transformed.

Consequently, GDM could only identify that not sharing the same soil type influences

community turnover.

The GDM analysis of forest sites explained 81.6 % of model deviance. Again, 9 significant

predictors were found and pH the most important predictor (Fig. 14). However, the drop in

variable importance between pH and the remaining predictors was even more pronounced

as for grassland sites. Community turnover was higher for low pH sites and reduced towards

higher pH, but community turnover was present all along pH gradient. Soil clay content

influenced beta diversity only up to 30 % clay content. Beyond, clay content did not affect

community composition. Dithionite extractable Al affected beta diversity only > 10 g kg–1.

Maximum SM < 40 % in 365 days before sampling affected community change. The same

applied to the soil stable phosphorus (P) pool with minor influence for low P contents

of up to 200 mg kg–1. In contrast, soil temperature as the number of days over 15 °C in

365 days before sampling implied a constant rate of community turnover. The C content

in Oe horizon > 40 % contributed to biological turnover. The effects of the categorical

predictors main tree species and soil type allowed only for a rudimentary analysis, showing

that sites not sharing the same soil type or main tree species affected community turnover.
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However, the effect of soil type was neglectable, as already seen for grassland sites.

Comparing grassland and forest sites, the effect of pH as most important predictor was

confirmed for both land use types. Moreover, the significant effects of clay, extractable Al,

soil moisture and a minor effect of soil type were also found in both models.
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Figure 13: Significant (p < 0.05) predictors affecting beta diversity of grassland sites
analysed by GDM of Bray-Curtis dissimilarities. Plot 1-9 display the predictor gradient
on the x-axis and its effect on community turnover indicated by an increase in partial
ecological distance on the y-axis. The inclination of each graph represents community
turnover along each predictor gradient. The steeper the slope, the more turnover is caused
by the respective value of predictor gradient on the x-axis. The final barplot displays the
partial variable importance of significant predictors as deviance explained.
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Figure 14: Significant (p < 0.05) predictors affecting beta diversity of forest sites analysed
by GDM of Bray-Curtis dissimilarities. Plot 1-9 display the predictor gradient and its
effect on community turnover indicated by an increase in partial ecological distance. The
inclination of each graph represents community turnover along each predictor gradient. The
steeper the slope, the more turnover is caused by the respective value of predictor gradient
on the x-axis. The final barplot displays the partial variable importance of significant
predictors as deviance explained.
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2.3.5 GradientForest analysis of beta diversity for grassland and forest sites

GradientForest (gF) analysis is complementing GDM analysis by modelling betaG diversity

directly as abundance turnover of each SV in the bacterial community. In total 6192 SV

were analysed. For the grassland sites, 3848 SV retrieved R2 > 0 and 740 SV had R2 > 0.5,

which means that more than 50 % of their variance in abundance could be explained by

GF. Variable importance identified pH as the most important predictor for grassland sites,

followed by soil Fe content as oxalate and dithionite extractable Fe, soil pores distribution

represented by fine coarse pores, wide coarse pores and fine pores, nutrient availability in

the form of organic C content and C/N ratio. Soil texture in the form of clay and sand

content was selected as well (Fig. 15). It has to be considered that organic C is a proxy

for soil fertility and nutrient availability due to its high correlation to other soil nutrients,

such as soil nitrogen and soil sulphur contents (Fig. 51).

Figure 15: Variable importance of the 10 most important predictors of gradientForest
analysis of grassland sites displayed as average proportion of variance explained for all
species.

Community turnover for GF is depicted as the mean turnover of all modelled bacteria

with a predictive power >0 in R2 (Fig. 16). Similar to GDM modelling, species turnover

occurred along the whole gradient of pH. For oxalate extractable Fe, community turnover

occurred around 10 and >25 g kg–1. The content of fine coarse pores in soil resulted in

community turnover <4 %. Higher community turnover for high contents of organic C
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occurred > 20 g kg–1, corresponding to >20 %. Turnover induced by clay content was low

but appeared along the whole gradient. This pattern was similar for sand content and wide

coarse pores. Major community turnover was similar for dithionite and oxalate extractable

Fe for minimum and maximum Fe contents. Fine pores showed a response solely <15 %.

The C/N ratio of the soil induced higher turnover >12.

Figure 16: Community turnover along the 10 most important predictor gradients of gra-
dientForest for grassland sites. The y-axis is normalized to integrate variable importance,
displayed as the mean turnover of all modelled 6192 SV. The inclination of each graph
represents community turnover along each predictor gradient. The steeper the slope, the
more turnover is caused by the respective value of predictor gradient on the x-axis.

Due to the resilience of GF analysis to multicollinearity between predictors, all climatic

predictor were fit. However, no climatic predictors were amongst the 10 most important

predictors relevant for 6192 SV abundant bacteria >0.1 % relative abundance. Bearing

the comparatively low variable importance in mind, SM threshold data clearly showed

that the number of days >26 % SM in 1056 d was the most important predictor for SM

threshold data (Fig. 17). However, SM threshold data > 26 % in 1056 days were almost

as important. In contrast, SM threshold data aggregated over 365 or 730 days identified a
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different trend. Here, variable importance increased constantly with SM.

Figure 17: Variable importance of soil moisture (SM) threshold data of grassland sites
as retrieved by gradientForest analysis. Line colors code the temporal aggregation of SM
threshold predictors, aggregated over a specific number of days before sampling.

In contrast, soil temperature threshold data presented a different relationship to commu-

nity turnover. First of all, no differences occurred between different temporal aggregations

of 365, 730 and 1056 d, showing similar variable importance pattern for each temporal

aggregation (Fig. 18). Second, Ts >1-2 °C was most important, representing the number

of frost free days. This insights show the potential of GF to gain deeper insight in the

dependence of bacteria communities on climate conditions in soil.

For the forest sites, 6179 SV were modelled, 3494 of which retrieved R2 > 0. 550 SV

had R2 >0.5. Similar to the grassland model, community composition of forest sites was

mainly influenced by pH (Fig. 19). Other drivers were of minor importance.

Forest sites in the Biodiversity Exploratories harboured more acidic soils <4.5 than grass-

land sites (Fig. 20). In contrast to grassland, community turnover based on pH was highest

around 5.5 and slowed down for pH >6. Labile soil P induced community turnover up to

15 mg kg–1, above that the effect was neglectable. Similar to the grassland sites, soil clay

content on forest sites induced minor turnover over the whole gradient. This applied also

to dithionite extractable Fe, where turnover happened along the whole gradient. Total C

in Oe horizon affected community turnover below 20 % and above >45 %. The impor-
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Figure 18: Variable importance of soil temperature (Ts) threshold data of grassland sites
as retrieved by gradientForest analysis. Line colors code the temporal aggregation of Ts
threshold predictors, aggregated over a specific number of days before sampling.

tance of organic C was minor in comparison to bacterial grassland communities. Moreover,

no increased turnover > 20 % was observed. Oxalate extractable extractable Fe showed

similar pattern to dithionite extractable Fe, being fundamentally different to the shift in

beta diversity induced for the grassland communities. However, the range of soil Fe con-

tent relevant for grassland community turnover was not contained for forest soils under

investigation. Bulk density, soil stable P content and C/N ratio induced little community

turnover over their respective gradient. The C/N ratio reached much wider values than

grassland sites, indicating worse substrate qualities than the grassland sites.

As already observed for the grassland sites, no climatic predictors were selected as im-

portant predictor next to pH. However, the variable importance of SM threshold data

climaxed around 25 % for the data summarizing 1056 days (Fig. 21), implying that this

soil moisture level is in comparison most important for community turnover. This is backed

by the grassland data also identifying SM >26 % in 1056 days as the most important SM

threshold predictor. As for the SM threshold data of forest, no obvious difference between

different temporal aggregations was observed. Soil temperature threshold data showed no

differentiation between temporal aggregations as well (Fig. 22). In contrast to the grass-

land sites, an increase of variable importance until days >16 °C in 1056 days for the Ts

threshold data was observed.

SM >26 % summarized over 1056 days was identified as the most important threshold

value independent of land use type. However, the high variable importance in grassland

was influenced by a high response of 3 SVs with variable importance of >0.01, occurring
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Figure 19: Variable importance of the 10 most important predictors of gradientForest
analysis of forest sites displayed as average proportion of variance explained for all species.

predominantly under dry soil conditions < 26 % soil moisture (Fig. 23). They belonged to

family Xanthobacteraceae in order Rhizobiales, genus Aquisphaera in order Isosphaerales

and order Gaiellales. Most other SV showed comparatively low variable importance for

SM > 26 % (Fig. 23).
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Figure 20: Community turnover along the 10 most important predictor gradients of gra-
dientForest for forest sites. The y-axis is normalized to integrate variable importance,
displayed as the mean turnover of all modelled 6192 SV. The inclination of each graph
represents community turnover along each predictor gradient. The steeper the slope, the
more turnover is caused by the respective value of predictor gradient on the x-axis.
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Figure 21: Variable importance of gradientForest analysis for soil moisture threshold data
for forest sites. Line colors code the aggregated number of days before sampling.

Figure 22: Variable importance of gradientForest analysis for soil temperature threshold
data for forest sites. Line colors code the aggregated number of days before sampling.
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Figure 23: Species specific cumulative variable importance of all 740 SV having a R2 > 0.5
from the Gradient Forest model of grassland sites of SM >26 %.

48



2.3.6 Ecological niche modelling

Community turnover in the GF models of soil bacteria was evaluated as the averaged

turnover of all species with predictive power. However, for grassland and forest communi-

ties, only 740 and 550 SV with R2 > 0.5 were retrieved respectively. For those SV, the

individual turnover function for each predictor gradient clearly showed different clusters

of bacteria which did not only react specifically to different regions on the predictor gra-

dients, but differed in variable importance as well (compare Fig. 58 and 59). In a first

attempt, trajectory clustering was applied to group those SV in different clusters for each

predictor. The successful clustering implied that distinct groups of soil bacteria existed,

sharing similar species turnover along predictor gradients and their respective profile in

predictor importance. However, no quantitative niche clustering can be performed based

on trajectory clustering, as only categorical groups could be retrieved for each predictor

based on the clustering along the predictor gradient and cumulative variable importance.

Other modelling approaches for soil bacteria use optimal niche values to derive niches for

soil bacteria (Sikorski et al., 2022). However, this approach lacks the consideration of bac-

terial tolerance, i.e. predictor importance, to a deviation from optimal niches values. Here,

the combination of optimal niche value estimation and SV-specific predictor importance

could lead to more realistic estimation of established soil bacterial niche space.

Hence, optimal niche values were estimated for the 10 most important predictors of each

SV with R2 > 0.5 from GF modelling of beta diversity analysis of grassland and forest

communities. For 728 out of 740 SV for grassland and 550 SV for forest sites optimal niche

values were retrieved. For 12 SV from grassland communities, no model to determine op-

timal niche values could be fitted. These SV were excluded from further analysis. Optimal

niche values were determined fitting models of hierarchical logistic regression (Jansen and

Oksanen, 2013). The optimal niche value of each predictor for each SV was added to

the respective variable importance value from GF models. Together, clustering of optimal

niche values and variable importance can be used to identify groups of SV sharing similar

regions of multidimensional predictor space.

Multidimensional predictor space was clustered by density based spatial clustering with

applications of noise (DBSCAN). PCoA ordination of grassland bacteria shows that bacte-

ria harboured 6 groups (Fig. 24A). 143 SV could not be matched to any cluster. Fig. 24B

shows the mean optimum niche value for all SV sharing the same cluster. Niches A and

B differ mainly in wide coarse pores content. In comparison to the other niches, A and

B contain clay rich sites, along with low coarse pore content. Niches D and E are quite

similar, but differ mainly in C/N ratio. Niche F contained the lowest mean pH together

with niche C, but both differ in organic C and oxalate extractable Fe content.

PCoA on euclidean distances between bacteria of forest sites revealed 3 niches (Fig. 25A).
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18 SV could not be ascribed to a niche. Obviously, niche A was separated from niches B

and C. The spatial overlap between B and C is valid, since 2-dimensional PCoA ordination

was only used for visualization purposes and underlying niche clustering was performed

on the full multidimensional distance matrix. As indicated by ordination, niches B and

C were closely related in mean optimal niche value composition, differing only in carbon

content of the Oe horizon (Fig. 25B). Considering the taxonomic composition of bacterial

niches of grassland and forest soils, no taxonomic pattern occurred. Bacterial phyla were

present in all groups and no taxonomic group below phylum level was exclusively bound

to a certain niche.
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Figure 24: Niche modelling of grassland bacteria. (A) PCoA on euclidean distance matrix
consisting of the added euclidean distances of optimal niche values and variable importance
for the 10 most important predictors as retrieved by Gradient Forest. Each dot represents
one of 728 SV. Different groups of soil bacteria identified by spatial clustering are coloured
and labelled with capital letters. Gray points depict SV which could not be assigned to a
specific cluster. (B) Scaled mean optimal niche values for each cluster of soil bacteria as
identified by DBSCAN. The blue colour gradient in each tile depicts mean optimal niche
value from all SV in a cluster. All predictor gradients are normalized to 0-1. Capital letters
on top of coloured tiles identify the cluster of soil bacteria. Numbers on top represent the
number of SV in each cluster. (C) Taxonomic composition of each cluster on phylum level.
Y-axis depict the number of species in each taxonomic group.
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Figure 25: Niche modelling of forest bacteria. (A) PCoA on euclidean distance matrix
consisting of the added euclidean distances of optimal niche values and variable importance
for the 10 most important predictors as retrieved by Gradient Forest analysis. Each dot
represents one of 550 SV. Different groups of soil bacteria identified by spatial clustering
are coloured and labelled with capital letters. Gray points depict SV which could not be
assigned to a specific cluster. (B) Scaled mean optimal niche values for each cluster of
soil bacteria as identified by DBSCAN. The blue colour gradient in each tile depicts mean
optimal niche value from all SV in a cluster. All predictor gradients are normalized to 0-1.
Capital letters on top of coloured tiles identify the cluster of soil bacteria. Numbers on top
represent the number of SV in each cluster. (C) Taxonomic composition of each cluster on
phylum level. Y-axis depict the number of species in each taxonomic group.
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2.4 Discussion

Climate predictors are amongst the most important predictors of soil bacterial diversity

on a global scale (Bickel et al., 2019; Delgado-Baquerizo and Eldridge, 2019; Zheng et al.,

2020). However, insights from large scale studies are difficult to translate to regional scales

(Mod et al., 2021). Furthermore, little information is available how bulk soil bacterial

communities react to climate and its longitudinal effects over time. This is important if

considered that climate is already changing in Germany and ecosystem functions become

affected by summer drought.

In more detail, we are lacking knowledge how and whether alpha diversity, the abundance

of rare and abundant soil bacteria, react to climate and how diversity develops over time

under climate change. Also, it is not known how potential changes translate to shifts in

beta diversity, the diversity between samples, represented by community turnover. To

shed more light on the situation in Germany, high throughput sequencing data based on

16S rRNA transcripts were examined over 3 time points of bulk soil bacterial communities

spanning 6 years across 296 forest and grassland sites, distributed across 3 regions in

Germany,

2.4.1 The abundance of rare and abundant soil bacteria declined over time

It is well known from literature that alpha diversity is highly sensitive to temporal variation

(Lauber et al., 2013). Moreover, 16S rRNA transcript based communities, as used in

this study, were found to be sensitive to the sampling timepoint (Herzog et al., 2015),

suggesting a vulnerability of bacterial alpha diversity to short-term changes and temporal

autocorrelation. Therefore the major question in this study was whether and how bacterial

alpha diversity changed over time. Alpha diversity analysis revealed that rare and abundant

soil bacteria, represented by richness and Simpson diversity indices declined significantly

over time (Fig. 9 - 10). For Simpson this effect was even more important than pH. However,

pH represented the most important predictor for richness.

The observed decline was possibly a consequence of stochasticity and short-term variation.

However, the consistent decline in alpha diversity also found for highly abundant species

is of special interest, since mostly rare bacteria were shown to account for the majority of

temporal variability in soils (Shade and Gilbert, 2015; Zhou et al., 2020). Besides, the im-

portance of sampling year as predictor for the Simpson index was twice as high compared

to richness and the importance of pH. This shows that the observed decline in alpha di-

versity is affecting all soil bacteria independent of abundance. Certainly, a possible caveat

could be that intra annual changes influence this result, since results from a grassland site

of the Biodiversity Exploratories revealed changes in alpha diversity on the plot scale over

the course of a year (Richter-Heitmann et al., 2020). However, I consider the decline in
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alpha diversity to be robust and no consequence of short-term variation. This is supported

by the similar sampling time points in May for all years, the large sample size of 888

samples per model, the distribution of sites in three regions across Germany, the random

effect structure accounting for plot specific effects and the fact that available predictors

describing short-term soil moisture and temperature conditions during sampling were not

influential.

Considering the comparability of data between years, another point to discuss is the change

in sequencing platform from Hiseq 2500 to NextSeq 500 from 2011 to 2014 and 2017. This

means a change from 4-colour to 2-colour chemistry which might affect base calling (De-

Kayne et al., 2021) and consequently affect species detection. However, sample ordination

did not reveal a systematic bias (Fig. 8). More importantly, it is well known that al-

pha diversity and especially richness estimation is primarily affected by sequencing depth

(Kleine Bardenhorst et al., 2022; Sanchez-Cid et al., 2022). Here, no systematic difference

was observed in sequencing depth between years (Fig. 5 - 6). Besides, sequencing data

normalization by sample completeness rather than size was applied to make alpha diver-

sity comparisons between samples and sampling years more reliable and preventing loss of

sequencing information (McMurdie, 2018; Chao and Jost, 2012; Weiss et al., 2017). Hence,

it can be ruled out that the decline in richness and Simpson indesx, is a consequence of

sequencing platform or systematic differences in sequencing depth.

Last but not least, spatial variation may confound temporal variation (Hermans et al.,

2020). Therefore, spatial autocorrelation between sites was accounted for in GAM model

fitting. Furthermore, site specific spatial variability was accounted for sample homogeniza-

tion, mixing multiple sub-samples per site. Notably, it was observed during model fitting

that the correction for spatial autocorrelation, reduced variable importance and affected

the fit of environmental predictors (data not shown). Again, this was regarded as an ef-

fect of regional/spatial clustering and multicollinearity of environmental predictors in this

study (Fig. 3, 4, 11).

