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Abstract

In present days, cyber-physical systems (CPSs) play an increasingly vital role in in our everyday
lives and effectively demonstrate how we, as a society, aim at leveraging technology to mitigate hu-
man error. Automated vehicles, robots, and aircraft are only a few prime examples of such systems
that combine digital computations, such as control algorithms, with physical motion in space. As
such systems become more complex, designing them becomes more challenging. The main rea-
son is their inherently safety-critical and hybrid nature, which not only requires highly standard-
ized quality assurance of the running software, but also sophisticated preplanning. However, these
two challenges come with a cost, such as scalability issues during the software development pro-
cess or the need for high expertise. Consequently, we hypothesize that the key to designing safe be-
haviors for CPSs in a manageable fashion and maximizing trust early on mandates a software en-
gineering process that (1) prioritizes appropriate abstractions in the early design phase (i.e., start-
ing with requirements engineering), but (2) builds formal safety proofs from smaller parts at each
stage of the process to establish correctness of the whole system. In this thesis, we make several
contributions to establish such a formal engineering process, where safety proofs at each develop-
ment step are built by applying deductive verification. In particular, we focus on three key areas
namely (1) planning, modeling, and analyzing safe behavior of cyber-physical systems, (2) deriving
correct implementations with the goal of validating them through simulation, and (3) improving
deductive verification applied on source-code level.

As a starting point for modeling safe CPS behavior, we introduce a formal framework based on
skill graphs, a graph-based modeling formalism for decomposing the overall behavior of CPSs into
isolated and verifiable maneuvers (e.g., following a leading vehicle in the context of automated driv-
ing). For specifying and verifying skill graphs, we combine them with a contract theory and model
parts of their behavior by means of hybrid programs. Crucially, skill graphs can be composed to ex-
hibit more complex maneuvers built from simpler ones. This compositional nature of our framework
enables the reduction of verification complexity while it simultaneously prioritizes proof reuse.

Furthermore, we introduce a methodology for refining verified skill graphs to component-based
architectures. In particular, nodes in a skill graph are mapped to components and edges cor-
respond to component connectors. While certain components can be generated automatically,
safe component behavior of to-be-developed components is ensured by applying the correctness-by-
construction paradigm. Subsequent simulations of the executable and verified maneuvers allow to
validate their requirements in a diverse set of scenarios.

Finally, we discuss two techniques in the context of formal specification and deductive pro-
gram verification with the goal of bridging the gap between software engineering practices and
formal methods. First, we assess to what extent a mutation analysis is valid and practical for
measuring the precision of software contracts, which is an invaluable metric for software devel-
opers working with formal specifications. Second, we present a technique to increase the per-
formance and success rate of the automatic proof search of configurable program verifiers by ex-
amining the influence of control parameters.






Zusammenfassung

Cyber-physische Systeme nehmen eine zunehmend wichtige Rolle in unserem Alltag und un-
serer Gesellschaft ein, und haben das Ziel, durch technologischen Fortschritt und Automati-
sierung menschliches Fehlverhalten zu minimieren. Zu den Einsatzbereichen gehéren autono-
me Straflenfahrzeuge, autonome Roboter, oder aber auch Luftfahrzeuge. Cyber-physische Sys-
teme vereinen dabei digitale Software mit mechanischen und elektrischen Komponenten im
physischen Raum, was zu schwerwiegendem Fehlverhalten in der realen Welt fiihren kann.
Durch die steigende Komplexitit erhoht sich ebenfalls auch das benétigte Expertenwissen wih-
rend der Entwicklungsphase solcher Systeme.

Um dennoch die Sicherheit zu gewihrleisten, muss besonderes Augenmerk auf die Qualitits-
sicherung im Entwicklungsprozess gelegt werden. Vorzugsweise werden hier Konzepte der for-
malen Verifikation angewendet, die eine Zertifizierung der Korrektheit der ausgelieferten Soft-
ware garantieren. Der inhirente Nachteil ist allerdings die schlechte Skalierung und das beno-
tige Expertenwissen solcher Methoden. Wir nehmen daher an, dass ein erfolgreicher Entwick-
lungsprozess mindestens zwei Konzepte miteinander vereint: hohe Abstraktion in der frithen
Entwicklungsphase und formale, modulare Beweisfiihrung kleinerer Komponenten mit dem
Ziel die Korrektheit des Gesamtsystems zu attestieren. Diese Arbeit leistet wichtige Beitrige, um
sich einen solchen formalen Entwicklungsprozess anzunihern. Insbesondere werden dabei drei
Kernbereiche beleuchtet: (1) Planung, Modellierung, und beweisgestiitzte Verifikation von Cyber-
physischen Systemen wihrend der Designphase, (2) Ableitung korrekter Implementierungen, die
virtuell simuliert werden koénnen, und (3) Verbesserung der Anwendung der deduktiven Veri-
fikation flir End-Nutzer auf Implementierungsebene.

Um sicheres Verhalten modellieren und verifizieren zu kénnen, entwickeln wir in dieser Arbeit
zunichst ein formales Konzept basierend auf Fahigkeitsgraphen (engl.: skill graphs). Fihigkeitsgra-
phen stellen eine grafische Notation zur Beschreibung von isolierten Fahrmanévern dar (z.B. Ab-
standsautomat), die dabei besonderen Fokus auf Modularitit legt. Zur Spezifikation und Verifikati-
on kombinieren wir Fihigkeitsgraphen mit Vertridgen und hybriden Programmen. Die Modularitit von
Fihigkeitsgraphen erlaubt es unter bestimmten Bedingungen, komplexere Mandver aus simpleren
abzuleiten und Verifikationsresultate zu transferieren. Dies reduziert nicht nur die Beweiskomple-
xitit, sondern verbessert auch die Wiederverwendung von bereits geleistetem Beweisaufwand.

Neben der Verifikation solcher Modelle ist es auch wichtig, die grundlegenden Sicherheitsanfor-
derungen auf Vollstindigkeit hin zu validieren, was durch Simulation (d.h., virtuelle Ausfithrung
unter Realbedingungen) der Manéver erreicht werden soll. Dafiir stellen wir eine Methodik vor,
um aus Fihigkeitengraphen komponentenbasierte Architekturen abzuleiten. Wihrend ein Grofiteil
dieser Ableitung automatisiert werden kann, so gibt es durch die hohe Abstraktion der Fihigkei-
tengraphen auch manuell fertig zu entwickelnde Komponenten. Um dennoch Korrektheit garan-
tieren zu konnen, kombinieren wir diese Methodik mit dem Correctness-by-Construction Paradigma.

Schlussendlich diskutieren wir zwei Probleme im Kontext der vertragsbasierten Spezifikation
und deduktiven Verifikation mit dem Ziel, die vorherrschende Liicke zwischen Praktiken der Soft-



warenentwicklung und den Formalen Methoden zu verkleinern. Als erstes untersuchen wir, inwie-
fern eine Mutationsanalyse Erkenntnisse {iber die Vollstindigkeit vertragsbasierter Spezifikationen er-
moglicht. Anschlieffend prisentieren wir eine Technik, welche zum Ziel hat, die Effektivitit und
Effizienz des automatischen Beweisalgorithmus’ konfigurierbarer Programmbeweiser zu steigern,
indem wir den Einfluss von Kontrollparametern untersuchen.
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1. Introduction

Cyber-physical systems are ubiquitous in many products that we use in our daily lives, includ-
ing avionic systems [Sampigethaya et al. 2013], automobiles [Goswami et al. 2012], robotics [Mich-
niewicz et al. 2014], and even medical equipment [Lee et al. 2012]. In his foundational introduction,
Alur [2015] defines a cyber-physical system as “a collection of computing devices communicating with one
another and interacting with the physical world via sensors and actuators in a feedback loop”. This defi-
nition captures the hybrid nature of cyber-physical systems, whose behavioral dynamics are both
discrete and continuous; they integrate digital computation realized through discretely-operating
software components with physical processes running in continuous time. For example, cars with
an advanced driver assistance constitute cyber-physical systems, whose actuators are discretely con-
trolled by on-board software (e.g., setting the acceleration based on sensing the environment), while
the car itself is in physical and continuous motion.

The question one may ask is whether today’s software development processes for such complex
systems are sufficient enough to justify their deployment. Although there exist high safety stan-
dards that are imposed on designing these systems (e.g., IEC 61508 [IEC 61508 2011], ISO 26262 [ISO
26262 2011], and ISO 21448 [ISO 21448 2011]), recent reports of fatal accidents with autonomous
cars [Poland et al. 2018; Barth et al. 2020; Rice 2019] make clear that shortcomings exist. In
2016, The Guardian reported that Google’s autonomous vehicles tested on the roads in Califor-
nia in 2015 suffered 341 disengagements [Harris 2016]. In 69 of these disengagements, the test
drivers took rightfully control of the car on their own accord due to mistrust in the car’s ex-
hibited behavior. Even worse, not only are cyber-physical systems difficult to engineer correctly
in the first place (e.g., due to incomplete requirements and design complexity), but high com-
petition among companies increases the pressure for shorter release cycles, often at the ex-
pense of quality assurance [Khomh et al. 2015].

In line with the vision of verification-driven engineering [Kordon et al. 2008; A. Miiller et al. 2020],
a key challenge in developing cyber-physical systems is to integrate formal methods with model-
based design [Schmidt 2006; Brambilla et al. 2017], the de facto standard in cyber-physical sys-
tems engineering. It has been emphasized many times in the literature [Alur 2015; Mitra 2021;
Doyen et al. 2018; Platzer 2018; Tabuada 2009] that formal verification techniques need to be ap-
plied in this domain to ensure that these systems behave safely (i.e., that nothing bad will hap-
pen) with respect to a set of safety requirements. Platzer [2018] even argues that “[...] cyber-physical
systems deserve [mathematical] proofs as safety evidence” to guarantee that they interact correctly with
the physical world. Additionally, it is not only important to verify conformance to safety re-
quirements, but also to validate [Pace 2004] that the modeled behavior fulfills all requirements
that are necessary for the intended use-case at run-time (e.g, that the requirements are complete
enough to operate safely). Whereas ISO 26262 [ISO 26262 2011] focuses more on software engi-
neering processes for ensuring functional safety of the overall systems, ISO 21448 (SOTIF) [ISO
21448 2011] is specifically designed to focus on risk minimization, verification, and validation of’
the indented functionality, such as assistance systems.



As an example, imagine a newly proposed advanced driver assistance system for vehicles that au-
tonomously intervenes with vehicle control. Directly evaluating its feasibility in road traffic would
require too much effort or not be feasible at all. Consequently, there is a need for rapidly devel-
oping virtual prototypes’ that can already be thoroughly evaluated during the design stages. At the
same time, existing approaches and on-going research in this domain [Massow et al. 2018; Mas-
sow et al. 2020; Roy et al. 2010; Kutluay 2013] still primarily focus on testing and simulation-based
evaluation, which can only identify flaws in the prototype, but not certify their absence. Due to the
complexity of road traffic scenarios, there is still a considerable chance of misbehavior as seen in
the Google case. This example highlights that new methodologies have to be developed that com-
bine verification at scale (i.e., bringing strong guarantees to large and critical systems to reduce
the testing complexity) with virtual prototyping at scale that emphasizes (i) reuse of already devel-
oped functions and (ii) modeling abstraction. At the same time, we argue that formal verification
for functional behavior must be applied at each stage in the development process (i.e., in the de-
sign phase, at architectural level, and at implementation level) to comply with these high standards.
For us, this raises the question: what will it take to support developers of all skill levels in_formally prov-
ing the absence of dangerous defects in their implementations?

1.1. Challenges for Maneuver-Centric Modeling and
Verification

Thinking of maneuvers, one might first imagine vehicles in road traffic performing well-defined
actions, such as lane changing or overtaking. In this thesis, we are interested in a broader defini-
tion of that term, where we roughly define a maneuver as an externally exhibited behavior of a cyber-
physical system that transitions the system from one well-defined state to another well-defined state in the
real-world through a cycle of sensing, perceiving, planning, controlling, and acting. Examples consist of’
cars with their various driver assistants, but also collision avoidance for marine vehicles, or land-
ing of drones. Figure 1.1 illustrates the computational pipeline for an autonomous car. The spe-
cific maneuver (i.e., exhibited behavior) is implemented in the control unit that relies on the previ-
ous phases and eventually controls the available actuators.

t (2 “
L] (]

Sensing Perception Planning Control Acting
(e.g., camera) (e.g., object tracking) (e.g., modeling the (e.g., dynamical model) (e.g., powertrain, brakes)
environment)
Hardware Software Software Software Hardware

Figure 1.1.: Schematic depiction of the control cycle of an autonomous car.

To ensure that the controller’s implementation operates safely, testing is not enough. Most cyber-
physical systems that we consider exhibit an almost infinite number of behaviors due to the inter-

TAlthough there exist different definitions, we refer to virtual prototyping as a software-based engineering discipline,
which carries out modeling, simulation, and visualization under real-world conditions all within a computer. Virtual
prototyping is part of the larger concept formed by digital twins [Negri et al. 2017].
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action with the physical environment [Mitra 2021]. Koopman et al. [2016] argue that “[in] order to val-
idate that the catastrophic failure rate of a vehicle fleet is in fact one per 10° hours, one must conduct at least
10? vehicle operational hours of testing (a billion hours)”. Contrary to testing, formal verification mathe-
matically proves that a maneuver M does not violate some given property P. That is, with formal
verification it is possible to guarantee that all behaviors of M satisfy property P and to also pro-
duce a proof in case of success that gives high assurance guarantees.

In the literature, many languages, techniques, frameworks, and tools exist to formally and semi-
formally address the diverse set of challenges of industrial cyber-physical systems development.
These challenges include large system sizes, heterogeneity of connected modules, stakeholders
from a multitude of disciplines, requirements elicitation, and also software evolution and mainte-
nance themselves. Popular modeling languages include AADL [Feiler et al. 2012; L. Zhang 2013; L.
Zhang 2014; Lin et al. 2018; Misson et al. 2019], MoDELIcA [Elmqvist et al. 2001; Gdmez et al. 2020],
ArLoY [Jackson 2002; E. Kang et al. 2016], UML [France et al. 1998; Mancini et al. 2018; Jue et al. 2019;
Bernardi et al. 2021], and its variants SySML [Friedenthal et al. 2014; Neghina et al. 2020; Pagliari et al.
2020] and MARTE [Bernardi et al. 2007; Seceleanu et al. 2017]. While all these languages greatly con-
tributed to the research of system’s design and analysis, their purpose is (1) to provide rich model-
ing facilities for almost all parts of a cyber-physical system, and (2) to eventually use these models as
basis for real production code. Both goals make these languages inherently complex. For instance,
AADL is used to model both hardware and software architectures of real-time embedded systems
in great detail. In contrast, we aim to thrive for simplicity and focus on the functional modeling of’
maneuvers only, which we capture in the following first identified challenge.

Challenge 1: Modeling Complexity. Most of the aforementioned modeling languages are too gen-
eral in nature for our purpose and too complex in their design facilities. This makes it hard for
developers to manage their development artifacts and to communicate with stakeholders. More-
over, we argue that higher complexity impairs reuse and modularity of both the modeling artifacts
and analysis results. What we need is a modeling notation that abstracts from unnecessary tech-
nical details. The goal should be to start with a simple behavioral model that is already amenable
to various analyses — including formal verification — to identify conceptual design flaws as early as
possible. Moreover, the modeling notation itself should be platform independent to increase ap-
plicability. The main challenge, however, will be the trade-off between simplicity of the modeling
approach and substantiality of the early verification results.