In conclusion, the observed decline in alpha diversity over time is considered as a reliable

signal inherent to this dataset affecting all, rare and abundant, soil bacteria. However, a

continuation of this analysis including data from upcoming sampling years has to investi-

gate whether the observed decline is still an active process and part of long-term variations

>6 years of alpha diversity in temperate grassland and forest ecosystems in Germany.
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2.4.2 Climatic controls of alpha diversity

Bacterial alpha diversity declined over time in Germany. Time itself, except for stochastic

effects, is no causal driver for this temporal pattern. I hypothesized that climate might

explain parts of this pattern, in case those predictors are temporally correlated. This would

represent the first evidence of climate change already affecting soil bacterial diversity in

Germany. Furthermore, I expected legacy effects of climate predictors influencing bacterial

alpha diversity, describing a delay effect of climate on bacterial diversity.

Climate predictors engineered from soil moisture and soil temperature data, measured

continuously since 2008, were more important than the effect of soil texture on rare and

abundant soil bacteria, confirming their significance for bacterial alpha diversity. This

corresponds to earlier results of Delgado-Baquerizo and Eldridge (2019), where climatic

predictors were more important than texture in temperate grasslands globally.

The selection of climatic threshold data during model fitting over actual SM and Ts con-

ditions measured in soil while sampling emphasized the delayed impact of climate on al-

pha diversity. This confirmed the anticipated legacy effects of climate on alpha diversity.

Climatic predictors summarized over 1056 d before the sampling date resulted in higher

reductions in AIC than aggregations over 1 or 2 years, emphasizing the rather long time

lag of climate effects needed for alpha diversity to react. This confirmed results for soil

bacteria from alpine soils using similar temperature threshold data (Frindte et al., 2019).

Legacy effects of soil bacteria to climate were confirmed frequently (Waring and Hawkes,

2018; Banerjee et al., 2016; Ladau et al., 2018). Unfortunately, it was not possible to ag-

gregate climate over longer preceding time periods, due to the prevalence of discontinuous

data and missing values in climate data before 2008. Although it was shown that historic

climate outperformed the influence of more recent climate data on soil bacteria (Ladau

et al., 2018).

Generally, the bigger effects of climate predictors aggregated over 1-3 years chosen over

shorter aggregations from weeks to months, depicted a rather temporally stable bacterial

alpha diversity, unaffected by short-term changes in soil moisture and soil temperature.

Besides, extreme climatic event represented by maxima or minima of soil temperature and

moisture data were not selected at all during model fitting. This is interesting, since bacte-

rial alpha diversity and especially richness are considered as rather variable over time and

prone to short-term changes induced by extreme events (Richter-Heitmann et al., 2020).

According to variable importance, Ts derived predictors were equally important to SM for

richness. However, for Simpson only effects of SM were selected. Initially selected climatic

predictors in separate GAMs for grassland or forest sites were recovered in the models fit

on all sites as well (Fig. 54, 55). This emphasized the validity of the final GAM models for

alpha diversity fitted on all sites, independent of land use type. For Simpson, no Ts derived
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predictors were selected. This is in line with Richter-Heitmann et al. (2020) identifying

SM as being more important for abundant species and implies more resistance of abundant

bacteria to trends in soil temperature.

Apart from the effect on alpha diversity, the engineered climate predictors revealed rele-

vant Ts and SM thresholds, affecting bacteria in temperate soils. Interestingly, for both

alpha diversity indices, the effect of soil moisture range over 1056 d could be confirmed.

Furthermore, high soil moisture >42 % over 1056 d was more decisive for Simpson com-

pared to SM >14 % over 1056 d for richness.

Considering the soil temperature data, richness declined with an increasing number of days

> 4 °C and > 15 °C, representing an increase in soil temperature. This decline was no

indirect effect of SM, since Ts threshold data were not well correlated with SM (Fig. 49).

Possibly, the diversity in a sample is reduced with increasing Ts, as rare SV might be

outperformed by abundant species being more resilient to rising soil temperatures, since

Simpson did not respond significantly to Ts. From literature, the effects of climate and

climate change on bacterial diversity are not consistent. On the one hand, it was shown

recently that experimental warming decreased richness in grassland over 7 years (Wu et al.,

2022). On the other hand, little to no effects were found of short and long-term manipula-

tions of climate in forest and grassland communities (Cruz-Mart́ınez et al., 2009; DeAngelis

et al., 2015; Engelhardt et al., 2018; Sünnemann et al., 2021; Andrade-Linares et al., 2021).

Comparing the effects of warming and moisture regimes, soil moisture is more important

for alpha diversity than warming (Zhang et al., 2013; Wu et al., 2022).

Moreover, data exploration and correlation revealed temporal correlation for Ts and to

lesser extend for SM derived predictors (Fig. 4, 11). However, time itself is no causal driver

for bacterial diversity. Deviance explained increased for the selected climate predictors if

year was manually excluded from the GAM models, indicating data variation caused by

change over time can be explained by climatic predictors. Hence, climate change causing

higher soil temperature and reduced soil moisture over time is already shaping bacterial

alpha diversity in forest and grassland soils in Germany. It was recently shown that soil

warming is an ongoing process in Germany (Dorau et al., 2022). Therefore, it is of highest

importance to pursue the presented time series to see how climate change continues to

affect soil bacterial communities in Germany. This is of outstanding importance, since

other studies found no effects of soil warming on soil bacteria in Germany (Andrade-

Linares et al., 2021; Sünnemann et al., 2021).

Moreover, the multicollinearity generally observed for climate data with region and time

led to the exclusion of the promising predictor group ”sum of rain days” from the analysis

due to severe correlation with soil texture. Sum rain days over 1056 days was initially

selected during model selection for alpha diversity. However, the incorporation of sum rain
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days together with soil texture by GAM forward selection, led to the occurrence of Simpson

paradox during model fitting (Appleton et al., 1996; Armitage and Jones, 2019), reversing

the fit/effect of sum rain days over 1056 d (data not shown), compared to a model fitted

excluding soil texture.

2.4.3 Edaphic predictors and alpha diversity

In addition to the temporal decline of alpha diversity caused by climate, pH remained

the most important predictor for richness and the second most important predictor for

Simpson. However, the link of richness and Simpson to pH differed. Rare species showed

an unimodal pattern with an optimum around pH 6.5. This pattern is described ex-

tensively in literature (Fierer and Jackson, 2006; Terrat et al., 2017; Bickel et al., 2019;

Delgado-Baquerizo and Eldridge, 2019). In contrast, highly abundant species showed a

linear increase from pH 4.5 to pH 7. This results in communities where abundant bacteria

gain in importance for soil with pH > 6.5.

Moreover, finer soil texture led to an increase in alpha diversity for rare and abundant

species. This is widely confirmed in literature for richness (Kandeler et al., 2000; Zhang

et al., 2007; Hemkemeyer et al., 2018) and Simpson (Zheng et al., 2021). However, also

contradicting results are available (Obayomi et al., 2021). Besides, Simpson decreased with

increasing bulk density. Together these effects hinted towards the importance of soil struc-

ture and aggregation for alpha diversity, since bacteria were shown to have preferences for

particle size classes (Hemkemeyer et al., 2018). Overall, the effects of pH and soil texture

are well known to shape bacterial alpha diversity in soil (Plassart et al., 2019; Bickel et al.,

2019).

A factor not frequently encountered in soil biodiversity research is the effect of soil Fe

content. Here, richness was susceptible to low soil Fe contents and declined < 5 g kg–1.

Possibly, low Fe contents affected rare species in soils by low solubility of Fe-oxides and

hydroxides and a potential association with micronutrients, since Simpson did not react

to low Fe contents. It might be that some rare species are less competitive for Fe or mi-

cronutrients and therefore superseded.

Land use type and intensity, as well as the derivatives mowing, grazing and fertilization,

did not significantly affect alpha diversity. Preliminary testing revealed that land use type

did not affect richness except for Schorfheide. For Simpson diversity, significant effects

occurred in all regions (Fig. 7). However, during GAM modelling, these effects were not

selected, which led to the conclusion that land use effects could be allocated to edaphic and

climatic predictors. Moreover, land use intensity and its components did not contribute

significantly to bacterial alpha diversity in this study. This is in line with literature showing
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weak or neutral effects of LUI on bacterial diversity (Kaiser et al., 2016; Gossner et al.,

2016; Boeddinghaus et al., 2019).

2.4.4 Community turnover is resistant to climate and climate change

Beta diversity represented by community turnover was analysed to see how strong envi-

ronmental predictors shape bacterial diversity. Therefore, community turnover was mod-

elled separately for grassland and forest communities by generalized dissimilarity modelling

(GDM) and gradientForest (GF), because exclusively available predictors for either land

use type were among the selected predictors. In contrast to alpha diversity analysis, tem-

poral effects were significant but only of minor importance for grassland communities.

Forest communities were unaffected by time. This supports the finding that beta diversity

is generally less susceptible to temporal variation than alpha diversity (Lauber et al., 2013;

Shade and Gilbert, 2015; Hermans et al., 2020). Moreover, this confirms that bacterial

diversity is more stable in forest soils, compared to grassland (Hermans et al., 2020).

Furthermore, significant climate predictors were only confirmed for beta diversity of for-

est communities revealed by GDM, selecting max. SM over 365 d and Ts >15 °C over

365 d. Due to its non-parametric nature and general robustness towards co-correlation

(Ellis et al., 2012), GF is predestined for the analysis of climatic threshold data. In sta-

tistical modelling, a priori exclusion of predictors with unknown behaviour towards beta

diversity is difficult to justify, as it is unknown which predictor is likely affecting com-

munity turnover. Moreover, skewed predictor distribution and outliers do not affect tree

based models. Therefore, all climatic predictors were fitted in GF models.

Although of low relative variable importance, clear pattern for SM and Ts threshold data

were retrieved. This facilitated the identification of relevant aspects of SM and Ts to soil

bacterial community turnover. The independent identification of soil temperatures around

4 and 15 °C by independent modelling approaches for alpha and beta diversity supports

their biological relevance for soil bacterial diversity. Although the effects of climate pre-

dictors on beta diversity were low compared to alpha diversity, beta diversity is reactive to

climate change if the trends are of sufficient duration and strength (Cruz-Mart́ınez et al.,

2009; Zhou et al., 2020), emphasizing robustness of beta diversity towards climate. How-

ever, Guo et al. (2018) confirmed a significant effect of warming on beta diversity.

It can be speculated that the temporal effect found for grassland communities and the cli-

matic effects confirmed for the forest communities, represented the same inherent biological

signal, since Ts threshold data contained temporal correlation. However, the relative im-

portance of temporal and climatic effects were low for beta diversity compared to alpha

diversity, suggesting that beta diversity is more stable over time (Armstrong et al., 2016).

The lack of stronger temporal and climatic effects as seen for alpha diversity analysis might
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be a consequence of the applied sparsity reduction method, since rare species were not in-

cluded in beta diversity analysis. However, a comparison of beta diversity ordination of

the total community containing all SV versus the filtered community excluding SV <0.1 %

relative abundance in any sample showed no significant differences by procrustes rotation

(Fig. 8C). Generally, the removal of rare species is a common practice in soil bacterial

community analysis (Szoboszlay and Tebbe, 2021). In addition, it was shown that the

removal of conditionally rare taxa does not alter beta diversity pattern using Bray-Curtis

dissimilarity (Kaminsky and Morales, 2018).

The analysis of beta diversity by GDM and GF modelling confirmed pH as the most impor-

tant predictor. Besides, soil texture, soil nutrient concentration, sesquioxide concentration

and soil structure caused community turnover in grassland and forest communities. Ex-

tractable Al and Fe represented sesquioxide concentration, i.e. amorph Fe and Al oxides.

Al is toxic to plants and bacteria, especially for pH < 4.5 (Wood, 1995) and affects beta

diversity (Pan et al., 2014). Al and Fe were selected by GDM and GF respectively.

Regarding soil mineral P content, community turnover of forest sites was affected by low

P content < 200 mg kg–1. Below that threshold soil P stocks and P solubilization are pos-

sibly getting limited. For the grassland communities, the ratio of fungal/bacterial PLFA

was selected as the second most important predictor causing community turnover. Unfor-

tunately, fungal PLFAs were not available for forest sites, although the impact of fungal

communities on soil microbial communities is well known, especially at low soil pH (de

Vries et al., 2006; Rousk et al., 2010) and more recalcitrant C sources (de Boer et al.,

2005).

Moreover, GF models complemented GDM analysis by adding the effect of organic C on

community turnover for grassland and forest models. The effect of organic C is not re-

stricted to carbon as this predictor was highly correlated with soil N and S contents and

therefore representing the effect of soil nutrient concentration on community turnover. For

forest models, the influence of soil nutrient supply was augmented by total C in organic lit-

ter horizon, identified in both GDM and GF. Since bacterial communities of aboveground

horizons were not sampled, the effects found on community turnover especially for high

C contents > 400 g kg–1 hint towards an effect of dissolved organic carbon on bacterial

communities (Judd et al., 2006; Zhang et al., 2022). Soil organic carbon plays an important

role for bacterial diversity (Delgado-Baquerizo et al., 2016), even more if carbon quality is

considered (Neumann et al., 2013; Szoboszlay and Tebbe, 2021).

Turning now to soil structure, bulk density, soil pore distribution and porosity were selected

for forest and grassland models of GDM and GF representing the soil pore distribution.

These different predictors can be summarized representing a common driver, since porosity

and pore distribution data were not available for forest sites, but were highly correlated

with bulk density (Fig. 51).
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Moreover, the substrate quality of soil organic matter as C/N ratio was identified causing

community turnover, although its variable importance was low. The effect of substrate

quality on beta diversity was already confirmed for the Biodiversity Exploratories (Kaiser

et al., 2016).

In summary, community turnover was more stable over time than alpha diversity analysis.

However, the selection of almost identical temperature thresholds for alpha and beta di-

versity for the forest communities supported a consistent effect of these predictors. It has

to be considered though, that these effects had only little impact on community turnover.

2.4.5 Statistical niche modelling based on gradientForest analysis

Modelling the specific turnover of each SV by GF revealed that clusters of SV occurred

along predictor gradients, showing similar pattern of species turnover (Fig- 58-59). There-

fore, a modelling approach combining optimal niche values with SV specific predictor

importance was performed to see if potential niches for soil bacteria can be derived from

this species clustering approach.

For several reasons, this approach has the potential to be more precise than niche mod-

elling approaches lacking SV specific modelling, especially if a large number of predictors

is available. First, based on the GF results, only SV were selected for which predictive

power was provided. Second, the availability of relative variable importance incorporated

the predictor importance profile for each SV in the modelling. However, an individual

weighting of each predictor by variable importance is not possible. Hence, the applied

method represents a niche modelling based on the optimal niche value profile and variable

importance profile rather than a niche modelling based on optimal niche values weighted

by variable importance.

Generally, the addition of SV specific variable importance to SV specific optimal niche

values led to a less clear separation between clusters than grouping solely based on optimal

niche values (Fig. 60). Including variable importance affected the differentiation between

clusters of bacteria more in forest communities. Grassland bacteria maintained their clus-

ter structure based on optimal niche values, although the effect of variable importance was

included. The variable importance structure represented mainly the influence of pH for

most SV in form of a one-dimensional stretch, as seen in Fig. 60 (panels B and E in supple-

mentary materials). The 6 grassland cluster differed clearly in their average optimal niche

value composition. However, cluster D and E differed only in C/N ratio. This implied quite

specific adaptations of SV to substrate quality. Forest clusters revealed 2 groups with con-

trasting conditions across all predictors, separating A from B and C. Furthermore, niche

B and C differed only in total C in Oe. In contrast to the optimal niche values, taxonomy

revealed no systematic enrichment of a taxonomic group to a certain niche. All phyla and
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taxonomic groups below phylum level were evenly distributed between bacterial niches of

grassland and forest soils. This suggests, that adaptations to specific soil conditions defined

by different regions on gradients of environmental predictors do not lead to phylogenetic

conserved adaptations. The lack of deeper niche differentiation is supported by GDM and

GF beta diversity modelling which revealed the outstanding dominance of pH shaping

community turnover. Moreover, the importance of pH was already visible as an arch ef-

fect in beta diversity ordination (Fig. 8). The lack of a better differentiation in taxonomy

and consequently phylogeny between niches might be caused by the negligence of spatial

constraints in soil. Hemkemeyer et al. (2018) and Szoboszlay and Tebbe (2021) showed

that communities differ by particle size fractions in soil. Niche modelling on the pore scale

differentiating between communities and soil conditions might reveal more precise aspects

of bacterial coexistence in soil. However, differentiating a large number of communities on

the pore scale is unfeasible for a large scale study. Even more, the differentiated acquisition

of soil moisture data on the pore scale is complicated although a joint analysis would be

of great interest to estimate how changes in soil moisture regimes due to particle sizes and

water tension shape bacterial communities in conjunction with other edaphic predictors.
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2.5 Conclusion

The analysis of alpha and beta diversity revealed independently similar drivers of soil tem-

perature shaping soil bacteria. Apparently, soil temperature > 4°C and > 15°C were most

important for richness and community turnover of soil bacteria of grassland and forest com-

munities. However, alpha diversity was predominantly shaped by temporal decline over

time and pH. Rare as well as abundant soil bacteria were found to decline significantly

over time. For richness this can be attributed to an increase in soil temperature over time

demonstrating that climate change already influences soil bacterial communities across

Germany. The decline of highly abundant bacterial species is surprising, since abundant

species are considered to be more stable over time. Therefore, the relevance of this decline

over time is supported even further.

In contrast, community turnover was rather stable over time, although grassland communi-

ties were affected significantly. The dominance of pH on bacterial community turnover was

more important as revealed by GDM and GF analysis. Generally, GF is a potent method

providing comparable results to GDM analysis while allowing for SV specific analysis of

species turnover along environmental gradients. This revealed niche differentiation of soil

bacterial communities in German grassland and forest soils.