Besides modeling languages, there exist a plethora of formal techniques used in the development
of cyber-physical systems to enable formal reasoning and verification of these models. Popular
techniques include automata theory [Henzinger 2000; Alur et al. 1995; Alur et al. 1992; Lynch et al.
2003; Mitra 2021], abstract state machines [Borger 2010; Metsili et al. 2017; Drozdov et al. 2019,
and system-level contracts [Westman et al. 2013; Nuzzo et al. 2019; Sangiovanni-Vincentelli et al.
2012; Benveniste et al. 2018]. Although contracts in the sense of assume-guarantee reasoning [Ben-
venuti et al. 2014; Frehse et al. 2004; Henzinger et al. 2001] come with the promise to increase mod-
ularity and attack scalability issues, the majority of tools and frameworks integrating contracts ap-
plies model checking to verify properties of interest. The reason is that these framework aim at ver-
ifying more complex and time-related properties, which demands a more expressive specification



language (e.g., linear-time temporal logic [Pnueli 1977] or signal temporal logic [Maler et al. 2004])
and is hard to address with deductive verification. In line with the first challenge, our goal is to fo-
cus on safety-related properties (e.g., collision freedom), which we consider to be the most impor-
tant properties. In the context of deductive verification and relevant for this thesis, there exist hybrid
programs [Platzer 2008; Platzer 2010; Platzer 2012; Platzer 2018] and differential dynamic logic [Platzer
2008; Platzer 2010; Platzer 2012; Platzer 2018], which combine a specialized guarded command lan-
guage for hybrid systems with a deductive calculus. However, integrating hybrid programs into
software engineering processes is still an open challenge. Although A. Miiller et al. [2018a] took the
first step by combining hybrid programs with component-based design, their approach is still too
coarse-grained for our vision of a maneuver-centric modeling and verification approach that max-
imizes reuse. Thus, the second challenge is as follows.

Challenge 2: Verification Complexity and Decomposition. For a scalable verification approach, it is
indispensable that a notion of modularity in the process of formal verification exists that allows to
verify smaller functional modules of the verification model in isolation and uses the correctness re-
sults to reason about the correctness of the entire maneuver. It is also of paramount importance to
prioritize reuse for verification results to decrease human effort, which is best achieved by architec-
tural design. The challenge is to develop a formal concept around verification of safety properties
that allows to analyze and verify smaller functional modules, but also allows to reuse such modules
automatically when modeling new maneuvers. Ideally, a notion of compositionality allows to com-
bine simpler maneuvers to exhibit more complex maneuvers without unnecessary re-verification.

After successful requirement verification, it is also important to validate the requirements. This
process aims at inspecting completeness of requirements by simulating the modeled behavior us-
ing one of many data-driven validation techniques (i.e., run-time verification) [A. Miiller et al. 2020].
Unsatisfactory model parts can then be localized and improved. Examples of such simulation and
analysis tools include MATLAB/SIMULINK [Angermann et al. 2020], ProLEMY II [Ptolemaeus 2014],
and AADLS1M [Buzdalov et al. 2014]. Again, most of these simulation frameworks focus on richer
specification languages, orthogonal problems to functional safety (e.g., uncertainty or performance),
or are tied to specific modeling languages. An important challenge we identified is the gap between
design model and the actual implementation that is simulated. Most approaches already work with
detailed enough design models amenable to simulation (e.g., MATLAB/SIMULINK [Angermann et al.
2020]), whereas our main goal is to maximize abstraction of our designed maneuvers. This requires
to add details to the implementation model before simulation, which increases the chances to in-
troduce new defects and invalidate simulation results. We formulate the third challenge as follows.

Challenge 3: Implementation Model and Simulation. Validating modeling requirements demands
comprehensive analysis of the maneuver’s observable behavior in a diverse set of scenarios. On the
one hand, our goal is to considerably reduce model complexity (see Challenge 1 and Challenge 2).
On the other hand, data-driven simulation requires a complete and executable instance of our ma-
neuver. As the verification model of our maneuvers tends to be too abstract for data-driven sim-
ulation, we need to bridge the gap between design model and implementation model without the
introduction of new defects. This demands formal specification and verification at source-code
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level to formally cover all parts of the development process.

Finally, our vision is to lower the entry barrier to deductive program verification for developers
of all skill levels. Much like software engineering can be seen as the cure to the software crisis, we
are now entering an era of proof engineering where mathematically proving correctness of real source
code resulting in machine-checkable proofs is no longer just a dream (or unbearable labor). Promi-
nent examples of successful verifications include large projects, such as compilers [Leroy 2009; R.
Kumar et al. 2014], web browser kernels [Jang et al. 2012], and OS microkernels [Klein et al. 2009;
Klein et al. 2014, but also highly-used algorithms in standard libraries [De Gouw et al. 2015; De
Gouw et al. 2019; Nipkow et al. 2020]. Moreover, new lines of research, such as automatic proof
search [Summers et al. 2018; Bledsoe 2020], proof reuse [Beckert et al. 2004; Bubel et al. 2010],
and proof repair [Ringer et al. 2018] acknowledge the role of developers, who rarely have the exper-
tise to apply deductive verification interactively.

There exist numerous challenges in the context of deductive program verification that make their
adoption in software engineering processes difficult, such as writing specifications [Baumann et al.
2012; Cok 2018], tool integration and reuse [Hihnle et al. 2019], or limited amount of experimental
research. Recent on-going research [Grebing et al. 2020; Furia et al. 2015; Hiep et al. 2020; Kniip-
pel et al. 2018a] has identified this gap and aims at investigating how to make deductive verifi-
cation more usable and applicable for practitioners. This thesis makes an effort to contribute to
this body of research by also considering how developers apply deductive verification when prov-
ing correctness of their implementations. Similar to research in software engineering, we argue
that combining data-driven techniques (e.g., machine learning) with formal reasoning (1) leads to
new observations where new challenges and solutions can be explored and (2) improves integra-
tion into software engineering practices. Such efforts include the development of new software
metrics for verification projects [Polikarpova et al. 2013; Chockler et al. 2003], conducting empir-
ical studies to improve tool support [Grebing et al. 2020; Kniippel et al. 2018c], or increasing ef-
fectiveness of the automated proof search through heuristics [Kniippel et al. 2018b; Kniippel et al.
2018¢]. This identified gap results in the final challenge.

Challenge 4: Mainstreaming Deductive Verification. Our vision to support developers at all skill
levels in their deductive verification projects demands to develop new and practical concepts that
bridge the gap between software engineering practices and formal reasoning. We believe that it
is necessary to (1) increase automation and decrease interaction and (2) increase information and
debugging capabilities for developers for both the specification and failed verification attempts.
A fruitful direction is to leverage application of deductive verification by connecting this field to
other disciplines that prioritize inductive learning from data.

1.2. Research Questions

Based on the identified challenges above, we formulate the central research question of this thesis as
follows.



Main Research Question

How can we establish a virtual prototyping development process for maneuvers of cyber-
physical systems that emphasizes deductive verification throughout and supports developers
of all skill levels from model-based design down to source-code level?

For the purpose of this thesis, we narrow this question down to study a specific combination of'a
graphical modeling notation and a formal framework. In particular, we base our modeling of ma-
neuvers on skill graphs [Reschka et al. 2015] combined with a mathematical underpinning by means
of hybrid systems [Branicky 2005; Henzinger 2000; Alur 2011}, which enables formal verification of’
the modeled maneuvers. Inspired by ISO 26262 [2011], skill graphs [Reschka et al. 2015] have proved
to be an effective yet simple starting point in the automotive domain for modeling and organiz-
ing new driving maneuvers from an architectural point of view. A skill graph is a directed acyclic
graph that visualizes the dependencies between skills. A skill is a single functional module that can
be categorized into the aforementioned classes sensor, perception, planning, control, and actuator. De-
pending on the cyber-physical systems, different skills are available (e.g., different sets of sensors
or control algorithms). This decompositional approach maximizes modularity and reuse, as skills
can be developed in isolation and combined when necessary.

Hybrid systems are mathematical models that combine discrete and continuous computations,
and are thus natural candidates for abstract descriptions of cyber-physical systems. For formally
verifying hybrid systems, our focus lies on deductive reasoning [Platzer 2010; Zhan et al. 2013; Platzer
2018], where the goal is to logically prove that a given hybrid system satisfies a given set of properties
through applying a series of deduction steps (i.e., a proof!) with respect to the underlying logical
calculus. Most importantly, deductive reasoning allows for compositional verification of hybrid
systems, which roughly means that — in principle — it is possible to prove safety of the composition
of functional modules solely based on their individual safety guarantees.