Furthermore, a higher variable importance of climatic predictors summarized over 1-3

years compared to short-term temporal aggregations from several days to weeks confirmed

legacy effects of soil temperature and soil moisture on bacterial diversity and emphasized

the temporal stability of bacterial alpha and beta diversity in soil. However, legacy effects

of land use intensity were not observed for alpha and beta diversity.

Summing up, the presented results from the Biodiversity Exploratories revealed insight

in climate change already affecting soil bacterial communities in Germany. It is therefore

of great importance to further pursue this development of soil bacterial communities in

response to climate change in future studies.
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3 Bacterial life-style not fertilization shapes soil bacteria

communities from a long-term agricultural fertilization

experiment

3.1 Starting point of the study

Bacteria in the bioshpere live predominantly surface-associated (Costerton et al., 1987;

Tuson and Weibel, 2013). This is true especially for soils (Flemming and Wuertz, 2019).

Soils offer a high surface area, but only a small proportion of it is covered by bacteria

(Nunan et al., 2003). The distance between these bacteria is in the range of tens of µm

(Raynaud and Nunan, 2014). However, bacteria are not homogeneously distributed in the

soil matrix and occur predominantly in patches (Nunan et al., 2003).

The attachment of bacteria to soil particles or any other surface is driven by electrostatic

interactions (Tuson and Weibel, 2013). Generally, the attachment process is described as

a two-stage model with a reversible and rapid adhesion based on hydrophobic and elec-

trostatic interaction (Huysman and Verstraete, 1993b,a; Schwarz et al., 2017), followed by

an irreversible stage which takes several hours and is based on van der Waals interactions

between the hydrophobic region of the outer cell wall and the surface (Tuson and Weibel,

2013). Moreover, by exuding extracellular polysaccharides (EPS) , bacteria are capable

of preconditioning a surface for cell attachment (Kögel-Knabner et al., 2008). EPS are

chemically diverse and contain a large variety of carbohydrates as well as proteins or DNA

(Whitfield, 1988). A vast community of bacteria can be involved which live on any solid-

liquid interface in a matrix of EPS. Thereby, also bacteria are involved which are not

attached to the surface directly, but are contained in the EPS matrix. A diverse com-

munity of bacteria in a matrix of EPS attached to a surface is summarized as a biofilm

(Flemming and Wingender, 2010). The EPS matrix makes up the majority of biofilm dry-

mass (Cai et al., 2019). Biofilms colonize preferably carbon-rich material in soil (Nunan,

2017). Moreover, a biofilm is not static, but follows a lifecycle consisting of attachment,

colonization, development, maturation and cell dispersal (Cai et al., 2019). This indicates

that biofilm formation depends on environmental conditions and the source and composi-

tion of the available surface.

Flemming and Wuertz (2019) claimed that biofilms harbour most active bacteria. This is

supported by Wu et al. (2019), who detected 23 times more active bacteria in soil biofilms by

substrate-induced respiration. Seneviratne and Jayasinghearachchi (2005) found biofilms

to improve soil nutrient mineralization and higher enzyme activity. Although most bacte-

ria in soil are described as dormant with only a small proportion being metabolically active

(Blagodatskaya and Kuzyakov, 2013). This is in line with the hypothesis that the surface-

associated lifestyle in a biofilm is a mechanism for low nutrient environments and enables
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growth at much lower nutrient concentration than in liquid culture (Kögel-Knabner et al.,

2008; Flemming and Wuertz, 2019). This was confirmed experimentally several times (An-

dersson and Nilsson, 2001; Huang et al., 2015). However, also contradicting results were

published. Wu et al. (2019) found that high-nutrient input induced biofilm formation and

low nutrients favoured a free-living lifestyle.

At the time of writing, there is no conclusion reached, if substrate availability favours a

free-living or surface-associated bacterial lifestyle. These inconsistent results might be a

consequence of soil types or texture and its chemical composition, since soil surfaces can

provide decomposable substrates and nutrients or inhibit biological degradation by spatial

and physical effects (Chenu et al., 2002). For example, soil-pores < 0.8 µm were found

not being colonized by bacteria at all (Ranjard and Richaume, 2001), which could protect

substrates spatially from microbial decomposition. Moreover, it was demonstrated that

soil communities differ on the pore scale (Ruamps et al., 2011) with different phylogenetic

groups having preferences for different particle size fractions (Hemkemeyer et al., 2018;

Ranjard and Richaume, 2001). In contrast to a surface-associated lifestyle, a free-living or

planktonic lifestyle can either be passive, enforced by biofilm dispersal and the consequent

release of cells into the soil pore space (Flemming and Wingender, 2010) or by any form

of motility providing the capabilities for targeted movement towards higher nutrient con-

centrations in the soil water or for dispersal.

Generally, there is no information available how and if fertilization of arable soils affects

soil bacterial life-style. So far information is exclusively available for bulk soil and rhizo-

sphere communities. It was shown that organic fertilizations increases alpha diversity in

arable soils (Wei et al., 2008; Hartmann et al., 2015; Francioli et al., 2016; van der Bom

et al., 2018). Moreover, mineral fertilization is reducing alpha diversity indirectly by soil

acidification (Zeng et al., 2016; Li et al., 2016; Dai et al., 2018), however this effect was

attributed to secondary soil acidification. Moreover, mineral N was found to reduce mi-

crobial biomass (Wallenstein et al., 2006). However, also neutral (Ge et al., 2008; Ogilvie

et al., 2008; Eo and Park, 2016; Duan et al., 2022) and concentration dependent effects

were reported (Sun et al., 2019). Hartmann et al. (2015) assumes that these inconsistencies

in results are dedicated to differences in experimental systems and management.

The physiological mechanisms leading to the formation of biofilms in soils are well stud-

ied, but little is known about the bacterial communities living predominantly in biofilms

or having a surface-associated lifestyle. Even less is know about bacterial species living

temporarily or exclusively in the soil pore space. So far, only one study is available compar-

ing surface-associated and free-living communities in soil. Bystrianský et al. (2019) found

species being significantly enriched in either of the communities, with the genera Pseu-

domonas, Rhizobium, Arthrobacter and Bosea being significantly enriched in the surface-

associated community.
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In conclusion, a coherent analysis of the effects of nutrient availability on bacterial lifestyle

and activity is still missing. In this study, bacterial lifestyle is defined as the contemplation

of surface-associated versus a free-living bacteria in the soil pore space.

Hence, the aim of this study was to analyse how the bacterial community composition,

being either free-living or surface-associated is influenced by nutrient availability, potential

metabolic activity and life-style. I hypothesise, first, that for each fertilization treatment

the free-living community is less diverse than the surface-associated community. However,

I don’t expect a significant effect of fertilization treatment on alpha diversity.

Second, the free-living and surface-associated communities differ in community composition

for each fertilization treatment.

Third, I expect the differences in community composition to be more prominent for the

potentially active communities for different fertilization treatments and bacterial life-style.

Fourth, the proportion of active bacteria should increase with fertilization and be higher in

the respective surface-associated community due to the better nutrient supply. In contrast,

the free-living community should be depleted in active bacteria due to starvation.

65



3.2 Material and Methods

3.2.1 Study design

Initially, it was planned to compare different soil types from the Biodiversity Exploratory

network (Fischer et al., 2010), spanning a wide range of edaphic properties. Unfortunately,

due to the Corona restrictions in summer 2020, the soil sampling campaign was cancelled.

As a replacement, soil bacterial communities of different fertilization treatments originating

from the same soil type of an agricultural long-term fertilization experiment were compared

to analyse the influence of soil nutrient availability on the free-living and surface-associated

soil bacterial community composition. In the laboratory, a cell extraction experiment

from soil was developed to separate soil bacteria of different life-style. The extracted soil

bacterial communities were analysed using Next Generation Sequencing of the variable

V3/V4-region of the bacterial 16S rRNA gene copies and transcripts. It is unknown from

literature to which extend the free-living and surface associated bacteria are shaped by

metabolic active bacteria. To further distinguish between potentially active and non-

active bacteria, a novel approach based on the 16S rRNA:rDNA ratio was employed. A

conceptual overview of the experimental design is depicted in figure 26.
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Figure 26: Experimental design of the bacterial community extraction experiment. The
active community is defined as the rRNA:rDNA ratio for each bacterium, passing a dynamic
threshold.

3.2.2 Soil sampling

Soil samples were taken on 30th of June 2020 from the Static Fertilization Experiment in

Bad Lauchstaedt. This long-term fertilization experiment was initiated in 1902 (Köppen

and Eich, 1991) on a haplic chernozem established on loess (Francioli et al., 2016), which is

one of the most fertile soil types worldwide. The soil texture consists of 21.0 % clay, 67.8 %

silt and 11.2 % sand. A comprehensive description of the site and the experimental design

of the fertilization experiment is described in (Blair et al., 2006). Three fertilization treat-

ments were compared, spanning the maximum available gradient in carbon and nitrogen

content. The zero control plot, receiving no fertilization (NF) except liming since 1902, was

compared to treatments solely fertilized with mineral nitrogen (N) and farmyard manure

+ mineral nitrogen (FYM+N). The respective soil nutrient concentrations are given in

Table 2. FYM+N was fertilized annually with mineral fertilizer (80 kg N ha–1) and every

second year with organic fertilizer (30 t ha–1). The last organic fertilization was applied in
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2019. Treatment N received 100 kg N ha–1 annually. All investigated experimental plots

had similar pH, avoiding a pH gradient between treatments, since pH is well known to

have a major influence on soil bacterial community composition (Thompson et al., 2017;

Szoboszlay et al., 2017; Kaiser et al., 2016).

Table 2: Soil properties of the investigated fertilizations treatments. NF stands for unfer-
tilized control, N for mineral nitrogen fertilization and FYM+N for farmyard manure +
mineral nitrogen. Organic carbon content (Corg), total nitrogen content Nt(%), organic
carbon:total nitrogen ratio (C/N), available soil phosphorus (av. P), available soil potas-
sium (av. K), pH and soil moisture (%, w/w). Data provided by Dr. Thomas Reitz (UFZ
Leipzig, personal communication).

Corg(%) Nt(%) C/N av. P (mg/kg) av. K (mg/kg) pH soil moisture

NF 1.56 0.13 11.6 42.93 44.57 7.54 5.22

N 1.74 0.16 11.26 19.37 57.36 7.46 4.64

FYM+N 2.35 0.21 11.0 239.9 238.9 7.40 4.35

For each fertilization treatment, 7 subsamples from 2-10 cm depth were randomly taken

between rows of winter wheat with a soil corer. The soil from 0-2 cm could not be recov-

ered and was lost during drilling with the soil corer, due to low soil water content. All

7 subsamples were merged and homogenized by 2 mm sieving and roots and stones were

removed in the field. From the homogenized samples, 3 technical replicates of 3 g of soil

per fertilization treatment were collected in 50 ml falcon tubes and fixed immediately in

4.5 ml of a mixture of 50 % (v/v) ethanol (EtOH) and phosphate buffered saline (PBS)

of pH 7.3 and stored at 4 ◦C in the dark until cell extraction. 50 % EtOH was used

as a fixative to stop any metabolic activity, since it is precipitating and not cross-linking

proteins. Although fixation with 1 % paraformaldehyde, a cross-linking fixation agent,

improved extraction efficiency of bacteria from soil (Eichorst et al., 2015), cross-linking

fixation reagents are know to interfere with sequencing (Clingenpeel et al., 2014).

Remaining soil was stored at 4 ◦C in the dark in polyethylen bags for cell counting, deter-

mination of gravimetric soil water content and determination of cell extraction efficiency.

The processing time per treatment from soil sampling to storage of sample replicates took

1 h for each fertilization treatment.

3.2.3 Separation of free-living and surface-associated bacteria by Nycodenz

extraction

Before extraction, soil samples had been stored at 4 ◦C in 4.5 ml 50 % (v/v) EtOH and

PBS solution in 50 ml falcon tubes. To separate the free-living bacteria in the soil suspen-

sion from surface-associated bacteria and soil particles, extractions were performed in 50 %

(v/v)- EtOH/PBS solution followed by a Nycodenz density centrifugation. Evaluating the
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cell extraction efficiency for the free-living community, harvesting a sufficient amount of

bacteria for nucleic acid extraction and library preparation, 1 versus 5 consecutive extrac-

tions were compared

Subsequently, the surface-associated bacteria were separated from soil particles by means

of cell extraction in a detergent solution containing 50 % (v/v) EtOH, 50 mM sodiumpy-

rophoshate, 10 mM EDTA and 0.1 % Tween 80 dissolved in PBS of pH 7.3.

Besides the extraction solution, three 8 mm and three 4 mm of heat-sterilized glass beads

were added to each sample and vortexed vertically for 1 min at full force on a Vortex-

Genie2000. Next, the tubes were vortexed for 15 min in horizontal position at half force

followed by a centrifugation at 200 xg for 2 min to settle soil particles. The supernatant

containing the extracted bacteria was collected with a serological pipette and transferred

to a clean 50 ml tube. The remaining soil pellet was extracted 4 more times for each sam-

ple. Thereto, the soil pellet wasresuspended in 4.5 ml of 50 % (v/v) EtOH and PBS and

vortexed briefly to detach the soil pellet from the tube bottom and the extraction process

was repeated.

The 5th and final extraction of free-living bacteria was done similarly, however, the cen-

trifugation step to collect the supernatant was skipped and the soil slurry was layered on

top of a cushion of 10 ml Nycodenz solution of 1.3 g/ml using a serological pipette in

a 35 ml ultracentrifuge tube forming a sharp interface between the soil slurry and Ny-

codenz. The collected supernatant containing the extracted bacteria from the preceding

extraction steps was added as well, resulting in one single ultracentrifugation step for all

five extraction steps. The samples were centrifuged at 10143 xg for 30 min at 4 ◦C in a

swing-out rotor in an ultracentrifuge to separate the free-living bacteria from co-extracted

soil particles and debris. After centrifugation, the interphase between extraction medium

and Nycodenz containing the cells was collected using a serological pipette. To extract

the surface-associated bacteria, the remaining soil pellet in the ultracentrifuge tubes was

resuspended in 4.5 ml of detergent solution. Again, three 8 mm and three 4 mm glass

beads were added and vortexed briefly to loosen the pellet. The soil slurry was transferred

to a 50 ml screw cap tube. The tube was vortexed vertically for 1 min at full force and

horizontally for 15 min at half force. The soil slurry produced was again layered on top of

a 10 ml Nycodenz cushion in an ultracentrifuge tube and processed at identical conditions

a the extraction in of the free-living bacteria described before.

After the ultracentrifugation, all samples were centrifuged at 17000 xg for 10 min. The

supernatant was discarded and the cell pellet was resuspended in 1 ml 50 % PBS/EtOH

solution by sonication three times for 5 min in a sonication bath at room temperature. In

order to remove still remaining soil particles and purify the extracted cells even further a

second Nycodenz extraction was conducted. Therefore, the resuspended cells were layered

on top of 1 ml Nycodenz of 1.3 g/ml in 2 ml tube and centrifuged at 10000 xg for 30 min
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at 4 ◦C in a fixed angel rotor in a Beckmann 4230 tabletop centrifuge to clean the cells

even further and separate remaining soil particles and debris. After centrifugation, all

supernatant above the Nycodenz cushion was collected, transferred to a new 2 ml tube

and centrifuged at 20000 xg. The supernatant was discarded and the final cell pellets were

resuspended in 750 µl of RNA Shield and stored at -20 ◦C until nucleic acid extraction.

3.2.4 Direct cell counting

Determination of the total cell number in soil samples and and the cell number of non-

extractable bacteria, remaining in the soil samples after cell extraction, were determined

by addition of 900 µl 10 mM HEPES buffer of pH 7 containing 2 % (v/v) Glutardialdehyde

to 0.1-0.25 g of soil. The samples were vortexed briefly and fixed for 10 min. 100 µl of soil

slurry were transferred to a new 2 ml tube with a 1 ml pipette using tips of which the tip

has been cut before autoclaving to allow the uptake of coarse soil particles. The samples

were further diluted by addition of 900 µl 10 mM HEPES. After sample homogenization

by vortexing, 50 µl were transferred into a new 2 ml tube and mixed with 1 ml of 10 mM

HEPES and 450 µl methanol. The samples were homogenized in a sonicator bath for

15 min at 35 ◦C. 500 µl were transferred to a 15 ml screw cap tube containing 9.5 ml 2mM

MOPS buffer. Cells were stained by addition of 2 µl SybrGreen I stock solution (stock

concentration: 10000x in DMSO) for 10 min in the dark on a rotary shaker. Afterwards,

cells were transferred onto black polycarbonate filters of 2 µm pore size and 21 mm in

diameter. The filters dried briefly at room temperature and half a filter was mounted onto

a microscopic slide with 10 µl of anti-fading reagent (250 mg 1,4 Diazabicyclo(2,2,2)octan

dissolved in 1 ml of 3x PBS and diluted with 9 ml glycerol), covered with a cover slip

and sealed with nail polish. Cells of free-living and surface-associated bacteria in cell ex-

tracts were counted using 75 µl of cell extracts stored in RNA/DNA shield. 900 µl 10 mM

HEPES buffer of pH 7 containing 2 % Glutardialdehyde was added and stained with 0.2 µl

SybrGreen I stock solution for 10 min in the dark on a rotary shaker. The stained cells

were added to 9 ml 2 mM MOPS in a 15 ml scew cap tube and transferred onto filters

as described above. 10 fields of view (FOV) were counted for each sample using a Zeiss

AxioVision Epifluorescence microscope counting 50-200 cells per FOV. Total cell numbers

were calculated using the formula below:

Total cell number g–1 dry soil =
total cell counts× filter factor× dilution factor

g dry soil
(3)

with:

Filter factor =
filter area μm2

FOV area μm2
(4)

70



which results in:

Filter factor =
346360590.1 μm2

15625 μm2
= 22167.08 (5)

The dilution factor used was 600, 600 and 10 for soil bacteria, non-extractable bacteria

and extractable bacteria respectively.