From this central research question, we derive the following three more specific research ques-
tions, each focusing on a relevant key aspect of our considerations so far.

Research Question RQ1 — Modeling and Verifying Maneuvers.  To what extent can a combination of skill
graphs and hybrid programs help to model, analyze, and formally prove maneuvers at scale? As mentioned
before, skill graphs allow us to functionally decompose behaviors into modules and model their de-
pendencies, and hybrid programs allow us to prove the behavior of cyber-physical systems compo-
sitionally. Within this research question, we address Challenge 1 and Challenge 2, and investigate
the natural thought whether a combination in form of a formal framework is promising for max-
imizing reuse of already developed functions and past verification results.

Research Question RQ2 - Architectural Refinement and Simulation. How can we leverage correct-by-
construction component-based design to derive formally correct virtual prototypes amenable to simulation?
To simulate skill graphs, they must be transformed into executable code. Refining skills graphs
to component-based architectures is a natural follow-up, as the goal of component-based develop-
ment is also functional decomposition and reuse. Although the implementation for specific com-
ponents can be generated automatically while retaining correctness, others need to be developed



1.3. APPROACH 7

Requirements

? N [Formal verification model] _produces )
.

® (e.g., hybrid system)

Correctness

(Modeler) Proofs

Software concretization > Deductive
Verification

Modification

> @ Development model

Tq-_ —» | (e.g., component-based) | _Produces,
Correctness

Parts generated,
Proofs

(Developer)
parts manually implemented

S
N

0
improvment E Deployment
' Virtual

\
. input Data/ Validation
—‘ ® Virtual Prototype ’<--'5"3L1-- Scomt

S

Figure 1.2.: Schematic overview of an iterative development life cycle with emphasis on deductive verification

and virtual validation.

from scratch. Within this research question, we address Challenge 2 and Challenge 3, and investi-
gate how we can apply the correctness-by-construction paradigm [Kourie et al. 2012] to derive cor-
rect components systematically without introducing new defects.

Research Question RQ3 — Mainstreaming Deductive Verification. In what ways can we support devel-
opers to decrease interaction and improve the quality of their deductive verification projects? Although our
focus is on the maneuver-centric verification of cyber-physical systems, there may still exist unver-
ified software parts that can lead to missing bugs and malfunctions. Consequently, a lot of pres-
sure is put on the testing phase after integration (e.g., as suggested by the V model). Ideally, these
parts become subject to verification themselves. Our vision is to bring deductive verification into
mainstream software development processes. This research question addresses Challenge 4. Al-
though numerous challenges still exist [Hihnle et al. 2017; Hihnle et al. 2019], we investigate two
challenges that we identified as being of paramount importance, namely (a) assessing the precision
of formal specifications and (b) increasing automation of configurable deductive verifiers.

1.3. Approach

Before we give a more detailed overview of the overall approach and contributions of this thesis,
we exemplify our vision for a formal development process emphasizing the application of deduc-
tive verification in Figure 1.2. In order to reduce testing effort in the final system, the goal is to
apply appropriate means for quality assurance at each development step to quickly handle defects,
but eventually to finish the step with correctness proofs by employing deductive program veri-
fiers. These proofs then certify that the current model conforms to the given requirements. Af-
ter establishing correctness of the behavioral model (i.e., the maneuver) in step @, it is also nec-
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essary to focus on verification of the executed implementation in step @. Ideally, each part that
is developed manually should be formally verified to mitigate any potential risk of introduced
defects or malfunctioning behavior. However, in contrast to the success stories mentioned in
the previous section, the integration of formal verification into software development processes is
still in its infancy, as it requires high expertise.

As motivated in the previous section, our long-term vision is to allow the virtual prototyping of
new and provably correct maneuvers for a variety of cyber-physical systems, and to ease the appli-
cation of deductive verification in general to support developers and practitioners at all skill lev-
els. Based on the three research questions raised above, this thesis results in four major contribu-
tions, each being a stepping stone towards this vision. In Figure 1.3, we show the detailed overview
of our approach consisting of the modeling phase, architectural phase, and implementation phase.
The numbers @—3) correspond to the research questions RQ1-RQ3 of the previous section. In the
following, we give a brief description of each contribution.

Contribution 1: Maneuver Modeling and Verification. Addressing RQ1, we propose a mathemati-
cal contract-based framework called SKEDITOR for modeling maneuvers of cyber-physical systems
and for verifying their safety. Our formalism is based on the notion of skill graphs for modeling
and hybrid programs for deductive verification. In particular, we are the first to give a rigorous for-
malization of skill graphs and present the first tool support for modeling them. We propose hybrid
mode automata as a formalism to develop skills in isolation, which gives us the properties needed
to reduce modeling and verification effort. Based on hybrid mode automata, our framework em-
phasizes reuse and automatic composition of already modeled behavior, such that costly re-verification
can be prevented. By means of a case study in the automotive domain, we discuss the feasibility of
our framework and evaluate to what extent we are able to reduce re-verification.

Contribution 2: Correct-by-Construction Architecture. Addressing RQ2, we present ARCHICORC, a
framework that guides the refinement of skill graphs to component-based architectures. While
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parts can be generated automatically, safe component behavior of manually developed parts is guar-
anteed by following the correctness-by-construction paradigm. This way, the implemented architec-
ture is also correct-by-construction. ARcHICORC interfaces with visual simulation environments,
which allows to validate the initial model requirements. In our evaluation on four non-trivial case
studies, we observed that all safety guarantees transferred to the simulated execution model.

Contribution 3: Mutation Analysis for Software Contracts. Addressing RQ3, we discuss how com-
pleteness of contract-based specifications (i.e., preconditions and postconditions) can be assessed
with mutation analysis, whereas our discussion is based on the specification language JML and the
program verifier KEY. We propose a taxonomy of causes for incomplete contracts and propose mu-
tation operators for specification and implementation to identify such causes automatically. By
means of open-source JML projects, we evaluate the effectiveness of such an approach.

Contribution 4: Understanding Parameters of Configurable Program Verifiers. Again, addressing
RQ3, we propose a technique to increase the performance and effectiveness of configurable pro-
gram verifiers by examining the influence of control parameters on the automatic proof search.
Our framework, GuiDo, is based on explicit domain knowledge provided by experts that cap-
tures assumptions about how control parameters may impact proof search. This formalization
of knowledge allows to test assumptions for their validity and to remove false assumptions. In
our evaluation, we observed that the one-time effort of formulating the domain knowledge is
justified by a significant increase in effectiveness.

1.4. Reader’s Guide

The order of main chapters follows the order of our four contributions from the previous sec-
tion. We briefly summarize the four main chapters.

Chapter 3 — A Formal Foundation for Skill Graphs: In this first main chapter, we develop a formal
concept for specifying and verifying skill graphs based on hybrid mode automata and hybrid
programs. All our considerations are implemented in the open-source tool SKEDITOR.

Chapter 4 — Virtual Prototyping of Skill-Graph Maneuvers: In the second main chapter, we describe
how skill graphs are translated to correct-by-construction component-based architectures
based on our framework ARcHICORC.

Chapter 5 — A Study on Mutation Analysis for Software Contracts: In the third main chapter, we em-
pirically investigate the effectiveness of a mutation analysis applied on contract-based soft-
ware.

Chapter 6 — Guipo: Guiding Developers in Configuring Deductive Program Verifiers: In the final
main chapter, we introduce our tool chain Guipo for understanding the influence of control
parameters, and for automating parameter tuning in the context of formal verification tools.

Besides these four main chapters, we introduce necessary background in Chapter 2. Finally, we
conclude this thesis and discuss future work in Chapter 7.






2. Background

The goal of this chapter is to briefly introduce the key topics of this thesis. In Section 2.1, we
introduce contracts and deductive verification as an abstract means to specify and verify behavior of
programs. In Section 2.2, we summarize state of the art on hybrid systems modeling and ver-
ification and give a brief overview of hybrid programs and differential dynamic logic (dL£). Finally,
in Section 2.3, we present mathematical preliminaries for assume-guarantee reasoning, which we
rely on throughout the first half of this thesis.

2.1. Software Contracts and Contract-based Verification

In this thesis, we primarily focus on deductive reasoning techniques to reason about the correctness
of program properties, which can be described by means of contracts. In Section 2.1.1, we motivate
the application of design-by-contract by means of an example. In Section 2.1.2, we characterize the
two most prominent approaches for contract-based program verification, namely theorem proving
and model checking. Finally, in Section 2.1.3, we introduce the correctness-by-construction paradigm as
an alternative to the former two post-hoc verification approaches.

2.1.1. Software Contracts

Long before personal computers became mass-market consumer products, checking the correctness
of programs was already on the radar of many pioneers in the field of computer science. According
to C. A. R. Hoare [1981], none other than Alan Turing — back in 1949 — advocated for using assertions
(i-e., logical statements that can proved correct at different locations in a program) to check consis-
tency of program and specification.! To follow up on this journey, C. A. R. Hoare [1969] introduced
a formal reasoning system, called Hoare logic, and a new mathematical notation {P}S{Q}, called
Hoare triple. Hoare triples can be interpreted as follows: given a program S, if assertion P is true be-
fore S is initiated, then assertion Q will be true after S is completed. Nowadays, the terms precondition and
postcondition are commonly used for assertions P and Q, respectively.

The term contract [Liskov et al. 1986] was initially introduced to refer to pairs of preconditions and
postconditions. The design-by-contract paradigm [Meyer 1992] generalizes assertions and has proved
fruitful in the realm of object-oriented programming. Design by contract was first introduced for
the programming language Eiffel, where contracts decorate methods of object-oriented code with a
precondition and a postcondition. Moreover, advanced syntactic sugar was introduced to reduce speci-
fication effort, such as class invariants or framing conditions [Hatcliff et al. 2012]. In alignment with the
assertional method, preconditions describe what the corresponding method can assume about the

n his lecture “Checking a Large Routine” in 1949, Turing made the following comment: “How can one check a large routine
in the sense of making sure that it’s right? In order that the man who checks may not have too difficult a task, the programmer
should make a number of definite assertions which can be checked individually, and from which the correctness of the whole program
easily follows” [C. A. R. Hoare 1981].
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current state and must be provided by callers. Postconditions describe how the state then changes
after executing the method. Class invariants are statements that must always be satisfied during any
execution and framing conditions allow to define, which fields a method is allowed to modify.

Contracts formally document the implicit assumptions of programmers explicitly. Depend-
ing on the programming language, there exist numerous specification languages with support for
contracts. Examples include the aforementioned programming language Eiffel [Meyer 1988] with
its inherent support for contracts, SPEc# [Barnett et al. 2011] for C# programs, and the Java Mod-
eling Language (JML) [Leavens et al. 2006], which is a contract-supporting extension of Java. In
the second half of this thesis, we mainly focus on JML. The reason is that Java is one of the most
widespread object-oriented programming languages and widely applied in research and industry.
Moreover, JML is a mature specification language with a large following.

1 class Account {

2 public final static int DAILY_ LIMIT = 1000;
3 //@ invariant balance >= 0 && withdraw >= 0;
4+ public int balance;

s public int withdraw;

7 /*@ requires withdraw < DAILY LIMIT && amount != 0;

8 @ ensures (\result == \old(withdraw) - amount <= DAILY LIMIT)
9 @ && (\result ==> withdraw == \old (withdraw) - amount)
10 @ && (\result ==> balance == \old (balance) + amount)

11 @ assignable withdraw, balance;

12 @x/

13 public boolean update (int amount) {

14 if (amount < 0) {

15 if (withdraw - amount > DAILY_ LIMIT)

16 return false;

17 withdraw —-= amount;

18 }

19 balance += amount;

20 return true;

21 }

2}

Listing 2.1: An Account implementation with contracts in JML.

Example 2.1. In Listing 2.1, we give an example of a method contract written in JML. Class Account stores
two fields, namely the current balance and the amount of daily withdrawn money. By calling method update,
a user is able to deposit or withdraw money. Preconditions in JML are denoted by the keyword requires, which
assumes that method update is only called when the daily withdrawal limit is not yet reached and that the value
of argument amount is non-zero. Postconditions in JML are denoted by the keyword ensures. In this example,
the postcondition guarantees that both fields balance and withdraw are updated according to the provided
amount if the daily withdrawal limit is not surpassed. Keyword \old in a postcondition refers to the state of the
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expression prior to method execution and keyword \result represents the return value. As illustrated in Line 3,
an invariant is defined to prohibit that none of the two fields become negative. Moreover, assignable denotes the
framing clause [Hatcliff et al. 2012], which is a set of locations (i.e., fields) that the method is allowed to modify.

Besides class invariants, the second kind of invariant are loop invariants [C. Hoare 1972]. Loop
invariants are assertions that are assumed to hold before and after executing the loop. They are
often necessary to show termination of while- or for-loops (i.e., their primary focus is to aid
verification). To check that a loop invariant is a correct abstraction of a loop, one has to show that
three conditions hold. First, the loop invariant must hold before initiating the loop. Second, it must
hold throughout an iteration. Third, it must terminate in a sensible way, which can be achieved
by defining a loop variant (or bound function) [Winskel 1993] that monotonically decreases with
respect to the loop invariant until a value of zero is reached.

2.1.2. Contract-based Verification

In the previous section, we explained how to specify the intended behavior of object-oriented code
with software contracts. To verify that method implementations conform to their method con-
tracts, the two most prominent approaches are theorem proving [Schumann 2001] and model check-
ing [Clarke et al. 2018].? In the following, we give a brief characterization of these two approaches
and how they can be used for contract-based verification.

Theorem Proving

Theorem proving is a deductive technique for proving the validity of logical formulas. Proofs are
carried out in a mathematical style by applying inference rules to formulas in a logic calcu-
lus [Chang et al. 2014; Schumann 2001]. For program verification, a theorem prover first translates tar-
get programs to logical formulas and postulates theorems about their correctness. Theorem provers
then assist programmers with proving these theorems either interactively or automatically, which
eventually results in a machine-checkable proof. Interactive theorem provers?, such as CoQ [Coq De-
velopment Team. The Coq proof assistant, 1989-2021], AGDA [Agda Development Team. The Agda wiki, 2007-
2021], LEAN [Moura et al. 2015), and IsaBELLE/HOL [Nipkow et al. 2002], embed a tactics language rep-
resenting the inference rules to carry out proofs manually.* In contrast, automatic theorem provers,
such as VAMPIRE [Kovics et al. 2013] and SPASS [Weidenbach et al. 2009], try to synthesize complete
proofs (i.e., sequences of inference rules) automatically by employing a proof-search mechanism.
Theorem proving comes with high expressiveness and generality. Automated theorem provers
are often restricted to less expressive logic, such as first-order logic, whereas interactive theorem
provers focus on higher-order logic. In general, theorem provers allow to encode and prove prop-

2Besides theorem proving and model checking, program analysis (e.g., different kinds of dataflow anaylses and abstract
interpretation) is the third prominent category of verification techniques, as acknowledged by the research commu-
nity [Clarke et al. 2018]. However, not much emphasis has been put on program analysis and contract-based verifica-
tion in concert.

3Interactive theorem provers are also commonly just referred to as proof assistants.

4To ease the burden of manually proving every little detail, many modern interactive theorem provers provide means
for carrying out simple pieces of a proof automatically (so-called hammers). For instance, CoqQ provides the auto and
eauto tactics.
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erties about most problems that arise in the context of verification, including compiler optimiza-
tion [Leroy 2009; R. Kumar et al. 2014] and contract-based verification of real-world programming
languages [De Gouw et al. 2015; De Gouw et al. 2019]. In this thesis, we mainly focus on contract-
based program verification, where theorem provers allow to encode semantics of the programming
and contracting language precisely (i.e., without the need for abstraction). Deductive program veri-
fiers take a program P and a contract comprising precondition ¢ and postcondition ¢ as input, and
try to solve the following simplified verification problem: if we start in a state that satisfies ¢ and we ex-
ecute P, do we end in a state that satisfies 1y? Prominent automated program verifiers with large com-
munities include KeY [Ahrendt et al. 20106] for Java/JML, FrRama-C [Cuoq et al. 2012] for C/ACSL,
and VIPER [P. Miiller et al. 2016] for numerous front-ends and its own intermediate language.