In contrast to direct counting, most probable number statistics (MPN) was used to enumer-

ate the bacteria on particles co-extracted from soil during cell extraction. The MPN was

estimated following the method in (Roser et al., 1987) using table VIII2 in (Toutenburg,

1971). Simulating dilution factor of a = 2, 4 different areas of defined size, each of them

half in size of the preceding one, were checked for the presence of bacteria on particles. The

largest area corresponded to the area of one FOV as defined above. For each size class,

n = 10 random replicates were examined on each filter. The mean number of positive

fields x was calculated by summing up the number of positive fields and dividing it by the

number of replicated fields n examined for each size class. For each x, K was selected from

table VIII2 in (Toutenburg, 1971). Finally the cell number λFOV–1 was estimated using:

log10 λ = x log10 a – K (6)

Finally, the total number of bacteria on particles was calculated by:

total cell number g–1 dry soil =
λ × filter factor × dilution factor

g dry soil
(7)

The dry weight of soil samples used for bacterial cell counting was calculated by determining

the gravimetric water content for reference samples of soil and soil after cell extraction.

The samples were dried at 105 ◦C until reaching constant weight.

3.2.5 Nucleic acid extraction and library preparation

RNA and DNA were extracted from cell extracts using Zymo Research (ZR) Miniprep Kit

(R2002). This kit was chosen, since it is specifically designed for hard to lyse cells from

environmental samples. Samples stored in 750 µl ZR RNA shield were transferred to ZR

BashingBead Lysis Tubes containing sterile 0.1 and 0.5 mm zirconium beads. Nucleotide-

free water was used instead of sample material for negative controls. Bead beating was

performed on a FastPrep24 bead beater (MP Biomedicals) at 6.5 ms–1 for 60 s. Samples
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were centrifuged at 16000 xg for 30 s and 500 µl of supernatant were transferred into a

new 2 ml tube. 1 ml of ZR Lysis Buffer was added and mixed well. The lysed cells were

transferred into a ZR SpinAway Filter tube and centrifuged at 16000 xg for 30 s. For RNA

extraction, 1.5 ml of flow-through were mixed with 1.5 ml of 100 % ethanol and centrifuged

using a ZR ZymoSpin IIICG column at 16000 xg for 30 s. The RNA, bound to the column

matrix, was washed with 400 µl of ZR Wash Buffer and centrifuged at 16000 xg for 30s.

Next, the RNA was treated with 80 µl of DNAse I at a concentration of 0.625 U µl–1 at

30 ◦C for 30 min to remove any traces of genomic DNA. Both columns, containing the

RNA and DNA bound to the column matrix were washed with 400 µl ZR Prep Buffer

and centrifuged at 16000 xg for 30s. 700 µl of ZR Wash Buffer were added to the column

and centrifuged at 16000 xg for 30 s. Again, 400 µl of ZR Wash Buffer were added to the

column and centrifuged at 16000 xg for 2 min. The columns were transferred to a new 2 ml

tube and incubated with 50 µl of RNAse-free water for 5 min at room temperature. After

the incubation, the columns were centrifuged at 16000 xg for 30 s. To remove potential

contained PCR inhibitors, 600 µl ZR HRC Prep Solution was added to ZR III-HRC Filter

columns and centrifuged at 8000 xg for 3 min. The eluted RNA and DNA samples were

added to the prepared ZR III-HRC Filter columns and centrifuged at 16000 xg for 3 min.

RNA samples were checked for DNA contamination by adding 15 µl of nucleotide-free wa-

ter to 5µl of RNA extract or 20 µl of nucleotide-free water for the negative control, and

performing PCR on the V3/V4 region of the 16S rRNA gene using forward and rerverse

primers 415f and 830r in combination with the Phusion HotStart II High-Fidelity Poly-

merase (Thermo Scientific). After initial denaturation for 30 s at 98 ◦C, a denaturation

for 10 s at 98 ◦C, annealing for 10 s at 55 ◦C and elongation for 45 s at 72 ◦C were

repeated for 15 cycles. After the amplification, a end-elongation followed for 2 min at

72 ◦C and a cooldown to 4 ◦C. PCR products were checked for amplification products

by gel-electrophoresis. All tested RNA samples still contained genomic DNA compared

to the negative control. Therefore, a second DNAse I treatment was performed using the

Invitrogen Turbo DNA-free kit according to the manufacturer protocol. The RNA samples

were subsequently resuspended in 20 µl RNAse-free water and the purified RNA and DNA

samples were stored at -80 ◦C.

Library preparation for RNA samples started with reverse transcription of RNA in DNA.

4 µl of RNA extract were added to 1 µl of Random Hexamers and heated on a PCR-cycler

for 5 min at 70 ◦C. The mixture was cooled on ice for 5 min and 15 µL of PCR-buffer

(1x GoScript reaction buffer, 3 mM MgCl2, 0.5 mM nucleotide mix, 0.05 U µl–1 GoScript

reverse transcriptase) were added. The reverse transcription continued with 5 min at 25 ◦C,

1 h at 42 ◦C, 5 min at 70 ◦C and finished with a cooldown to 4 ◦C.

A two-step multiplex PCR was performed by adding 20 µl of reverse transcription product
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to 30 µl PCR-buffer (1x HF Phusion buffer, 0.8 mM nucleotide mix, 3.5 mM MgCl2, 3 %

DMSO, 0.4 mg/ml BSA, 0.25 pmol/µl primers and 0.03 U/µl Phusion HotStart II High

Fidelity DNA Polymerase (Thermo Scientific). After initial denaturation for 30 s at 98 ◦C,

denturation for 10 s at 98 ◦C, annealing for 10 s at 55 ◦C and elongation for 45 s at 72 ◦C

were repeated for 15 cycles. A end-elongation followed for 2 min at 72 ◦C and a cooldown

to 4 ◦C. In a second step, 4 µl of PCR-product were mixed with 48 µl PCR-buffer (1x

HF Phusion buffer, 0.8 mM nucleotide mix, 3.5 mM MgCl2, 3 % DMSO, 0.4 mg/ml BSA,

0.25 pmol/µl primers and 0.03 U/µl Phusion HotStart II High Fidelity DNA Polymerase

(Thermo Scientific)) and denaturated for 30 s at 98 ◦C. After initial denaturation, 15

cycles of denaturation for 10 s at 98 ◦C, annealing for 10 s at 55 ◦C and elongation for

45 s at 72 ◦C followed. Finally, after End-elongation for 2 min at 72 ◦C, the samples were

cooled to 4 ◦C.

4nM of each sample were pooled, spiked with 15 % PhiX and sequenced on a MiSeq

platform (Illumina, San Diego, CA, USA) using a 350 base pair paired-end-run kit.

3.2.6 Bioinformatics

Sequences were retrieved from the Illumina MiSeq platform already demultiplexed, accord-

ing to the barcodes used for each sample. The demultiplexed sequences were processed

using the Python based QIIME2 2019.1 bioinformatic pipeline (Caporaso et al., 2010;

Bolyen et al., 2019) run in a Linux environment on a high performance cluster with default

settings if not stated otherwise.

Bacteria were distinguished at the level of single nucleotide differences as exact exact se-

quence variants (SV), defined as a specific nucleotide sequence of the V3/V4 16S rRNA

gene region (Callahan et al., 2017). For this project, the same pipeline infrastructure as

in chapter 2.2.3 was used. However, changes to the existing protocol from chapter 2.2.3

are listed below. In short, the demultiplexed paired-end reads were joined using plugin

vsearch. Joined reads were processed using plugin quality-filter (Bokulich et al., 2013).

Reads having a quality score below 25 over at least 75 % of the read length were discarded.

Plugin deblur (Amir et al., 2017) was used for denoising the joined sequences and checking

for chimera. First, all sequences were trimmed to a length of 350 base pairs. Second,

all sequences were discarded occurring less than 10 times in all samples and less than 2

time in each sample. For sequence alignment MAFFT (Katoh and Standley, 2013) was

used. The phylogenetic tree was calculated using the FastTree plugin (Price et al., 2010).

The taxonomy was annotated using the plugin feature-classifier. A Näıve Bayes classifier

trained with the SILVA 132 database (Quast et al., 2013; Yilmaz et al., 2014) for the V3/V4

region. In case the taxonomic affiliation can not be determined, SV were kept as ”uncul-

tured bacterium” (Overmann et al., 2017). In a final step, sequences of mitochondria and
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chloroplasts were removed and the abundance data, taxonomy table and phylogenetic tree

- in Newick format - were retrieved and exported to R ({R Core Team}, 2021).

3.2.7 Sequencing data normalization

All downstream analysis, data normalization and statistics were done entirely in R 4.0.1.

All sequencing informations were imported into R as a phyloseq-object using package

phyloseq. Package tidyverse was used for data handling and packages ggplot2, meta-

coder and gridExtra for visualization. Sequencing data normalization, pivotal for alpha

and beta diversity analysis, was performed as coverage-based rarefaction using function

metagMisc::phyloseq coverage raref. Coverage-based rarefaction normalizes samples

to identical sample completeness rather than identical number of reads (Chao and Jost,

2012). This approach avoids precision loss caused by discarding the amount of reads higher

than minimum sequencing depth (Chao et al., 2020).

3.2.8 Calculation of alpha and beta diversity

Hill numbers were calculated as alpha diversity measures to calculate richness, Shannon

and Simpson indices representing the total number of bacteria in a sample, the number of

abundant and the very abundant bacteria in a sample, respectively. For the calculation of

alpha diversity, please refer to chapter 2.2.8.

To account for data compositionality, the bacterial abundance/count data were trans-

formed by addition of a pseudo-count of 1 and calculating the natural logarithm (Quinn

et al., 2018). Sequencing data are compositional, meaning that derived abundance are

not true abundances and depend on the capacity of the sequencing platform. (Gloor

et al., 2017). Consequently, beta diversity was calculated on transformed read counts as

weighted Unifrac distances, which incorporate abundance and phylogeny (Lozupone and

Knight, 2005).

3.2.9 Determination of metabolic active bacteria

RNA, in contrast to DNA, is rapidly decomposed by RNAse in the environment. Hence, the

extraction of bacterial 16S rRNA in soil, implies the existence of intact cells and ribosomes,

allowing for protein synthesis. The number of ribosomes in a cell was found to correlate with

growth rates of pure cultures (Kerkhof and Ward, 1993; Kemp et al., 1993). This approach

is also used as an indicator of protein synthesis potential for bacteria in natural communities

(Campbell et al., 2011; Denef et al., 2016; Bowsher et al., 2019). Hence, the protein

synthesis potential of each SV in each sample was determined as the rRNA:rDNA ratio on

a read count basis using a novel dynamic threshold approach. To do so, all reads for each SV
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in a sample were added up in all 3 technical replicates. Differences in library sizes between

rRNA and rDNA communities of each sample were normalized to minimum sequencing

depth using function rarefy.even.depth implemented in package phyloseq. Based on

a dynamic threshold, sensitive to DNA abundance, each SV was classified as active or

inactive. SV having 0 reads only in the DNA community were replaced with a pseudocount

of 1 to be able to calculate the rRNA:rDNA ratio. This derivation of this dynamic threshold

is described in Noviana (2021). Briefly, the dynamic threshold was developed since mostly

rare taxa were classified as active in literature (Jones and Lennon, 2010; Campbell et al.,

2011; Klein et al., 2016). However, this finding is based on an artefact inherent to amplicon

sequencing data generation. Rare SV, represented by a low number of reads, have a high

variation of up to 80 % between technical replicates, accounting for variation introduced

during library preparation (nucleic acid extraction, PCR and bioinformatics). On the

contrary, abundant SV show a lower variation of 5 %. As a result, to avoid a inflated false

discovery rate, a dynamic threshold considering SV abundance in the DNA community

was applied. This measure will prevent rare SV from being identified as potentially active

caused by stochastic variation. Like that, false discovery rate could be reduced to 0.4 %.

3.2.10 Statistical analysis

As stated before, pH between fertilization treatments was constant. However, differences

between major soil nutrients were highly correlated between treatments (Fig. 27). Hence,

Corg was chosen to represent soil nutrients av. P, av. K, Nt and Corg.

Statistical testing for alpha and beta diversity analysis relied mainly on the vegan pack-

age. Differences between groups were tested for significance with ANOVA and TukeyHSD

post-hoc testing using functions aov and TukeyHSD respectively. Beta diversity ordination

was based on weighted Unifrac distances (Lozupone and Knight, 2005). Ordination was

performed using distance-based redundancy analysis (RDA) with function capscale and

the first two dimensions were displayed. The 95 % confidence intervals of nominal scaled

predictors were calculated using function veganCovEllipse.

Subsequent variance partitioning of environmental parameters in beta diversity of total

and potentially active rRNA communities were estimated using function varpart. The

respective p-values were estimated by PERMANOVA via function adonis2.

Moreover, variable importance and SV specific modelling of beta diversity and turnover

was performed using gradientForest analysis (Ellis et al., 2012). For detailed information

see remarks in section 2.2.9.
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Figure 27: Pearson correlation between soil nutrients and soil moisture. Corg = organic
carbon, Nt = total N, av.P = available P, av.K = available K, soil moisture = gravimetrical
water content.

3.3 Results

3.3.1 Cell extraction from soil differs by bacterial life-style and not by fertil-

ization

Bacteria were extracted from the haplic chernozem of the Static Fertilization Experiment

from Bad Lauchstaedt. Shaking the soil with PBS, in combination with soil aggregate

disruption using glass beads was applied to retrieve the free-living community, living in

the soil pore space. Afterwards, surface-associated bacteria were extracted similarly with

detergents in the extraction solution. Bacterial cells were enumerated by direct counting

using an epi-fluorescence microscope, to compare the extracted number of cells used for

library preparation. This was necessary to characterize and provide a reliable cell extraction

method for downstream sequencing of bacterial communities.

A single extraction with PBS followed by a single extraction with detergents was compared

to 5 consecutive extractions followed by a single extraction with detergents in order to

analyse the effect of single or multiple PBS extractions on cell counts of free-living or surface

associated communities. A median number of 2.3x105, 1.2x106, 2.2x106 and 1.0x107 cells

g–1 dry soil were extracted respectively (Fig. 28). The results show that 5 consecutive
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PBS extractions yield indeed 5 times more cells. Moreover, this increase in PBS extraction

steps also increased the amount of cells extracted with the subsequent detergent extraction

by factor 5. Hence, 5 consecutive extractions instead of a single extraction with PBS were

chosen to represent the free-living community. Moreover, library preparation for bacterial

communities failed for rRNA samples using only a single extraction step for the free-living

community.

Figure 28: Cell counts per gram dry soil on a log10 scale for different cell extraction meth-
ods. The free-living community is represented by a single extraction (1x PBS extract) and
5 consecutive extractions with PBS (5xPBS extract). The surface associated community
is represented by a single extraction with detergents (detergent extract). Dots represent
independent experiments.

Extracted bacteria from soil were separated from soil particles and debris via Nycodenz

density gradient centrifugation. However, the cell extracts were not free of bacteria still

attached to soil particles (Fig. 29). Bacteria on particles were enumerated using most

probable number (MPN), to evaluate if bacteria on particles might bias the free-living or

surface-associated community. The extraction of free-living and surface-associated bacteria

co-extracted equals amount of bacteria on particles. The median number of bacteria on

particles represented 0.7 % and 0.07 % of the median number of extracted bacteria of the

free-living and surface-associated community respectively.

Comparing the number of cells extracted from soil between different fertilization treat-

ments, the free-living community extracted on average 106 cells per gram of soil for all

fertilization treatments (Fig. 30). In contrast, the surface-associated community extracted

77



Figure 29: Number of cells extracted per gram of dry soil with either 5 consecutive PBS
extractions (free-living) or a single extraction with detergents (surface-associated) com-
pared to the number of cells adhered to particles coextracted from soil. Cell extracts were
estimated by direct counting. Bacteria on particles were estimated via MPN. Dots repre-
sent independent experiments.

on average 107 cells for all fertilization experiments.

In relation to the total number of bacteria in soil, the cell extraction efficiency from soil

represented 0.02 %, and 0.2 % of soil cell counts for the free-living and surface-associated

community (Fig. 31). Non-extractable cells, remaining in the soil cell extraction accounted

for 4 % of the total cell counts. Obviously, a difference in cell counts existed between the

number of extracted cells and non-extractable cells on the one hand and cell counts in soil

on the other hand. The proportion of cells recovered in extraction account on average only

for 4.22 % of cells in soil. I assume that this difference was caused by cell lysis during

extraction.
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Figure 30: Direct cell counts for the free-living community extracted with 5 consecutive
PBS extractions and the surface-associated community extracted with detergents displayed
for 3 distinct fertilization treatments. NF = no fertilization, N = mineral nitrogen, FYM+N
= farmyard manure + mineral nitrogen. Dots represent independent cell extractions from
soil.
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Figure 31: Cell counts for the free-living bacteria extracted with 5 consecutive PBS ex-
tractions, the surface-associated community extracted with a single detergent extraction,
non-extractable bacteria remaining in the soil after extraction and the total number of cells
in soil. Sample size between plots differs due to a varying number of experiments between
cell extractions and cell counting in soil.
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3.3.2 Sequencing results and contamination removal

The sequenced samples were comprised of low biomass samples, extracting only up to 3x106

bacteria. This is challenging since standard extraction kits require normally more biomass

to work properly. In addition, RNA and DNA had to be separated and sequenced, reducing

the available amount of nucleic acid even further. For that reason, negative controls were

sequenced to check for the reliability of library preparation and to remove contaminating

sequences in the samples. Sequence variants (SV) in negative controls having ≥ 0.1 %

relative abundance were defined as contaminating sequences and removed from the free-

living and surface-associated community samples prior to analysis, following the method of

Szoboszlay and Tebbe (2021). 109 SV in negative controls of DNA and 25 SV in negative

controls of RNA were identified as contaminants. Contaminants made up 99.6 % and

99.7 % relative abundance in negative controls of RNA and DNA respectively (Fig. 32).

RNA communities of the free-living and surface-associated bacteria showed higher levels

of contamination than DNA based communities. RNA based communities of the free-

living and surface-associated bacteria were comprised of 56 % and 18.9 % of contaminants.

In contrast, DNA based communities of the free-living and surface-associated bacteria

contained 3.02 % and 4.04 %, respectively. This high level of contamination for the RNA

samples of free-living bacteria was presumably a result of low template amount for the

library preparation, caused by RNA degradation due to longer sample preparation because

of exhaustive DNA digestion, since DNA samples of the free-living community showed much

less contamination.