Proofs are produced following a proof calculus, which includes (1) the logical language (e.g,
propositional logic or first-order logic), (2) inference rules to prove theorems, and (3) axioms that
are assumed to be valid [Wasilewska et al. 2018]. Prominent proof calculi include Hilbert Sys-
tems [Hilbert et al. 1999], natural deduction by Gentzen [1935a], and sequent calculus also by Gentzen
[1935b]. Sequent calculi are very well studied and integrated into most program verifiers today,
as they have practical and theoretical advantages over other calculi; they rely only on very few
axioms and provide a rich set of interference rules. In this direction, a sequent is of the form
I' F A, where I and A are sets of formulas. The semantics of I' = A is equivalent to the state-
ment that formula Ager — Vyep is a tautology (i.e., always evaluates to true). Reasoning is based
on proof rules that symbolically define which conclusion can be drawn from which premises. In prac-
tice, the goal is typically to start with the conclusion (i.e., the theorem that we want to prove) and
to try to find matching premises that are trivially valid.

Example 2.2. We give an example of a general proof rule of some sequent calculus. We consider the famous
cut rule, which is a generalization of the classical modus ponents and subject of the cut-elimination theo-
rem [Gentzen 1964]:

TH¢,A  T,pkA
r'-A
The premises (i.e., sequents above the line) comprise two formulasT = ¢, A and I, ¢ = A, which we assume

(Cut)

are tautologies. Then we can draw the conclusion (i.e., sequent below the line) that formula I = A is also a
tautology. Using symbols I' and A as placeholders for arbitrary sets of formulas shows the practical power of
the sequent calculus, as it allows to write up a set of such rules concisely and instantiate them in a variety of
scenarios as needed.

In practice, theorem provers work with proof scripts that users can inspect manually, but also
serve as certificates of correctness. This enables advanced techniques that aim to scale theorem proving
to large programs by treating proof'scripts as programming artifacts. Such techniques include proof
reuse [Beckert et al. 2004; Bubel et al. 2016] and proof repair [Ringer et al. 2018]. One of the biggest
disadvantages is the needed experience and expertise in proof theory to employ theorem provers
effectively, even for automated program verifiers [Kniippel et al. 2018a.

Model Checking

Model checking is a fully-automatic and algorithmic formal verification technique that was proposed
independently by Clarke et al. [1981] and Queille et al. [1982] in the early 1980’s. Although writing
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specifications and employing deductive verification in the style of Hoare was highly appreciated in
the eyes of the research community, model checking proved to be most eftective in practice for find-
ing programming defects due to its emphasis on automation. Essentially, the verification problem
reduces to the question: given a formal model M and a logical property ¢, does model M satisfy property ¢?
Model checking answers this question by an exhaustive, yet sophisticated, search procedure. Formal
models are often represented by finite automata or — in case of software model checking [Clarke et al.
2018] — by software applications. Logical properties are typically written in some temporal logic
(e.g., LTL [Pnueli 1977] or CTL [Clarke et al. 1981]), which extends first-order propositional logic by
operators that state propositions about time (e.g., that something will eventually happen).

There exist a plethora of model checkers nowadays. All have in common that they operate
on a particular formal model, as formulated by the verification problem above. For software
model checkers, the formal model is often represented by a control flow graph and directly ex-
tracted from the input source program. Examples of software model checkers include Java
PATHFINDER [Havelund et al. 2000] for Java programs and CPACHECKER [Beyer et al. 2011] for
C programs. Other model checkers operate on dedicated input languages, such as SPIN [Holz-
mann 1997| operates on PROMELA or NUSMV [Cimatti et al. 1999] operates on the SMV input lan-
guage. For software model checkers, contracts can be transformed into run-time assertions [Hat-
cliff et al. 2012], which themselves represent the formal properties that have to be satisfied by
the program’s execution at explicit locations.’

In contrast to theorem proving, most model checkers produce counterexamples in case of unsatis-
fied properties, thereby supporting developers with explanations for the property violations. This
contributes to their wide acceptance in practice during development, where debugging is often very
time-consuming. However, as model checking is an automatic and exhaustive search for the viola-
tion of logical properties, it is confronted with two major challenges. First, the resources needed
for a model-checking task may grow exponentially, such that a model checker may eventually run
out of time or memory, which is known as the state space explosion problem [Clarke et al. 2018]. Sec-
ond, the undecidability theorem [Turing 1937] rules out the existence of a general sound and com-
plete algorithmic solution for any turing-complete language. To overcome both limitations, soft-
ware model checkers® rely heavily on abstractions for unbound data structures and language con-
structs, as well as heuristics, which trade precision for decidability and efficiency. In contrast to
symbolic model checkers that rely on BDD-techniques, bounded model checking is based on SAT solv-
ing, and has shown to be more effective and efficient in many experiments that were not solvable
with conventional model checking [Biere et al. 1999; Biere et al. 2003]. The automatic proof search
is typically tuned by predefined configurations [Beyer et al. 2011].

2.1.3. Correctness-by-Construction

In Section 2.1.2, we introduced theorem proving and model checking as means to verify contract-
based software. These approaches can be classified as post-hoc verification approaches in the sense

>Generating run-time assertions from contracts is often performed in the context of test-case generation, where con-
tracts serve as test oracles [Hatcliff et al. 2012].

6Nowadays, the term software model checker is rather misleading, as modern tools are really a culmination of numerous
algorithms from three distinct lines of research, namely theorem proving (e.g., SAT and SMT solving), classical model
checking, and dataflow analysis.
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that the program including the contracts have to be fully written before starting the verification
process. Alternatively, correctness-by-Construction [Morgan 1994; Dijkstra 1972; Kourie et al. 2012] is a
paradigm to derive formally correct programs incrementally starting with a specification. Thatis, cor-
rectness of the program is ensured simultaneously to writing the program. Specifications are again
Hoare triples [C. A. R. Hoare 1969] written as {¢}P{y}, where precondition ¢ defines the initial
state, postcondition ¢ asserts the final state, and P is an abstract statement that is concretized dur-
ing program construction by applying sound refinement rules. That is, an allowed rule application
leads to a primed Hoare triple {¢ } P’{y}, which is a refined (i.e., more concrete) version of {¢} P{¢}
and therefore conforms to the same specification. Eventually, all abstract statements are replaced by
concrete program statements and the derived program is guaranteed to be correct by construction.

Recently, CorC [Runge et al. 2019a] has been proposed, which is a graphical and textual devel-
opment environment for creating programs following the correctness-by-construction approach.
Specifications are written in first-order logic similar to JML (i.e., following the design-by-contract
methodology [Meyer 1992]), and programs are written in an adapted version of the guarded com-
mand language [Dijkstra 1975]. Incremental derivation of concrete programs from abstract state-
ments is accomplished by the already mentioned refinement rules. The six core refinement rules
currently supported by the CorC language are defined as follows.

Definition 2.1: Core Refinement Rules for the Correctness-by-Construction Approach

Let ¢ and 1 be the precondition and postcondition for a program, respectively, and let P be
an abstract statement. Then, the Hoare triple {¢} P{} is refinable to

m Skip: {¢}skip{y} iff ¢ implies
m Assignment: {¢}x:= E{¢} iff ¢ implies [x := E]

m Composition: {¢}P;; P{¢} iff intermediate condition M exists such that {¢}P;{M}
and {M}P>{y} hold

m Selection: {¢}if G; = P elseif ... G, = P, fi{y} iff ¢ implies G; V ---V G, and
Vi=1...n:{¢ AG;}P{y} holds

m Repetition: {¢}do [[,V]| G = P od{y} iff ¢ implies I and I A =G implies ¢ and {I A
G}P{I} holdsand {INGAV = V}P{IAN0O <V < Vp} holds

m Method Call: {¢}m(ay,...,a,) = r{¢} iff method {¢'}m(a},...,a}) = r'{¢'} exists
and ¢ implies ¢’ [a} \ a1] and ¢’ [old(a}) \ old(a;),r" \ ] implies

[Runge et al. 2019a]

For the composition rule and the repetition rule, additional manually written specification is typ-
ically required. For the composition rule, an intermediate condition M has to be provided, which
evaluates to true after P; is executed and needs to be strong enough to serve as the precondition
for P». For the repetition rule, a loop invariant [ and a variant V have to be provided. To show ter-
mination, the evolution of variant V needs to be strictly monotonically decreasing with each exe-
cution of P until a lower bound of zero is reached (cf. Section 2.1.1 on loop invariants). The method
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Figure 2.1.: Exemplified CorC implementation of the update method of class Account.

call rule omits side effects (i.e., call by value) and is applicable iff the callee’s specification com-
plies with the respective statement’s specification.

Extending the purely imperative guarded command language, the CorC language introduces a
simple object model similar to the one used in ABS [Johnsen et al. 2010]. That is, there exists no in-
heritance and no subtyping. Moreover, each CorC program is part of'an object definition by exhibit-
ing a method as declared in classical object-oriented languages (e.g, JavA). In particular, all refer-
enced variables in a program are labeled as either argument, return value, or local variable. We complete
this section with an example of a CorC diagram (i.e., a visual representation of a CorC program).

Example 2.3. In Figure 2.1, we give an example CorC diagram for the updat e-method introduced in List-
ing 2.1. Abstract statement P represents the method itself and is specified with precondition ¢ and postcondition
. To reduce P to a correct-by-construction implementation, the refinement rules presented in Definition 2.1 are
continuously applied until no more abstract statements remain. That is, each leaf node in a complete CorC di-
agram must end with either an assignment, method call, or skip statement. The circled numbers represent the
evaluation order, which is identical to the sequential order of statements given in Listing 2.1. Compared to the
design-by-contract paradigm, the difficulty and overhead is in specifying the intermediate conditions (i.e., M;
and M in this example). In contrast, blame assignment and debugging become much more precise in practice.

2.2. Hybrid Systems Modeling and Verification

To formally reason about cyber-physical systems, they are often mathematically modeled by hybrid
systems [Branicky 2005; Henzinger 2000; Alur 2011}, which mix discrete and continuous behavior
in a single formalism and abstract away from unnecessary details. Modeling approaches include
hybrid automata [Alur et al. 1995] and hybrid programs [Platzer 2018]. The following example gives
an intuition of the key aspects of hybrid systems.
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|x — x| > D

|x—x| =D

|x — x| <D

Figure 2.2.: Simplified hybrid system of a vehicle with automatic headway control (adopted from [Kniip-
pel et al. 2020a)).

Example 2.4. In Figure 2.2, we give an example of a simplified hybrid automaton representing an automatic
headway control with three possible states, namely Cruise, Accel, and Brake. Variables x and x; define the
current position on a straight line of both the host vehicle and the leading vehicle, and constant D represents
the ideal distance between them. Moreover, variables v, a, and b define the current velocity, acceleration, and
braking force, respectively. The host vehicle is in cruise mode when the distance to the leading vehicle is equal to
distance D, which also means that acceleration a is set to zero (i.e., resulting in constant speed). In each control
cycle, the current state evolves by applying the respective differential equations and is then evaluated, such that
the automaton may transition into a different state. That is, if the leading vehicle increases or decreases the
distance, the automaton switches to either state Accel or state Brake. The condition v > 0 in state Brake ensures
that velocity v will not be allowed to become negative. To summarize, the headway control ensures that the
distance between both vehicles remains approximately equal to D.

In this thesis, we focus on hybrid programs as the modeling approach for cyber-physical systems,
which are closely related to hybrid automata. In Section 2.2.1, we give a brief introduction to the
syntax and semantics of hybrid programs. In Section 2.2.2, we describe the ingredients of differential
dynamic logic, which enables contract-based deductive reasoning about hybrid programs.

2.2.1. Hybrid Programs

Hybrid programs [Platzer 2008; Platzer 2010; Platzer 2012; Platzer 2018] are an imperative-like pro-
gram notation for modeling hybrid systems. As their purpose is to focus on deductive verification of
cyber-physical systems, they extend nondeterministic programming languages [Dijkstra 1975; Floyd
1967] — who share the same purpose of verification for classical algorithms — with differential equa-
tions. That is, the classical programming constructs (i.e., sequential composition, assignment, nonde-
terministic choice, selection, repeat, skip, and abort) in a hybrid program represent the algorithmic be-
havior of a software controller, whereas the formulated system of differential equations describes the
continuous physical evolution of specific variables in time. Nondeterminism plays an important
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role when verifying such programs, as it allows to concisely describe a family of controllers differ-
ing in their initial and final state, rather than having one program for every imaginable pair of ini-
tial and final state. In the following, we first describe the syntax and semantics of terms and first-
order formulas and afterwards the syntax and semantics of hybrid programs.

Terms and First-Order Formulas

Hybrid programs are primarily concerned with real-valued arithmetic. To provide a rigor-
ous definition of their syntax, we first define how expressions are represented in hybrid pro-
grams, which we refer to as terms in the remainder of this thesis. The following definition
expresses the minimal core of such terms.

Definition 2.2: Syntax of Terms

A term is defined by the following grammar, where 6, 6, are terms, x is a real-valued variable,
and c is a rational number constant:

01,0 :::x]c]91+92]91*92

[Platzer 2018]

According to Definition 2.2, a term is either a real-valued variable x, a rational constantc € Q, a
sum of terms, or a product of terms, where the latter two are defined recursively. Examples for terms
arex+lorxx*y+ % Further useful cases, such as subtraction (i.e., 61 — 6,) and division (i.e., 01 /6;)
are already included and can be defined in this minimal grammar (e.g,, 61 — 62 = 61 + (—1) % 62).

Besides terms, hybrid programs also make use of formulas of first-order logic in combination
with real-valued arithmetic. Such formulas are defined as usual and support unary and binary log-
ical connectives, such as not (=), and (A), or (V), implication (—), and bi-implication (). Additionally,
quantifiers for all (V) and exists (3) (quantifying over R) are supported, as well as specific relational
operators of real arithmetic for terms, such as greater-equal (>) and equal (=). The following defini-
tion gives a concise summary of the first-order logic used in this thesis.

Definition 2.3: Syntax of First-Order Logic of Real Arithmetic

A formula of first-order logic of real arithmetic is defined by the following grammar, where
P, Q are formulas, 0, 0, are terms, and x is a real-valued variable:

P,Qu=0,>0,|6,=0,|-P|PAQ|PVQ|P— Q|P+ Q|Vx.P|3x.P

[Platzer 2018]

Reduction of terms and interpretation of first-order real arithmetic as used in this thesis is
as usual. For instance, formula v > 0 is true for all values of variable v that are greater or equal
to zero, and false otherwise. The formula Jv(# < v Av < u+ 1) is valid, as we only con-
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sider real-valued variables. For integer variables, the same statement would be false, as values
between u and u + 1 cannot be considered.”

Syntax of Hybrid Programs
In Definition 2.4, we give a definition of the EBNF grammar of hybrid programs.

Definition 2.4: Hybrid Programs

The syntax of hybrid programs is defined by the following grammar, where « and B are
hybrid programs, x is a real-valued variable, 6 is a term, H is a first-order logical formula in
real arithmetic, and x" = f(x) is a differential equation:

a,Bu=w;BlaUp|a*|x:=0|x:=x|x' = f(x)&H|?H
We denote the universe of all hybrid programs by HP.

[Platzer 2018]

As mentioned before and visible in Definition 2.4, hybrid programs unify classical constructs of
nondeterministic programming with differential equations in one programming model to repre-
sent hybrid systems. In the following, we briefly describe the meaning of these constructs in more
detail.

Sequential composition «; B. Analogous to classical programming, the sequential composition starts
with the execution of program « and — after successful termination — continues with the exe-
cution of program p.

Nondeterministic choice &« U 8. The nondeterministic choice provides a behavioral alternative by ran-
domly choosing either to follow the execution of program « or the execution of program p.

Nondeterministic repetition a*. The nondeterministic repetition expresses that program « is executed
an indefinite number of times (including zero times).

Discrete assignment x := 0. The discrete assignment evaluates term 6 and instantaneously changes
the value of variable x to the result.