The sequencing depth per sample is highly variable ranging from 9339 to 197949 reads

(Fig. 33). However, all rarefaction curves were in saturation, meaning that the sequencing

effort was capable to represent the diversity present in the samples. Generally, RNA-

based samples contained less reads than DNA-based samples, but the sequencing depth

was similar between fertilization treatments. Moreover, the number of SV in the surface-

associated samples was higher than in the free-living samples for both RNA and DNA.

Due to the high variation in sequencing depth, rarefaction to minimum sequencing depth

(McMurdie and Holmes, 2014) for all samples would discard the majority of reads for

most samples and lead to loss of precision. As a consequence, for the determination

of active SV, samples were grouped by extraction type and fertilization treatment and

normalized to minimum sequencing depth, minimizing the loss of reads for each group.

As a result, absolute read-based comparisons of active SV between fertilization treatments

are not meaningful and hence only relative comparisons based on relative abundances were

analysed.

81



Figure 32: Average proportion of contaminating sequence variants (%) in negative controls,
free-living and surface-associated communities for DNA and RNA samples respectively.

Figure 33: Rarefaction curves of un-normalized read counts displayed for the respective
RNA and DNA sample. Rarefaction curves are displayed separately for each fertilization
treatment and the respective cell extraction method. No fertilization = NF, mineral nitro-
gen = N, farmyard manure in combination with mineral nitrogen = FYM+N. Rarefaction
curves of identical color represent technical replicates of respective RNA or DNA samples.
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3.3.3 Alpha diversity is shaped by bacterial life-style but not soil fertilization

Alpha diversity was calculated to deduce how bacterial life-style, long-term fertilization

and nucleic acid type affected the abundance of rare and abundant species in extracted

soil communities.

The surface-associated DNA communities contained on average the most species (Fig. 34).

In contrast, the free-living RNA communities contained the least amount of species. All,

soil bacterial communities were structured similarly with much more rare than abundant

species except for the free-living RNA communities which contained proportionally more

abundant species. Distinct fertilization treatments contained similar species counts for

each community type except for the N treatment having a tendency to lower alpha diver-

sity for all communities except Simpson in the DNA communities (Fig. 34). Moreover,

surface-associated communities showed higher diversity than free-living communities for

the same nucleic acid type. However, the surface-associated community of FYM+N from

DNA samples was lower for Simpson than the respective free-living community. Also,

DNA samples were in general more diverse than the respective RNA samples. Testing

these observed differences for statistical significance using multiway ANOVA, the effects

of nucleic acid type and bacterial life-style were statistically significant (Tab. 3). However,

the effect of fertilization treatments was not significant for alpha diversity. The effect of

water content on alpha diversity could not be estimated.

Table 3: 3-way ANOVA testing for differences in means of alpha diversity. Df = degrees of
freedom, SS = sum of square. Technical replicates of alpha diversity were averaged before
calculation of ANOVA.

Df SS F-value p-value

nucleic acid type 1 2252353 9.713 0.004

life-style 1 2369491 10.218 0.003

fertilization 2 121107 0.261 0.771

residuals 29 6724849
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Figure 34: Alpha diversity for the DNA and RNA samples of the free-living and surface-
associated bacteria, displayed as representative number of species. Richness is ignoring
species abundance ( q = 0), Shannon emphasizing abundant sequence variants (q = 1)
and Simpson is emphasizing highly abundant sequence variants (q = 2). Each boxplots
represents results for 3 technical replicates.

3.3.4 Beta diversity of total and active communities is shaped by bacterial

life-style and fertilization

Beta diversity describes the diversity between samples and was based on weighted unifrac

distances in combination with redundancy analysis (RDA) to explore which predictors

affected bacterial community composition. I anticipated that the community compositions

differ by life-style and fertilization treatment and those differences to increase even further

for the active communities.

PERMANOVA revealed significant effects (p < 0.05) of Corg representing fertilization,

bacterial life-style and nucleic acid type (Tab. 4). Due to high multicollinearity between

soil nutrient concentrations (Corg, Nt, av. P, av. K), Corg was selected to represent the

fertilization effect represented by soil nutrients (Tab. 2), since organic C before N and P was

shown to drive bacterial diversity on the examined site (Francioli et al., 2016). Moreover,
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the effect of gravimetric water content was not significant. The variance explained by

nucleic acid type and bacterial life-style was higher than the effects of Corg and water

content. Combined, the variance explained for all constraints accounted for 50 % of data

variation.

However, RDA revealed that the influence of fertilization treatment and water content,

displayed as blue arrows, separated FYM+N from NF and N samples (Fig. 35). NF and

N were more similar in sample spread, showing no clear separation from each other. The

arrow length displayed, indicates the fit and the direction of the arrow hints towards the

direction of maximum change in community composition.

Table 4: Variance partitioning of environmental metadata and the respective p-values
estimated by redundancy analysis and permanova on beta diversity calculated on weighted
unifrac distances.

factor p-value variance explained (%)

nucleic acid type 0.001 23

life-style 0.001 16

Corg 0.014 6

water content 0.086 5

Complementary to RDA, a non-parametric gradientForest model, based on Random Forest

(Breiman, 2001) was fitted to resolve the effects of soil nutrients on bacterial abundance

on SV level. Bacterial life-style, water content and fertilization were most important with

nucleic acid type playing a minor role in variable importance (Fig. 36). 65 SV showed

a goodness of fit of R2 > 0.5, representing 0.66 % of all SV. Fig. 37 depicts the partial

variable importance of each predictor for each SV with goodness of fit > 0.5. Although

negatively correlated, variable importance of Corg and soil water content differed for some

SV. Concentrating on Corg representing fertilization, 4 SV had a partial importance > 0.3.

Those SV were affiliated to genera Luteimonas, Mesorhizobium, Pedomicrobium and uncul-

tured Gaillela. SV with a partial importance < 0.3 for bacterial life-style were members of

Actinobacteria: Solirubrobacterales, Acidimicrobiia, Microtrichales and Alphaproteobacte-

ria Sphingomonadales and Rhizobiales as well as a member of Firmicutes and Nitrospira.

Generally, bacterial life-style affected most SV. This is in line with the overall variable

importance (Fig. 36).

Examining the reproducibility of the cell extraction procedure, the variation between tech-

nical replicates of identical life-style and nucleic acid type is small (Fig. 38). Samples of

identical origin, always group closely together. The grouping effect was significant (p =

0.01), proving that the variation within groups of samples was smaller than the variation

between groups and tested on weighted unifrac distance matrix using multivariate ANOVA.
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Figure 35: Redundancy analysis of complete communities, calculated on weighted unifrac
distances. Technical replicates were averaged before ordination calculation. Corg and
theta.grav represent fertilization and gravimetric water content displayed as blue arrows.
Arrow length indicates goodness of fit and the direction represents the direction of maxi-
mum change. Nucleic acid type (RNA, DNA) and bacterial lifestyle (free-living, surface-
associated) are factor constraints, displayed as centroids with the respective 95 % confi-
dence interval.

The analysis of beta diversity of active communities revealed that the differences between

fertilization treatments changed (Fig. 39). Similar to the alpha diversity of RNA samples,

N was more distinct from NF and FYM+N in community composition. Additionally,

the clear separation of communities by bacterial life-style was still prominent. This was

approved by variance partitioning (Tab. 5), confirming life-style as the only significant

predictor shaping the active communities. Also the variance explained increased by 7 %

for bacterial life-style. Although non-significant, variance explained for Corg, representing

fertilization, and water content increased by 7 and 11 %, respectively. In contrast to the

total communities, the active communities contained no SV with an overall goodness of fit

R2 > 0.5.
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Figure 36: Variable importance weighted by species R2 from gradientForest analysis of all
species.

Table 5: Variance explained in active rRNA communities by environmental predictors
estimated by redundancy analysis and their respective p-values by PERMANOVA on beta
diversity calculated on weighted unifrac distances.

factor p-value variance explained (%)

life-style 0.03 30

Corg 0.58 13

water content 0.14 16
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Figure 37: Variable importance of SV having a goodness of fit R2 > 0.5 from gradientForest
analysis. Unique SV are named by a combination of their phylum in combination with
their highest meaningful taxonomic level. Variable importance >0.3 are printed in each
tile. Tiles for which the fit could not be determined were left blank.
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Figure 38: Redundancy analysis based on weighted unifrac distances for all samples. Tech-
nical replicates of bacterial communities are coloured by their respective combination of
fertilization treatment and life-style.

Figure 39: Redundancy analysis based on weighted unifrac distances for active commu-
nities. Replicates represent technical replicates. organic Carbon (Corg) and gravimetric
water content (theta.grav) are displayed as blue arrows. Arrow length indicates goodness
of fit and the pointing direction represents the direction of maximum change. Bacterial
lifestyle (free-living, surface-associated) and fertilization are factor constraints, displayed
as centroids with the respective 95 % confidence interval.
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3.3.5 Taxonomic composition of the total community of free-living and surface-

associated bacteria

The taxonomic compositions of RNA communities were examined to reveal pattern, enrich-

ment or depletions of taxonomic groups in certain communities associated with bacterial

life-style and fertilization, since DNA data are prone to shifts in community composition

caused by DNA from soil originating from dead or inactive cells, thus biasing the soil bac-

terial community (Blazewicz et al., 2013; Blagodatskaya and Kuzyakov, 2013).

Members of the phyla Actinobacteria and Proteobacteria dominated the free-living and

surface-associated communities (Fig. 40). The free-living communities contained 28.9-

47.9 % and 41.6-61.5 % of relative abundance for Actinobacteria and Proteobacteria. For

the surface-associated communities 43.6-49.2 % and 25.2-29.7 % were contained in Acti-

nobacteria and Proteobacteria. This emphasizes the depletion in Proteobacteria for the

surface-associated communities across all fertilization treatments compared to the free-

living community. However, this depletion was not caused by a decrease in Alphapro-

teobacteria, which were the largest group for the free-living and surface-associated com-

munities, but Gammaproteobacteria and Deltaproteobacteria, reduced by more than half

of their relative abundance respectively. Moreover, the surface-associated communities

were enriched in phylum Actinobacteria by more than 10 %, driven by increased abun-

dances of Acidimicrobiia and Thermoleophilia. Besides, abundant members of the phylum

Chloroflexi, represented by class Chloroflexia, increased in relative abundance for all fertil-

ization treatments. Generally, the distribution of taxonomic groups was similar between

fertilization treatments for the surface-associated community.

As mentioned before, the free-living communities were depleted in Actinobacteria. In

contrast to the surface-associated communities, Actinobacteria were dominated by mem-

bers of the class Actinobacteria with 18.7-25 % relative abundance across all fertilization

treatments. The NF free-living community was specifically enriched in in phylum Acti-

nobacteria by more than 10 % represented by class Actinobacteria, Acidimicrobiia and

Thermoleophilia. For all free-living Proteobacteria, Alphaproteobacteria provided the ma-

jority of reads with 30.7-34.4 % relative abundance. Moreover, Gammaproteobacteria were

enriched in the free-living communities of N and FYM+N.

In more detail, examining the taxonomic distribution of Actinobacteria of the rRNA com-

munities down to family level, Ilumatobacteraceae, Gaiellaceae and Pseudonocardiaceae

accounted for the observed enrichment of phylum Actinobacteria in NF for the free-living

community compared to N and FYM+N (Fig. 41). Similarly, the free-living community

of NF appeared to be of similar composition than the respective surface-associated com-

munity. Furthermore, N was enriched in Streptomycetales. Generally, Streptomycetaceae
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made up the largest proportion of class Actinobacteria for the free-living community.

As already pointed out, the surface-associated communities extracted higher fractions of

Actinobacteria from soil. Moreover, Ilumatobacteraceae of class Acidimicrobiia were en-

riched for all fertilization treatments as well as Solirubrobacteraceae. Moreover, FYM+N

was enriched in Streptosporangiales and Streptomycetales.

A closer look at the Proteobacteria showed that for the free-living and surface-associated

communities, Rhizobiaceae and Xanthobacteraceae of the class Alphaproteobacteria were

the largest taxonomic group (Fig. 42). However Rhizobiales were reduced by 5.8-11.5 %

for the surface-associated community. Also, Gammaproteobacteria were depleted for the

surface-associated communities. However, due to the homogeneous abundance distribution

no taxonomic group could be identified being responsible for that shift since Gammapro-

teobacteria were comprised of a large variety of families of low abundance. N was enriched

of Burkholderiaceae in the free-living community. Myxococcales were enriched for FYM+N.

Besides, the observed increased proportion of Chloroflexi for the surface-associated commu-

nity was attributed to a preferential extraction of Thermomicrobiales (JG30-KF-CM45 )

(Fig. 43). Also class KD4-96 was enriched with an entirely uncultured family.
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3.3.6 Taxonomic composition of the active free-living and surface-associated

communities

In this study, the status of potential metabolic activity for each SV was determined through

the rRNA:rDNA ratio.. The relative abundances of active SV was based on the rRNA

community data, since some active SV occurred only in rRNA communities. Furthermore,

DNA based communities are biased by free DNA outlasting in soil.

I hypothesised that the proportion of active bacteria increases with fertilization and to

be higher in the respective surface-associated communities. Comparing the proportion of

active SV to the total number of SV and the relative abundance of active SV to all bacteria,

the free-living communities contained higher proportions of active SV (Tab. 6). Focussing

first on the relative number of active SV, the proportion was generally small, ranging from

1.5 to 7.3 %. NF had the highest proportion of active SV in the free-living and surface-

associated community. Second, the relative abundance of active SV was quite similar

between fertilization treatments and did not follow the trend indicated by the proportion

of active SV to the total number of species. The treatment fertilized with mineral N had

the highest relative abundance for all treatments for both communities.

Table 6: Proportions of active SV counts in the free-living and surface-associated RNA
communities across fertilization treatments. The left column describes the proportion of
the number of active SV to the total number of SV in a sample. The right column shows
the relative abundance of active SV based on the number of sequence reads.

prop. active SV (%) rel. abund. of active SV (%)

free-
living

NF 7.3 63.3

N 4.1 73.3

FYM+N 4.9 65.4

surface-
associated

NF 3.7 29.9

N 1.5 44.7

FYM+N 2.3 23.8

Looking at the taxonomic composition of active SV, phylum Actinobacteria and Proteobac-

teria dominated the communities (Fig. 44). This pattern was already observed in the pre-

vious section for the total communities comprised of all SV independent of activity. In the

free-living community, Proteobacteria was the most abundant phylum. Alphaproteobac-

eria were most abundant followed by Gamma- and Deltaproteobacteria. However, the

proportion of Proteobacteria differed between fertilization treatments. N contained with

71.9 % the highest proportion of Proteobacteria, equally distributed between Alpha- and

Gammaproteobacteria, followed by FYM+N with 58.8 % which was enriched in Deltapro-

teobacteria compared to the other treatments. NF contained only 35.6 % Proteobacteria
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of mainly Alphaproteobacteria and in consequence was depleted in Gammaproteobacteria.

However, NF was enriched in active Actinobacteria. Actinobacteria represented the pre-

dominant class with Acidimicrobiia and Thermoleophilia showing less relative abundance.

N and FYM+N contained less Actinobacteria, with class Actinobacteria being the most

abundant. Furthermore, N was enriched in Firmicutes of class Bacili.

As expected from the previous results, the active surface-associated communities con-

sisted predominantly of Actinobacteria and Proteobacteria for all fertilization treatments.

Actinobacteria contained mostly members of the class Actinobacteria, Acidimicrobiia and

Thermoleophlia, which were enriched compared to the free-living communities. Moreover,

the relative abundance of Proteobacteria, especially Gammaproteobacteria, were depleted

for all fertilization treatments. Nonetheless, Alphaproteobacteria were the predominant

class and comprised similar abundances for all fertilization treatments compared to the

free-living community. Unlike the free-living communities, the taxonomic composition was

more similarly distributed between fertilization treatments. Only FYM+N differed, being

enriched in Alphaproteobacteria and class Actinobacteria by roughly 10 % compared to NF

and N. In contrast, Thermoleophilia were reduced for FYM+N. Generally, the observed

enrichment of Chloroflexia for the surface-associated communities was confirmed. More-

over, active Firmicutes of the class Bacilli were enriched for NF in the surface-associated

community and for N in the free-living and surface-associated community.

Having a closer look at lower taxonomic levels, the free-living active RNA community

composition for phylum Actinobacteria (Fig. 45), the fertilization treatments differed in

taxonomic composition. For NF, Microbacteriaceae, Pseudonocardiaceae, Gaiellaceae and

Ilumatobacteraceae were enriched in the free-living community. N was generally depleted

in Actinobacteria.

In the surface-associated community, Solirubrobacteraceae were enriched for all fertilization

treatments. For class Acidimicrobiia, Microtrichales were predominant. Comparing the

different fertilization treatments with each other, FYM+N was enriched in Streptomyc-

etaceae. NF was again enriched in Pseudonocardiaceae as seen for the free-living commu-

nity.

In phylum Proteobacteria (Fig. 46), all communities showed that the high relative abun-

dance of Alphaproteobacteria was represented by order Rhizobiales and more specifically

Rhizobiaceae, especially for N fertilization. Moreover, active Gammaproteobacteria and

Burkholderiaceae were enriched in the free-living communities of N and FYM+N. Besides,

FYM+N was enriched in Myxococcales of class Deltaproteobacteria.

Even though the surface-associated community contained lower proportions of Proteobac-

teria, Alphaproteobacteria and Rhizobiales remained the most abundant group and Rhizo-

biaceae were enriched in relative abundance for NF and FYM+N.

Active Chloroflexi were represented by Thermomicrobiales of family JG30-KF-CM45 for
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all communities and enriched in the surface-associated communities for NF and N.

Lastly, active Firmicutes were enriched in Bacillales in the free-living community of N and

the surface-associated community of NF and N.
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3.4 Discussion

3.4.1 Evaluation of cell extraction of free-living and surface-associated bacte-

ria from soil

In this study, a cell extraction method was established to separate free-living and surface-

associated bacteria from soil using Nycodenz gradient centrifugation. This method was

evaluated, considering the amount of cells extracted, the contamination level with bacte-

ria on particles remaining in the extracted cells, the similarity between replicates and the

removal of contaminating sequences in the final bacterial communities.

As expected, PBS extracted less cells than detergent extraction, since no detergents except

ethanol, used as fixation agent, were used. Moreover, free-living bacteria in the soil pore

space are assumed to be lower in number by orders of magnitude (Flemming and Wuertz,

2019). However, 5 consecutive extractions were necessary for the free-living community to

extract a sufficient number of cells for a successful library preparation. The observation,

that multiple extractions with PBS, also increased the number of extracted cells with de-

tergents, is probably related to a better aggregate dispersion due to a longer aggregate

disruption time while shaking.

Furthermore, around 104 bacteria still attached to particles were co-extracted with the PBS

and detergent extractions, contaminating the extractable free-living and surface-associated

communities (Fig. 29). However, the proportion of bacteria on particles represented only

0.7 % and 0.07 % of extracted cells for the free-living and surface-associated community,

respectively. Therefore, the anticipated bias introduced by bacteria on particles was con-

sidered insignificant. Also, no differences in cell extraction efficiency between fertilization

treatments was observed (Fig. 30).

In general, the applied cell extraction method produced good reproducibility between tech-

nical replicates. Beta diversity ordination showed a narrow grouping for technical replicates

of each sample type (Fig. 38). Moreover, ANOVA confirmed that the variance between

technical replicates was significantly lower than the variation between groups. This was

supported by alpha diversity analysis, showing low variability between replicates for abun-

dant SV. The larger variation for richness between replicates was expected, as any SV

being present in a sample represented by even a single read influences richness similar to

any abundant SV. This behaviour is well described in literature (Bickel and Or, 2021).

In conclusion, the applied cell extraction method together with the library preparation

was capable of reproducing and differentiating between different bacterial communities.

Nevertheless, the achieved cell extraction efficiency of 0.02-0.02 % was low in comparison

to other published Nycodenz cell extractions (Maron et al., 2006; Kallmeyer et al., 2008;

Lindahl, 1996; Courtois et al., 2001). However, a direct comparison to literature is diffi-

cult, since extraction protocols have to be adapted for each soil (Ranjard and Richaume,
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2001) and quantitative and qualitative cell recovery are not necessarily related (Maron

et al., 2006). Besides, most literature data used old-fashioned dyes to count bacteria in

soil as a reference for cell extraction efficiency, achieving comparably low cell counts in soil

(Lindahl and Bakken, 1995; Kallmeyer et al., 2008) and therefore indirectly increasing the

extraction efficiency.

3.4.2 Nitrogen fertilization and a free-living bacterial life-style reduce bacte-

rial alpha diversity

Bacterial diversity pattern within samples were estimated by richness and the Simpson

index, representing rare and highly abundant bacteria. The free-living communities con-

tained much lower alpha diversity in richness and Simpson for rRNA and rDNA samples

than the respective surface-associated communities. This was expected, since the majority

of bacteria in soils is attached to mineral/organic surfaces or living in biofilms (Flemming

and Wuertz, 2019). Moreover, the alpha diversity of free-living and surface-associated

communities was composed of a small number of high abundant SV, estimated by Simp-

son and a high number of rare SV estimated by richness. This abundance distribution

pattern, with the vast majority of SV being rare and only a minor number of species be-

ing abundant, is commonly reported for bacteria in soil (Bickel and Or, 2021; Magurran

and Henderson, 2003; Delgado-Baquerizo et al., 2018). As a consequence, the applied cell

extraction method was capable of reproducing this pattern without bias introduction or

over-representation of abundant SV.

RNA samples showed a lower richness for both the free-living and the surface-associated

communities compared to DNA samples. This pattern in well documented (Li et al., 2021)

and most likely affected by sample processing after cell extraction. RNA is prone to degra-

dation by RNAses (Alm and Stahl, 2000). Especially digestion of genomic DNA at elevated

temperatures during sample preparation posed a risk to RNA degradation. This is critical

especially for diverse, but low biomass samples as used in this study, since even small losses

of rRNA might change the examined diversity of the communities considerably. On the

other hand, next generation sequencing of rDNA based samples overestimate the diversity

in soil caused by co-extraction of free DNA from dead bacteria (Nielsen et al., 2007) and

representation of mostly dormant/inactive bacteria (Blagodatskaya and Kuzyakov, 2013).

Therefore, bacterial communities based on 16S rRNA provide less diverse communities, but

give a more stringent picture of the potentially protein synthesizing soil bacteria (Blazewicz

et al., 2013).

The comparison of alpha diversity between fertilization treatments showed that N fertiliza-

tion contained in tendency lower alpha diversity. However, this effect was not significant.
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Many recent studies showed that long-term mineral N fertilization reduced alpha diversity

(Zeng et al., 2016; Li et al., 2016; Dai et al., 2018) and microbial biomass (Wallenstein

et al., 2006). This effect, however, was attributed to soil acidification induced by mineral

fertilization. In contrast, some reported an increase in bacterial alpha diversity (Wei et al.,

2008; Xu et al., 2020) and others found no effect (Ge et al., 2008; Ogilvie et al., 2008; Leff

et al., 2015; Duan et al., 2022; Feng et al., 2022). Furthermore, it has to be considered that

the NF treatment received up to 60 kg N ha–1 annually as anthropogenic wet deposition

(Merbach and Körschens, 2002), biasing the fertilization estimation, especially for the NF

control. In general, the high fertility of the chernozem soil in Bad Lauchstädt most likely

diminished fertilization effects. Nonetheless, the observed decline in alpha diversity for

the mineral N fertilization treatment in this study is no indirect effect of soil pH, since all

plots had constant pH, therefore supporting the observation that mineral N fertilization

decreases alpha diversity.

In contrast to mineral N fertilization, organic fertilization is reported to increase richness in

soils (Hartmann et al., 2015; Francioli et al., 2016; van der Bom et al., 2018). This pattern

was not observed comparing the free-living and surface-associated communities of different

fertilization treatments. However, the positive effect of organic fertilization in literature

is again compromised by alterations in soil pH (e.g. Wei et al., 2008; Hartmann et al.,

2015). Moreover, literature data refer to bulk soil communities and do not differentiate sol

bacteria by life-style, impeding a direct comparison of results to literature data.

3.4.3 Bacterial life-style dominates beta diversity of the total community

The analysis of beta diversity for the total community, containing all SV irrespective of ac-

tivity status, confirmed significant effects of nucleic acid type, bacterial life-style and fertil-

ization on bacterial communities. The free-living communities were enriched in Proteobac-

teria and depleted in Actinobacteria and Chloroflexi compared to the surface-associated

communities. In more detail, Proteobacteria in the free-living communities were enriched

in a variety of Burkholderiaceae. Many type strains summarised in Burkholderiaceae are

motile (Coenye, 2014). Hence, the reduction in the surface-associated community might

result from motile members of this groups preferably extracted in the free-living commu-

nity.

The surface-associated communities of Actinobacteria showed increased relative abun-

dances of Solirubrobacteraceae. Described type strains of Solirubrobacter comprise only

non-motile generalist (Singleton et al., 2003; Kim et al., 2007; Zhang et al., 2014). More-

over, gradientForest analysis revealed that 5 SV of family 67-10 of order Solirubrobacterales

were associated with bacterial life-style. Together with the enrichment in the surface-

associated communities, this indicated a systematic association to a surface-associated
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life-style. The dominance of phylum Actinobacteria for the surface-associated community

was confirmed by Francioli et al. (2016). In the latter publication bulk soil communities

were dominated by Actinobacteria, emphasizing that surface associated communities are

more closely related to the bulk soil community.

Furthermore, Choloroflexi of the family JG30-KF-CM45 were enriched in the surface-

associated communities. Unfortunately, no cultivated representatives with known lifestyle

and biology are available (Lladó Fernández et al., 2019). However, the superordinate class

of Thermomicrobiales were found in other arables soils and are presumably involved in

nitrogen cycling (Rummel et al., 2020). This was further supported by 3 SV of class JG30-

KF-CM45 which were closely related to a surface-associated life-style by gradientForest

analysis. Furthermore, KD4-96 was enriched in the surface-associated community and was

found to correlate with iron (Fe) and aluminium (Al) concentration in soil (Wegner and

Liesack, 2017). Since Fe and Al concentrations are generally low in the soil solution, this

reported correlation is in accordance with a surface-associated lifestyle and a presumed

role in Fe cycling in soil.

RDA ordination separated FYM+N from the other fertilization treatments, along the fertil-

ization gradient emphasizing the effect of organic fertilization on community composition.

In general, organic and N fertilization are well known for affecting beta diversity (Ramirez

et al., 2012; Leff et al., 2015; Hartmann et al., 2015; Zheng et al., 2021). However, the

variance explained by fertilization was small in this study (Tab. 4). Hence, differences in

taxonomic composition were small between fertilization treatments. This was confirmed by

Francioli et al. (2016) who found only little differences between bulk soil community com-

position of fertilization treatments. Streptosporangiales and Streptomycetales from phylum

Actinobacteria and Myxococcales from phylum Proteobacteria were enriched for FYM+N.

Streptomycetales were shown to be involved in the initial decomposition of organic mate-

rial (Chater et al., 2010). This is supported by the decrease in relative abundance in the

free-living communities.

Overall, taxonomic groups were shared between communities. This is in line with the re-

sults of Bystrianský et al. (2019) and Hujslová et al. (2020) who identified genera being

significantly enriched, but shared between the free-living or surface-associated community

in soil. In conclusion, bacterial life-style induced systematic changes in taxonomic com-

position of the total communities across distinct fertilization treatments, confirming the

anticipated effect of bacterial life-style on community composition. Also, the effect of

fertilization was significant, however, the effect on community composition was small and

no systematic shifts picturing the N gradient between fertilization treatments was observed.
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3.4.4 Beta diversity of active bacteria is tighter bound to bacterial life-style

and fertilization than the total communities

Activity of soil bacteria was determined by applying a dynamic threshold based on rRNA

to rDNA ratio to bacteria of the free-living and surface-associated community. There-

fore, active bacteria represent a subset of rRNA communities. I hypothesized the taxo-

nomic differences between different fertilization treatments to increase for active bacteria.

Furthermore, I expected the proportion of active SV to increase with fertilization and a

surface-associated life-style.

It turned out, that active bacteria represented mostly abundant SV. Especially the free-

living community was dominated by active SV in all fertilization treatments. This is in

contrast to the anticipated higher activity for the surface-associated community as hypoth-

esised by Flemming and Wuertz (2019). It can be ruled out that the increased activity

of free-living bacteria is a consequence of bacterial growth or activation during sample

processing since soil bacteria were fixed with ethanol immediately while sampling. Fur-

thermore, the anticipated increase in activity with increasing fertilization, i.e. nutrient

availability, was not confirmed. Surprisingly, N fertilization had the highest relative abun-

dance of active bacteria in both the free-living and surface-associated community compared

to NF and FYM+N. A potential explanation is the observed lack of available P for the N

treatment (Tab. 2) which induced a delayed ripening of wheat (Dr. Thomas Reitz, personal

communication). This lead to longer plant activity for the N treatment in comparison to

NF and FYM+N, where the crops were already ripe and dry on sampling date.

The beta diversity of active communities differed significantly only by bacterial life-style

as revealed by variance partitioning (Tab 5) and RDA (Fig. 39). However, the variance

explained increased for life-style, fertilization and water content in comparison to the total

community, indicating a more stringent coupling of active bacteria to environmental pre-

dictors. Besides, the lack of significant effects for fertilization and soil water content for

the active community was most likely dedicated to a reduced sample size for the active

communities having only 6 samples to compare instead of 12 samples for the total com-

munities. Additionally, the RDA of active communities showed a clear separation between

fertilization treatments. N samples were distinct from NF and FYM+N. This finding is

supported by alpha diversity analysis, which indicated a lower alpha diversity for N samples

compared to NF or FYM+N.

However, taxonomic differences between N and other fertilization treatments were small.

Members of the order Bacillales in the phylum Firmicutes were increased in relative abun-

dances for the free-living and surface-associated community for N. This in in line with

literature (Ramirez et al., 2012; Francioli et al., 2016; Dai et al., 2018). Unfortunately,

this enrichment was not seen for the FYM+N treatment but NF, indicating a negative
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connection to organic fertilization. In contrast, Firmicutes were enriched in the bulk soil

community in Bad Lauchstädt (Francioli et al., 2016). However, this report might be

biased by pH, since plots with varying soil pH were compared.

The lack of substantially diverging bacterial communities mapping the gradient in soil

nutrient availability between the fertilization treatments for the free-living and surface-

associated communities was not expected, since it is well documented that community

composition change and microbial biomass and enzyme activities increase with fertilization

(Tab. 2) (e.g. Klimanek, 2000; Kautz et al., 2004; Chakraborty et al., 2011). Apparently,

this does not imply systematic shifts in taxonomic composition of bacterial communities.

Neumann et al. (2013) demonstrated that in Bad Lauchstädt 70 % of the bacterial popula-

tion lived in the clay fraction, which was not affected by the long-term fertilization gradient

after more than 100 years. However, significant changes in the bulk soil community were

reported for the non-limed version of the fertilization experiment (Francioli et al., 2016;

Böhme et al., 2005). This is affected by a pH gradient between treatment plots, since pH

is a major driver shaping soil bacterial communities (Jiao and Lu, 2020; Karimi et al.,

2018; Kaiser et al., 2016). Albeit, this does not apply to the experimental setup in this

study, since plots of constant pH were compared. Also, the co-extraction of bacteria on

particles together with the free-living and surface-associated communities is not considered

responsible for the similarities in community composition since these bacteria represented

only between 0.7-0.07 % of extracted cells.

Possibly, the differences in edaphic properties between treatment plots were too small to

generate fundamental shifts in the extractable community using a Nycodenz-based cell

extraction method. More than 100 years of different fertilization regimes resulted on the

limed plots in a difference of 0.79 % and 0.8 % for Corg and Nt respectively (Tab. 2).

3.4.5 Determination of active bacteria

In this study, activity of bacteria is deduced by calculating the ratio of rRNA:rDNA reads

per SV per sample and using a dynamic abundance threshold separating active from non-

active SV. This concept is based on the assumption that high cellular amounts of ribosomes

and consequently rRNA indicates a protein synthesis potential. This approach is well

established and used for a long time already (e.g. Bowsher et al., 2019; Loeppmann et al.,

2018; Kerkhof and Ward, 1993; Denef et al., 2016). It was also found to be consistent

with staining methods inducing activity (Bowsher et al., 2019). However, some limitations

have to be discussed. It was shown that rRNA content and growth rate do not necessarily

scale linear (Mandelstam and Halvorson, 1960; Kerkhof and Ward, 1993; Worden and

Binder, 2003) and dormant cells can have increased amounts of ribosomes as well (Sukenik
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et al., 2012). Furthermore, some studies use a constant threshold of 1 for rRNA:rDNA

ratio data to define active species (Franklin et al., 2013), following the work of Jones and

Lennon (2010). To reduce bias, we further developed this concept by applying a dynamic

threshold based on statistical permutation to reduce the false discovery rate of active SV.

This was necessary, since mostly rare SV were described as active in literature (Jones and

Lennon, 2010; Campbell et al., 2011; Klein et al., 2016). However, this finding is based

on an artefact inherent to data generation by amplicon sequencing. Rare SV, represented

by a low number of reads, have a high variation in abundance of up to 80 % between

technical replicates, accounting for variation introduced during library preparation (i.e.

nucleic acid extraction, PCR and bioinformatics). On the contrary, abundant SV show a

lower variation of 5 % (Noviana, 2021). Therefore, rare SV might be identified as active,

based on a higher random variation. Applying the dynamic threshold, the false discovery

rate could be reduced to 0.4 % in comparison to a Null-model, representing the stochastic

variation in the data.

However, only a minor proportion of bacteria in soil are considered metabolically active

(Blagodatskaya and Kuzyakov, 2013). The majority is potentially active or dormant.

Potentially active bacteria can become active in only a few minutes. Dormant cells take

longer to change their status (Blagodatskaya and Kuzyakov, 2013). Moreover, the response

of bacteria to substrate addition, activating soil bacteria, was found to be soil texture

dependent (Loeppmann et al., 2018). Therefore, sequencing a soil community yields a

large number of SV which are not necessarily active, but dormant. Additionally, in case of

rDNA based libraries, those communities harbour rDNA from dead cells persisting in soil

(Carini et al., 2016). In contrast, sequencing of rRNA based communities removes dead cells

biasing the community, since extracellular rRNA is labile and prone to degradation. Hence,

rRNA based communities can be more reliably used to describe soil bacterial communities

(Loeppmann et al., 2018). Nonetheless, rRNA-based communities do not equal active

communities, because it was shown that metabolic activity and cellular rRNA content do

not necessarily scale linear (Blazewicz et al., 2013). Moreover, the amount of rRNA in a

cell is dependent on cell size which biases activity based on a rRNA:rDNA ratio in favour

of large cells (Denef et al., 2016). Blazewicz et al. (2013) concluded that rRNA based

communities can be considered as indicators of protein synthesis potential. Therefore,

deducing activity of soil bacteria using a dynamic threshold of rRNA:rDNA ratios, is

currently the only cost-efficient high throughput method available.
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3.5 Conclusions

Little evidence is available how bacterial communities differ in soils between the soil pore

space and surface associated habitats and how this difference in bacterial life-style is af-

fected by nutrient availability. In this study, bulk soil bacterial communities from a long-

term fertilization experiment were separated based on bacterial life-style by means of cell

extraction from soil. This cell extraction method involved soil washing with PBS and de-

tergents to extract free-living bacteria and surface-associated bacteria respectively. The

applied cell extraction method based on Nycodenz gradient centrifugation managed to

extract representative communities from soil. Furthermore, the influence of life-style and

fertilization on bacterial activity was examined. Bacterial life-style was the most important

factor shaping bacterial communities. Generally, free-living communities were enriched in

Proteobacteria. The surface-associated community consisted of a more diverse community,

enriched in phylum Actinobacteria and Chloroflexi of order Thermomicrobiales. In con-

trast, Gammaproteobacteria were depleted.

Cell counting and alpha diversity analysis revealed that less bacteria inhabited the soil

pore space. However, in contrast to my expectations, the free-living community was dom-

inated by active bacteria, which is opposed to theory, where most active bacteria inhabit

solid surfaces and biofilms (Flemming and Wuertz, 2019). The effect of fertilization af-

fected community composition, but induced higher variation in taxonomic composition

of bacteria communities between fertilization treatments for the potentially active com-

munity. However, no consistent pattern in community composition was found mapping

the increase in nutrient availability between fertilization treatments (NF<N<FYM+N).

In tendency mineral nitrogen fertilization was reduced in alpha diversity, supporting the

reported negative effect of mineral nitrogen fertilization on bacterial diversity, independent

of soil pH. Many bacteria which differed between fertilization treatments were uncultivated.

Hence, the results presented in this study provide the data basis for targeted analysis of

active but yet uncultured bacteria and their role in soil nutrient cycling.
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4 Synthesis and future perspectives

The work of my doctoral thesis presented here examined spatial and temporal variation

in soil bacterial communities. I could show that soil bacterial alpha diversity is declining

over time in grassland and forest ecosystems in Germany under recent climate conditions.

In contrast, beta diversity was less affected by temporal variation and hence more stable

over time. I could further show that climate change in the form of soil warming can in part

explain this decline. This is the first evidence that ongoing climate change in Germany is

already affecting bacterial diversity in soil. However, it was not possible to check if the

observed decline is a consequence of past climate conditions >3 years preceding the soil

sampling, restricted by climate data availability. The Biodiversity Exploratory network

is a long-term project and future work should trace this time series further. Upcoming

analysis has to reveal if the decline of soil bacterial alpha diversity is an ongoing trend

or reaching a new steady-state. Hence, great care has to be taken to make future data

analysis comparable to the existing dataset considering sequencing depth.

The analysis of the free-living and surface-associated community along a nitrogen gradient

in a long-term fertilization experiment revealed the dominance of active bacteria in the free-

living fraction. This is opposed to the expectations of free-living and particle-associated

communities from marine environments or as expected from theory regarding biofilm form-

ing communities in soil (Flemming and Wingender, 2010; Flemming and Wuertz, 2019).

A more diverse sampling of soil and land use types, texture and nutrient availability, was

cancelled in 2020 due to the restrictions of the Corona pandemic. Therefore, prospective

follow-up experiments should examine if the obtained results in this study can be verified

for bacterial grassland and forest communities in addition to the results obtained here for

an arable soil. In the light of the restrictions of soil bacterial habitat connectivity due to the

fragmentation of the soil aqueous phase (Wang and Or, 2010, 2013), the effect of soil water

content on community composition and activity of the free-living and surface-associated

community composition should be in focus.
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113



References

Alberdi, A. and Gilbert, M. T. P., 2019, A guide to the application of Hill numbers

to DNA-based diversity analyses. Molecular Ecology Resources, 19(4), 804–817, doi:

10.1111/1755-0998.13014.

Allison, S. D., 2019, Traits track taxonomy. Nature Ecology & Evolution, doi:

10.1038/s41559-019-0937-8.

Alm, E. W. and Stahl, D. A., 2000, Critical factors influencing the recovery and

integrity of rRNA extracted from environmental samples: Use of an optimized

protocol to measure depth-related biomass distribution in freshwater sediments.

Journal of microbiological methods, 40(2), 153–162.

Amir, A., McDonald, D., Navas-Molina, J. A., Kopylova, E., Morton, J. T.,

Zech Xu, Z., Kightley, E. P., Thompson, L. R., Hyde, E. R., Gonzalez,

A. et al., 2017, Deblur Rapidly Resolves Single-Nucleotide Community Sequence

Patterns. mSystems, 2(2), e00191–16, doi:10.1128/mSystems.00191-16.

Andersson, S. and Nilsson, S. I., 2001, Influence of pH and temperature on microbial

activity, substrate availability of soil-solution bacteria and leaching of dissolved

organic carbon in a mor humus. Soil Biology and Biochemistry, 33(9), 1181–1191,

doi:10.1016/S0038-0717(01)00022-0.

Andrade-Linares, D. R., Zistl-Schlingmann, M., Foesel, B., Dannenmann, M.,

Schulz, S. and Schloter, M., 2021, Short term effects of climate change and inten-

sification of management on the abundance of microbes driving nitrogen turnover

in montane grassland soils. Science of The Total Environment, 780, 146672, doi:

10.1016/j.scitotenv.2021.146672.

Appleton, D., French, J. and Vanderpump, M., 1996, Ignoring a Covariate: An

Example of Simpson’s Paradox. American Statistician - AMER STATIST, 50, 340–

341, doi:10.1080/00031305.1996.10473563.

Armitage, D. W. and Jones, S. E., 2019, How sample heterogeneity can obscure

the signal of microbial interactions. The ISME Journal, 13(11), 2639–2646, doi:

10.1038/s41396-019-0463-3.

Armstrong, A., Valverde, A., Ramond, J.-B., Makhalanyane, T. P., Jansson,

J. K., Hopkins, D. W., Aspray, T. J., Seely, M., Trindade, M. I. and

Cowan, D. A., 2016, Temporal dynamics of hot desert microbial communities

reveal structural and functional responses to water input. Scientific Reports, 6(1),

34434, doi:10.1038/srep34434.

114



Aßhauer, K. P., Wemheuer, B., Daniel, R. and Meinicke, P., 2015, Tax4Fun:

Predicting functional profiles from metagenomic 16S rRNA. Bioinformatics, 31(17),

2882–2884, doi:10.1093/bioinformatics/btv287.

Baca Cabrera, J. C., Hirl, R. T., Schäufele, R., Macdonald, A. and Schnyder,
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Lauchstädt. Zeitschrift für Pflanzenernährung und Bodenkunde, 154(4), 245–252,

doi:10.1002/jpln.19911540402.

Kuhn, M. and Johnson, K., 2019, Engineering numeric predictors. In Feature Engi-

neering and Selection, Chapman and Hall/CRC.

Ladau, J., Shi, Y., Jing, X., He, J.-S., Chen, L., Lin, X., Fierer, N., Gilbert,

J. A., Pollard, K. S. and Chu, H., 2018, Existing climate change will lead to

pronounced shifts in the diversity of soil prokaryotes. mSystems, 3(5), e00167–18,

/msystems/3/5/msys.00167–18.atom, doi:10.1128/mSystems.00167-18.

Lauber, C. L., Ramirez, K. S., Aanderud, Z., Lennon, J. and Fierer, N., 2013,

Temporal variability in soil microbial communities across land-use types. The ISME

Journal, 7(8), 1641–1650, doi:10.1038/ismej.2013.50.

Leff, J. W., Jones, S. E., Prober, S. M., Barberán, A., Borer, E. T., Firn, J. L.,

Harpole, W. S., Hobbie, S. E., Hofmockel, K. S., Knops, J. M. H. et al.,

2015, Consistent responses of soil microbial communities to elevated nutrient inputs

in grasslands across the globe. Proceedings of the National Academy of Sciences,

112(35), 10967–10972, doi:10.1073/pnas.1508382112.

Lennon, J. T., Aanderud, Z. T., Lehmkuhl, B. K. and Schoolmaster Jr., D. R.,

2012, Mapping the niche space of soil microorganisms using taxonomy and traits.

Ecology, 93(8), 1867–1879, doi:10.1890/11-1745.1.

127



Li, H., Xu, Z., Yang, S., Li, X., Top, E., Wang, R., Zhang, Y., Cai, J., Yao, F.,

Han, X.-G. et al., 2016, Responses of soil bacterial communities to nitrogen depo-

sition and precipitation increment are closely linked with aboveground community

variation. Microbial Ecology, 71, doi:10.1007/s00248-016-0730-z.

Li, J., Wen, Y. and Yang, X., 2021, Understanding the responses of soil bacterial

communities to long-term fertilization regimes using DNA and RNA sequencing.

Agronomy, 11(12), 2425, doi:10.3390/agronomy11122425.

Liang, Y., Jiang, Y., Wang, F., Wen, C., Deng, Y., Xue, K., Qin, Y., Yang,

Y., Wu, L., Zhou, J. et al., 2015, Long-term soil transplant simulating climate

change with latitude significantly alters microbial temporal turnover. The ISME

Journal, 9(12), 2561–2572, doi:10.1038/ismej.2015.78.

Lindahl, V., 1996, Improved soil dispersion procedures for total bacterial counts, extrac-

tion of indigenous bacteria and cell survival. Journal of Microbiological Methods,

25(3), 279–286, doi:10.1016/0167-7012(95)00102-6.

Lindahl, V. and Bakken, L. R., 1995, Evaluation of methods for extraction of bac-

teria from soil. FEMS Microbiology Ecology, 16(2), 135–142, doi:10.1111/j.1574-

6941.1995.tb00277.x.

Lipson, D., Schadt, C. and Schmidt, S., 2002, Changes in soil microbial commu-

nity structure and function in an alpine dry meadow following spring snow melt.

Microbial Ecology, 43(3), 307–314, doi:10.1007/s00248-001-1057-x.

Lipson, D. A., 2007, Relationships between temperature responses and bacterial commu-

nity structure along seasonal and altitudinal gradients. FEMS Microbiology Ecology,

59(2), 418–427, doi:10.1111/j.1574-6941.2006.00240.x.

Liu, N., Hu, H., Ma, W., Deng, Y., Liu, Y., Hao, B., Zhang, X., Dimitrov, D.,

Feng, X. and Wang, Z., 2019, Contrasting biogeographic patterns of bacterial

and archaeal diversity in the top- and subsoils of temperate grasslands. mSystems,

4(5), 18, doi:10.1128/mSystems.00566-19.
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Supplementary Material

Biodiversity Exploratories diversity analysis

QIIME2 pipeline code

QIIME2 pipeline code used with version 2019.1 processing the Illumina sequencing data

of the V3 region of 16S rRNA transcripts from bulk soil samples of the Biodiversity Ex-

ploratories.

#!/ bin / sh

#$ −S / bin /bash

#SBATCH −−mail−type=END

#SBATCH −−mail−user=cam17@dsmz . de

echo ”START TIME: ” ‘ date ‘

whi l e ge topt s l : s : r : f : t : opt ion

do

case ”${ opt ion }”
in

l ) LENGTH=${OPTARG} ; ;

s ) MINSIZE=${OPTARG} ; ;

r ) MINREADS=${OPTARG} ; ;

f ) FOLDER=${OPTARG} ; ;

t ) THREAD=${OPTARG} ; ;

e sac

done

cd $FOLDER

i f [ ! −f jo ined−demux . qza ] ;

then

echo ” import ”

qi ime t o o l s import −−type ’ SampleData [ JoinedSequencesWithQual ity ] ’ −−
input−path pe−33−manifest −4S −−output−path jo ined−demux . qza −−input−
format SingleEndFastqManifestPhred33

f i

## q u a l i t y f i l t e r i n g

i f [ ! −f demux−jo ined− f i l t e r e d . qza ] && [ ! −f demux−jo ined− f i l t e r −
s t a t s . qza ] ;
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then

echo ” q u a l i t y f i l t e r i n g ”

qi ime qua l i ty − f i l t e r q−score−j o i n ed −−i−demux jo ined−demux . qza −−p−min−
q u a l i t y 25 −−p−qua l i ty −window 3 −−p−min−l ength−f r a c t i o n 0 .75 −−o−
f i l t e r e d −sequences demux−jo ined− f i l t e r e d . qza −−o− f i l t e r −s t a t s demux−
jo ined− f i l t e r −s t a t s . qza

f i

## sequenc ing s c o r i n g a f t e r q u a l i t y f i l t e r i n g

i f [ −f demux−jo ined− f i l t e r e d . qza ] ;

then

echo ” v i s u a l i z e a f t e r q u a l i t y f i l t e r i n g ”

qi ime demux summarize −−i−data demux−jo ined− f i l t e r e d . qza −−o−
v i s u a l i z a t i o n demux−jo ined− f i l t e r e d . qzv

f i

## v i s u a l i z e s t a t s

i f [ −f demux−jo ined− f i l t e r −s t a t s . qza ] ;

then

echo ” v i s u a l i z e a f t e r q u a l i t y f i l t e r i n g ”

qi ime metadata tabu la t e −−m−input− f i l e demux−jo ined− f i l t e r −s t a t s . qza

−−o−v i s u a l i z a t i o n demux−jo ined− f i l t e r −s t a t s . qzv

f i

## deblur

i f [ ! −f rep−s eqs . qza ] && [ ! −f t a b l e . qza ] && [ ! −f deblur−
s t a t s . qza ] ;

then

echo ” qi ime deblur denoise −16S −−i−demult ip lexed−s eqs demux−jo ined−
f i l t e r e d . qza −−p−min−s i z e $MINSIZE −−p−min−reads $MINREADS −−p−trim−
l ength $LENGTH −−o−r e p r e s e n t a t i v e −sequences rep−s eqs . qza −−o−t a b l e

t a b l e . qza −−p−sample−s t a t s −−p−jobs−to−s t a r t 10 −−o−s t a t s deblur−
s t a t s . qza”

qi ime deblur denoise −16S −−i−demult ip lexed−s eqs demux−jo ined− f i l t e r e d .

qza −−p−min−s i z e $MINSIZE −−p−min−reads $MINREADS −−p−trim−l ength

$LENGTH −−o−r e p r e s e n t a t i v e −sequences rep−s eqs . qza −−o−t a b l e t a b l e .

qza −−p−sample−s t a t s −−p−jobs−to−s t a r t $THREAD −−o−s t a t s deblur−
s t a t s . qza

f i

## v i s u a l i z e a f t e r deblur

i f [ −f rep−s eqs . qza ] ;

then
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echo ” v i s u a l i z e a f t e r deblur rep−s eqs ”

qi ime f ea ture −t a b l e tabulate−s eqs −−i−data rep−s eqs . qza −−o−
v i s u a l i z a t i o n rep−s eqs . qzv

f i

i f [ −f t a b l e . qza ] ;

then

echo ” v i s u a l i z e a f t e r deblur t a b l e ”

qi ime f ea ture −t a b l e summarize −−i−t a b l e t a b l e . qza −−o−v i s u a l i z a t i o n

t a b l e . qzv

f i

i f [ −f deblur−s t a t s . qza ] ;

then

echo ” v i s u a l i z e a f t e r deblur s t a t s ”

qi ime deblur v i s u a l i z e −s t a t s −−i−deblur−s t a t s deblur−s t a t s . qza −−o−
v i s u a l i z a t i o n deblur−s t a t s . qzv

f i

i f [ ! −f a l igned −rep−s eqs . qza ] ;

then

echo ” mafft ”

qi ime al ignment mafft −−i−sequences rep−s eqs . qza −−o−al ignment a l igned −
rep−s eqs . qza −−p−n−threads $THREAD

f i

i f [ ! −f masked−a l igned −rep−s eqs . qza ] ;

then

echo ”mask”

qi ime al ignment mask −−i−al ignment a l igned −rep−s eqs . qza −−o−masked−
al ignment masked−a l igned −rep−s eqs . qza

f i

## Phylogeny −−> can be threaded , but not recommendable , cause t r e e

could be d i f f e r e n t

i f [ ! −f unrooted−t r e e . qza ] ;

then

echo ” unrooted−t r e e ”

qi ime phylogeny f a s t t r e e −−i−al ignment masked−a l igned −rep−s eqs . qza −−o−
t r e e unrooted−t r e e . qza −−p−n−threads $THREAD

f i

i f [ ! −f rooted−t r e e . qza ] ;

then

echo ” rooted−t r e e ”
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qi ime phylogeny midpoint−root −−i−t r e e unrooted−t r e e . qza −−o−rooted−
t r e e rooted−t r e e . qza

f i

# used the c l a s s i f i e r from Selma

i f [ ! −f taxonomy . qza ] ;

then

echo ” s i l v a taxonomy”

qi ime f ea ture −c l a s s i f i e r c l a s s i f y −s k l e a rn −−i−c l a s s i f i e r ”/home/cam17/

Documents/ Taxonomy c la s s i f i e r / c l a s s i f i e r 1 3 2 V 3 . qza” −−p−n−j obs

$THREAD −−i−reads rep−s eqs . qza −−o−c l a s s i f i c a t i o n taxonomy . qza

f i

qi ime t o o l s export \
−−input−path taxonomy . qza \
−−output−path taxonomy−with−spaces

qi ime metadata tabu la t e \
−−m−input− f i l e taxonomy−with−spaces /taxonomy . t sv \
−−o−v i s u a l i z a t i o n taxonomy−as−metadata . qzv

qi ime t o o l s export \
−−input−path taxonomy−as−metadata . qzv \
−−output−path taxonomy−as−metadata

qi ime t o o l s import \
−−type ’ FeatureData [ Taxonomy ] ’ \
−−input−path taxonomy−as−metadata/metadata . t sv \
−−output−path taxonomy−without−spaces . qza

## remove mitochondria and c h l o r o p l a s t sequences ( op t i ona l ) , based on

taxonomy . qza

i f [ ! −f tab le−no−MitChloro . qza ] ;

then

qi ime taxa f i l t e r −t a b l e −−i−t a b l e t a b l e . qza −−i−taxonomy taxonomy−
without−spaces . qza −−p−exc lude mitochondria , c h l o r o p l a s t −−o−f i l t e r e d

−t a b l e tab le−no−MitChloro . qza

f i

# t a b l e . qza i s changed to f ea ture −t a b l e . biom , taxonomy . qza −> taxonomy .

tsv , rooted−t r e e . qza −> t r e e . nwk

i f [ −f t a b l e . qza ] ;

then

echo ” export ”

144



qi ime t o o l s export −−input−path tab le−no−MitChloro . qza −−output−path

exported

f i

i f [ −f taxonomy . qza ] ;

then

echo ” export ”

qi ime t o o l s export −−input−path taxonomy . qza −−output−path exported

f i

i f [ −f rooted−t r e e . qza ] ;

then

echo ” export ”

qi ime t o o l s export −−input−path rooted−t r e e . qza −−output−path exported

f i

i f [ −f exported ] ;

then

cd exported

f i

i f [ −f f ea ture −t a b l e . biom ] && [ −f taxonomy . t sv ] && [ −f t r e e . nwk ] ;

then

cp taxonomy . t sv biom−taxonomy . t sv

f i

echo ”END TIME: ” ‘ date ‘

Predictor correlation

Table 7: Overview over all engineered predictors created for modelling of bacterial alpha
and beta diversity.

data temporal aggregation (days before sampling) predictor

soil moisture 1056 days thresholds 1-63 % in 1 % steps

minimum

maximum

range

slope

soil moisture 730 days thresholds 1-63 % in 1 % steps

minimum

maximum

range

soil moisture 365 days threshold 1-63 % in 1 % steps

minimum

maximum

range
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soil moisture 180 days threshold 1-63 % in 1 % steps

minimum

maximum

range

soil moisture 90 days threshold 1-63 % in 1 % steps

minimum

maximum

range

soil moisture 30 days threshold 1-63 % in 1 % steps

minimum

maximum

range

soil moisture 14 days threshold 1-63 % in 1 % steps

minimum

maximum

range

soil temperature 1056 days threshold -36-29°C in 1°C steps

minimum

maximum

range

slope

soil temperature 730 days threshold -36-29°C in 1°C steps

minimum

maximum

range

soil temperature 365 days threshold -36-29°C in 1°C steps

minimum

maximum

range

soil temperature 180 days threshold -36-29°C in 1°C steps

minimum

maximum

range

soil temperature 90 days threshold -36-29°C in 1°C steps

minimum

maximum

range

soil temperature 30 days threshold -36-29°C in 1°C steps

minimum

maximum

range

soil temperature 14 days threshold -36-29°C in 1°C steps

minimum

maximum

range

precipitation 1056 days sum rain days

730 days sum rain days

365 days sum rain days

land use intensity 5 years mean LUI

mean grazing

mean mowing

mean fertilization

slope LUI

slope grazing

slope mowing

slope fertilization

land use intensity 4 years mean LUI

mean grazing

mean mowing

mean fertilization

land use intensity 3 years mean LUI
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mean grazing

mean mowing

mean fertilization

land use intensity 2 years mean LUI

mean grazing

mean mowing

mean fertilization

land use intensity 1 years mean LUI

mean grazing

mean mowing

mean fertilization

147



F
igu

re
49

:
P

earso
n

correlation
n

etw
ork

of
all

clim
atic

p
red

ictors
u

sed
in

th
is

stu
d

y
an

d
sam

p
lin

g
year.

F
or

b
etter

read
ab

ility
p

red
icto

r
grou

p
s

w
ere

co
lo

r
co

d
ed

.
O

n
ly

P
earson

correlation
co

effi
cien

ts
>

0.5
are

d
isp

lay
ed

.
S

M
=

soil
m

oistu
re,

T
s

=
soil

tem
p

eratu
re.

148



Table 8: Edaphic predictors used in this study.

Predictor definition explanation

Wide coarse pore content (%) > 50 µm crucial for soil aeration and fast drainage

Fine coarse pore content (%) > 10 µm crucial for soil aeration and fast drainage

Medium sized pore content (%) 0.2-10 µm storage of plant available water

Fine pore content (%) < 0.2 µm water stored in fine pores

pF 1.8 soil water content in pore size > 10 µm

pf 2.5 soil water content in pore size 0.2-10 µm

pF 4.2 soil water content in pore size < 0.2 µm

Porosity % proportion of potential air filled soil volume

Bbulk density density of sol (g/cm3)

Sand content g/kg 0.063-2 mm

Clay content g/kg <0.002 mm

Dry matter content %
proportion of dry matter

in a defined soil volume

Dithionite extractable Fe g/kg soil

Oxalate extractable Fe g/kg soil

Dithionite extractable Al g/kg soil

Oxalate extractable Al g/kg soil

Nmin µg N g–1 soil DM nitrate + ammonium content

NH+
4 µg N g–1 soil DM ammonium content

NO3 µg N g–1 soil DM nitrate content

EN extractable nitrogen

EOC extractable organic carbon

Total N g/kg soil

Total C g/kg soil

Organic C g/kg soil

C/N ratio
ratio of organic C

to total N content in soil

well-established indicator

for the nitrogen availability in soil

Organic S mg/kg soil
calculated organic S concentration

for extraction with KH2PO4

Total S mg/kg soil total S concentration

Inorganic S mg/kg soil
inorganic S concentration

after extraction with KH2PO4

Nmic µg Nmic g–1 DM microbial carbon (without KEN-Factor)

Cmic µg Cmic g–1 DM microbial carbon (without KEC-Factor)

Cmic/Nmic

Invertebrates PLFA nmol FAME g-1 soil DM
invertebrate marker

PLFA FAME 20:4?6,9,12,15

Fungi PLFA nmol FAME g-1 soil DM PLFA FAME 18:26,9

Fungi/Bacteria PLFA nmol FAME g-1 soil DM ratio fungi to bacteria

Ts soil temperature in 10 cm depth (°C)

SWG gravimetric water content (%)

pH hydronium ion activity in a soil suspension

Sample year year of sampling 2011, 2014 or 2017

Plant biomass g/m2 weight of dried biomass in gram per m2

Soil type soil type according World Reference Base



Figure 50: Pearson correlation of engineered climatic predictors available for all land use
types. Climate predictors are clustered by similarity. For better readability overlapping
predictor labels were dropped.
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Figure 51: Pearson correlation of edaphic predictor groups for grassland sites.
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Figure 52: Pearson correlation of land use intensity and raw components grazing, moving,
N-fertilization of grassland sites.
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Figure 53: Pearson correlation of edaphic predictor groups for forest sites.
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GAMs for alpha diversity

First, GAMs were trained on richness separately for grassland and forest sites, since only a

small subset of edaphic predictors were available for both land use types. However, none of

the exclusively available predictors were selected for forest or grassland models by forward

selection (Fig. 54 and 55). The grassland model explained 60.8 % of deviance explained

with year, pH and Ts >5°C in 730 d as significant (p<0.05) predictors. Relative variable

importance showed temporal variation to be the most important predictor.

Figure 54: GAM model of bacterial richness fit on grassland sites. Subplots show the partial
fit of all predictors as blue lines in the order of detection by forward selection. Shaded
grey areas represent 95 % confidence intervals. Points display raw data for each predictor.
Variable importance is displayed as partial deviance explained for each predictor.

The GAM fit on forest sites, identified year, pH, soil moisture as SM >21 % in 365 d and

range of SM in 365 d, organic C content, soil texture as sand content and soil temperature as

median Ts in 730 d. Again temporal effects and pH were the most important predictors. All

other predictors except range of SM in 365 d showed a negative partial variable importance,

which implied that the partial effects of those predictors could be replaced by all other

predictors and have no true explanatory power for richness of forest sites. However, in

total the model accounted for 90.2 % of data variation.

The fit of abundant bacteria, represented by Simpson, on grassland sites identified year,

pH, sand content and SM >42 % in 1056 d as significant predictors, explaining 85.6 % of

model deviance. The analysis of Simpson for forest sites identified year, pH, range of SM

in 365 d and median Ts over 90 d prior to sampling as significant predictors accounting for

86.5 % of deviance explained. Unfortunately, no exclusive predictors for grassland or forest
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Figure 55: GAM model of bacterial richness fit on all forest sites. Subplots show the partial
fit of all predictors as blue lines in the order of detection by forward selection. Shaded
grey areas represent 95 % confidence intervals. Points display raw data for each predictor.
Variable importance is displayed as partial deviance explained for each predictor.

sites were selected. Therefore alpha diversity in the form of richness and Simpson were

modelled independent of land use, since no exclusively available predictor was selected. In

case a significant effect of land use type is present, land use was included as categorical

predictor during model fitting.
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Figure 56: GAM fitted to Simpson diversity for grassland sites. Subplots show the partial
fit of all significant predictors as blue lines in the order of detection by forward selection.
Shaded grey areas represent 95 % confidence intervals. Points display raw data for each
predictor. Variable importance is displayed as partial deviance explained for each predictor.

Figure 57: GAM fitted to Simpson diversity for forest sites. Subplots show the partial fit of
all significant predictors as blue lines in the order of detection by forward selection. Shaded
grey areas represent 95 % confidence intervals. Points display raw data for each predictor.
Variable importance is displayed as partial deviance explained for each predictor.
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Trajectory clustering

Figure 58: Trajectory clustering of cumulative variable importance for 740 SV of R2 > 0.5
in gradient Forest analysis of grassland communities. The x-axis display the on 10 most
important predictors. Different colour define clusters of soil bacteria being similar in their
abundance turnover as identified by trajectory clustering. Boxes above each plot depict
the proportion of bacteria in each cluster.
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Figure 59: Trajectory clustering of cumulative variable importance for 550 SV of R2 > 0.5
in gradient Forest analysis of forest communities. The x-axis display the on 10 most
important predictors. Different colour define clusters of soil bacteria being similar in their
abundance turnover as identified by trajectory clustering. Boxes above each plot depict
the proportion of bacteria in each cluster.
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Figure 60: PCoA ordinations of euclidean of 728 SV and 550 SV from grassland (in plots
A,B,C) and forest (in plots D, E, F) communities. Each black dot represents a single
species. Plot A and D represent the ordination based on euclidean distances of optimal
niches values from the 10 most important predictors identified by grandient Forest anal-
ysis. Plot B and E represent the ordination of euclidean distances of SV-specific variable
importances for grassland and forest communities. Plots C and F contain the synthesis
(addition) of euclidean distance matrices of SV-specific optimal niche values and variable
importances.
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Soil bacteria extraction Bad Lauchstädt

QIIME2 pipeline code

QIIME2 pipeline code used with version 2019.1 processing the Illumina MiSeq sequencing

data of V3/V4 region of 16S rRNA and rRNA gene samples of soil bacteria extraction from

different fertilization treatments from the static fertilization experiment in Bad Lauchstädt.

#!/ bin / sh

#$ −S / bin /bash

#SBATCH −−mail−type=END

#SBATCH −−mail−user=cam17@dsmz . de

echo ”START TIME: ” ‘ date ‘

whi l e ge topt s l : s : r : f : t : opt ion

do

case ”${ opt ion }”
in

l ) LENGTH=${OPTARG} ; ;

s ) MINSIZE=${OPTARG} ; ;

r ) MINREADS=${OPTARG} ; ;

f ) FOLDER=${OPTARG} ; ;

t ) THREAD=${OPTARG} ; ;

e sac

done

cd $FOLDER

i f [ ! −f jo ined−demux . qza ] ;

then

echo ” import ”

qi ime t o o l s import −−type ’ SampleData [ JoinedSequencesWithQual ity ] ’ −−
input−path pe−33−manifest −4S −−output−path jo ined−demux . qza −−input−
format SingleEndFastqManifestPhred33

f i

## q u a l i t y f i l t e r i n g

i f [ ! −f demux−jo ined− f i l t e r e d . qza ] && [ ! −f demux−jo ined− f i l t e r −
s t a t s . qza ] ;

then

echo ” q u a l i t y f i l t e r i n g ”
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qi ime qua l i ty − f i l t e r q−score−j o i n ed −−i−demux jo ined−demux . qza −−p−min−
q u a l i t y 25 −−p−qua l i ty −window 3 −−p−min−l ength−f r a c t i o n 0 .75 −−o−
f i l t e r e d −sequences demux−jo ined− f i l t e r e d . qza −−o− f i l t e r −s t a t s demux−
jo ined− f i l t e r −s t a t s . qza

f i

## sequenc ing s c o r i n g a f t e r q u a l i t y f i l t e r i n g

i f [ −f demux−jo ined− f i l t e r e d . qza ] ;

then

echo ” v i s u a l i z e a f t e r q u a l i t y f i l t e r i n g ”

qi ime demux summarize −−i−data demux−jo ined− f i l t e r e d . qza −−o−
v i s u a l i z a t i o n demux−jo ined− f i l t e r e d . qzv

f i

## v i s u a l i z e s t a t s

i f [ −f demux−jo ined− f i l t e r −s t a t s . qza ] ;

then

echo ” v i s u a l i z e a f t e r q u a l i t y f i l t e r i n g ”

qi ime metadata tabu la t e −−m−input− f i l e demux−jo ined− f i l t e r −s t a t s . qza

−−o−v i s u a l i z a t i o n demux−jo ined− f i l t e r −s t a t s . qzv

f i

## deblur

i f [ ! −f rep−s eqs . qza ] && [ ! −f t a b l e . qza ] && [ ! −f deblur−
s t a t s . qza ] ;

then

echo ” qi ime deblur denoise −16S −−i−demult ip lexed−s eqs demux−jo ined−
f i l t e r e d . qza −−p−min−s i z e $MINSIZE −−p−min−reads $MINREADS −−p−trim−
l ength $LENGTH −−o−r e p r e s e n t a t i v e −sequences rep−s eqs . qza −−o−t a b l e

t a b l e . qza −−p−sample−s t a t s −−p−jobs−to−s t a r t 10 −−o−s t a t s deblur−
s t a t s . qza”

qi ime deblur denoise −16S −−i−demult ip lexed−s eqs demux−jo ined− f i l t e r e d .

qza −−p−min−s i z e $MINSIZE −−p−min−reads $MINREADS −−p−trim−l ength

$LENGTH −−o−r e p r e s e n t a t i v e −sequences rep−s eqs . qza −−o−t a b l e t a b l e .

qza −−p−sample−s t a t s −−p−jobs−to−s t a r t $THREAD −−o−s t a t s deblur−
s t a t s . qza

f i

## v i s u a l i z e a f t e r deblur

i f [ −f rep−s eqs . qza ] ;

then

echo ” v i s u a l i z e a f t e r deblur rep−s eqs ”
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qi ime f ea ture −t a b l e tabulate−s eqs −−i−data rep−s eqs . qza −−o−
v i s u a l i z a t i o n rep−s eqs . qzv

f i

i f [ −f t a b l e . qza ] ;

then

echo ” v i s u a l i z e a f t e r deblur t a b l e ”

qi ime f ea ture −t a b l e summarize −−i−t a b l e t a b l e . qza −−o−v i s u a l i z a t i o n

t a b l e . qzv

f i

i f [ −f deblur−s t a t s . qza ] ;

then

echo ” v i s u a l i z e a f t e r deblur s t a t s ”

qi ime deblur v i s u a l i z e −s t a t s −−i−deblur−s t a t s deblur−s t a t s . qza −−o−
v i s u a l i z a t i o n deblur−s t a t s . qzv

f i

i f [ ! −f a l igned −rep−s eqs . qza ] ;

then

echo ” mafft ”

qi ime al ignment mafft −−i−sequences rep−s eqs . qza −−o−al ignment a l igned −
rep−s eqs . qza −−p−n−threads $THREAD

f i

i f [ ! −f masked−a l igned −rep−s eqs . qza ] ;

then

echo ”mask”

qi ime al ignment mask −−i−al ignment a l igned −rep−s eqs . qza −−o−masked−
al ignment masked−a l igned −rep−s eqs . qza

f i

## Phylogeny −−> can be threaded , but not recommendable , cause t r e e

could be d i f f e r e n t

i f [ ! −f unrooted−t r e e . qza ] ;

then

echo ” unrooted−t r e e ”

qi ime phylogeny f a s t t r e e −−i−al ignment masked−a l igned −rep−s eqs . qza −−o−
t r e e unrooted−t r e e . qza −−p−n−threads $THREAD

f i

i f [ ! −f rooted−t r e e . qza ] ;

then

echo ” rooted−t r e e ”
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qi ime phylogeny midpoint−root −−i−t r e e unrooted−t r e e . qza −−o−rooted−
t r e e rooted−t r e e . qza

f i

# used the c l a s s i f i e r from Selma

i f [ ! −f taxonomy . qza ] ;

then

echo ” s i l v a taxonomy”

qi ime f ea ture −c l a s s i f i e r c l a s s i f y −s k l e a rn −−i−c l a s s i f i e r ”/home/cam17/

Documents/ Taxonomy c la s s i f i e r / c l a s s i f i e r 1 3 2 V 3 V 4 . qza” −−p−n−j obs

$THREAD −−i−reads rep−s eqs . qza −−o−c l a s s i f i c a t i o n taxonomy . qza

f i

q i ime t o o l s export \
−−input−path taxonomy . qza \
−−output−path taxonomy−with−spaces

qi ime metadata tabu la t e \
−−m−input− f i l e taxonomy−with−spaces /taxonomy . t sv \
−−o−v i s u a l i z a t i o n taxonomy−as−metadata . qzv

qi ime t o o l s export \
−−input−path taxonomy−as−metadata . qzv \
−−output−path taxonomy−as−metadata

qi ime t o o l s import \
−−type ’ FeatureData [ Taxonomy ] ’ \
−−input−path taxonomy−as−metadata/metadata . t sv \
−−output−path taxonomy−without−spaces . qza

## remove mitochondria and c h l o r o p l a s t sequences ( op t i ona l ) , based on

taxonomy . qza

i f [ ! −f tab le−no−MitChloro . qza ] ;

then

qi ime taxa f i l t e r −t a b l e −−i−t a b l e t a b l e . qza −−i−taxonomy taxonomy−
without−spaces . qza −−p−exc lude mitochondria , c h l o r o p l a s t −−o−f i l t e r e d

−t a b l e tab le−no−MitChloro . qza

f i

# t a b l e . qza i s changed to f ea ture −t a b l e . biom , taxonomy . qza −> taxonomy .

tsv , rooted−t r e e . qza −> t r e e . nwk

i f [ −f t a b l e . qza ] ;

then

echo ” export ”
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qi ime t o o l s export −−input−path tab le−no−MitChloro . qza −−output−path

exported

f i

i f [ −f taxonomy . qza ] ;

then

echo ” export ”

qi ime t o o l s export −−input−path taxonomy . qza −−output−path exported

f i

i f [ −f rooted−t r e e . qza ] ;

then

echo ” export ”

qi ime t o o l s export −−input−path rooted−t r e e . qza −−output−path exported

f i

i f [ −f exported ] ;

then

cd exported

f i

i f [ −f f ea ture −t a b l e . biom ] && [ −f taxonomy . t sv ] && [ −f t r e e . nwk ] ;

then

cp taxonomy . t sv biom−taxonomy . t sv

f i

echo ”END TIME: ” ‘ date ‘
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