Nondeterministic assignment x := . The nondeterministic (discrete) assignment chooses an arbitrary
real value and assigns it to variable x.

Dynamic system {x] = 601,...,x,, = 6, & H}. The system of differential equations expresses a con-
tinuous differential evolution of the respective variables x; given by the expressions 6;. The
evolution is performed nondeterministically for any amount of time but restricted to the evo-
lution domain of H. That is, as soon as condition H evaluates to false in the current state, the
continuous evolution terminates. If no evolution domain condition is explicitly provided, H
defaults implicitly to true.

7We refer to the second chapter of “Logical Foundations of Cyber-Physical Systems” by Platzer [2018] for more information
on the semantics of first-order real arithmetic.
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Test condition ?H. A test condition defines a checkable condition that evaluates to either true or false,
and may abort the execution of the current hybrid program. That is, if test ? H evaluates to true
(i-e., succeeds)in the current state, no operation is performed (i.e., similar to a skip statement
in classical programming). If test ?H evaluates to false (i.e., fails) in the current state, the
current run of the hybrid program is discarded without any change to the current state.®

1 {

2 {

3 ?(dist (x,x;) = D); = 0; /* Cruise */

4 U 2?2 (dist (x,x) > D); a := A; /* Accelerate with force A */
5 U ?(dist (x,x) < D); a := -B; /* Brake with force B */
6 }

7 /* Reset clock timer */

8 t = 0;

9 /* Dynamic System */

0 { x'" = v, v/ = a, t/@ =1 & t < ep & v =2 0 }

1 }* /* Repeat arbitrarily often */

Listing 2.2: Hybrid program of the automatic headway control.

Example 2.5. In Listing 2.2, we give an example hybrid program with concrete syntax of the automatic head-
way control illustrated in Figure 2.2. In each control cycle, the host vehicle chooses a new acceleration a €
{A, —B,0}, depending on the current distance to the leading vehicle (i.e., represented by the non-deterministic
choices and test conditions in Line 3-Line 5). We introduce the helper function symbol dist : R x R — R for
computing a comparable distance between the host and leading vehicle (e.g., possibly including model-specific
properties, such as the vehicle’s length). A simple version is represented by the absolute difference dist(x, x;) =
|x — x;|. In Line 8, we introduce a clock variable to restrict the continuous evolution of the differential equa-
tions to at most ep time units (see evolution domain constraint in Line 10), where ep can be imagined as the
clock period.

Semantics of Hybrid Programs

To rigorously define the semantics of hybrid programs, we first introduce some necessary mathe-
matical notations as used in related work on hybrid programs. The semantics is based on a transi-
tion relation between states. We denote by X the set of states. An element of X is a state o € X, which
is defined as a function ¢ : V — R, where set V denotes the set of variables (e.g., x € V iff variable
x exists). That is, state o assigns a real (possibly symbolic) value to each variable in V (e.g, o(x) =r
with r € R). The value of term 6 as evaluated in state ¢ is denoted by [f],. Moreover, we write
0 = H to express that formula H is valid in state ¢, and we write ¢ |= x’ = f(x) & H to express that
the flow 7y (i.e., a timed sequence of states), which depends on the differential equation x’ = f(x), is
always contained within region H. The semantics of a hybrid program « € HP is then represented
as a binary transition relation [a]up C X x X that specifies which state ¢ € X can be reached from
a state ¢ € X. Formally, the transition semantics is given by Definition 2.5.

8The test condition ?H is syntactic sugar for if H then skip else abort fi, where skip has no effect and abort
discards the current run.
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Definition 2.5: Semantics of Hybrid Programs

The semantics of a hybrid program « € HP leads to the following denotational definition
of the transition relation [a]up C X X X, where o, 0’ represent the initial and final state,
respectively:

m (0,0') € [x :=0]nwpiff e’ (x) = [0], and Vy € V with x # yitfollows thato(x) = ¢/ (y)
m (0,0') € [x := *]pp iff Vy € V with x # y it follows that 0 (y) = o’/ (y)

m (0,0') € [?H]wp iff o = ¢’ and the assignment of variables in state ¢ satisfies formula
H (i.e, o = H)

m (0,0') € [x' = f(x)&H]pp iff v : [0,7] — X is a solution with 7(0) = ¢, y(r) = ¢,
and each state in between (0) and <y (7) satisfies formula H with respect to differential
equation x" = f(x) (ie., v = ' = f(x) & H)

= [aUBlne = [a]re U [BlHe
m [a; Blue = {(o, )| (0, 0im) € [«]up, (Tim, ") € [Blup} with intermediate state o7,
m [a*]np = [a]}p (i-e., the transitive, reflexive closure of [a]p)

[Platzer 2018]

The semantics of the differential system (fourth item) is particularly interesting, as it further
highlights the nondeterministic nature of hybrid programs. Imagine, we would omit formula H in
a concrete hybrid program. According to the semantics, any reachable state following the defined
differential equations could be our final state before the next statement of the program is executed
—independent of the time already spent. An evolution domain H further limits the set of reachable
states. This is the exact reason why we modeled a clock period in the form of'an evolution domain in
Example 2.5, where the set of reachable states reduces to zero once the constraint is unsatisfied. The
exact amount of time is still nondeterministic, but we can at least provide a well-defined upper limit.

2.2.2, Differential Dynamic Logic (4 L)

Differential dynamic logic (d L) [Platzer 2008; Platzer 2010; Platzer 2012; Platzer 2018] is a first-order
modal logic for specifying and proving safety properties of hybrid programs. That is, formulas in
dL that do not contain modalities are classical first-order logical formulas with real arithmetic.
Additionally, the modal operators [«] and («) for a hybrid program « express special reachability
properties, which is in accordance with the semantics of hybrid programs that were defined in
terms of a transition relation (i.e., reachability of states; see Definition 2.5). Essentially, d£ formula
[a]¢ is true iff ¢ is true for all reachable states of &, and d £ formula («)¢ is true iff ¢ is true in some
reachable states of . In Definition 2.6, we summarize the grammar of d£ formulas.
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Definition 2.6: Differential Dynamic Logic dL

O J o0 U w N

11
12
13
14

The syntax of differential Dynamic Logic (d£) is defined by the following grammar, where
P, ¢ are dL formulas, 61, 6; are terms, relation ~ € {<, <, >, >, =, #}, x is a variable, and «
is a hybrid program:

Ppu=01~0[-¢loNP|¢VY[Vxp|Ixg|[a]p]|(x)p
We denote the universe of all differential dynamic logic formulas by d L.

[Platzer 2018]

With formulas in dZ, it is now possible to specify preconditions and postconditions for hy-
brid programs in the sense of design-by-contract and Hoare-style deductive reasoning (see Sec-
tion 2.1.2). The following example illustrates this.

Example 2.6. Consider again Listing 2.2, which represents a hybrid program for an automatic headway
control. Surely, our controller should only operate in states that we consider as safe. Consequently, this means
that we need to restrict the set of reachable states to safe states (i.e., states in which specific formulas hold). A
prominent safety goal that we must ensure for the automatic headway control is collision freedom, where we
ensure that the host vehicle does not hit the leading one. This can be expressed in dL as i := x < x;, where x
and x; are the position of the host and leading vehicle, respectively. Moreover, a precondition ¢ ensures that we
restrict the initial states, such that only safe states are reachable. The verification problem for hybrid programs
then becomes: for a hybrid program w, is formula ¢ — [x]|¢ valid (i.e., always true)?’

(A>0 ¢« B>0 ¢ B>A ¢ v>0 & ep>0
& x < x5
§ x+L+D<x) — [{
{
?(dist (x,x;) = D); a := 0; /* Cruise */
U 2?(dist(x,x;) > D); a := A; /* Accelerate with force A */
U ?(dist(x,x;) < D); a := -B; /* Brake with force B */

}

/* Reset clock timer */

t = 0;

/* Dynamical system */

{ ¥¥=v, V=a, ¥=1 ¢ t<ep ¢ v>0 }
}*]/* Repeat arbitrarily often */
(x < x71)

Listing 2.3: Hybrid program of the automatic headway control with a contract specified in d.£.

In Listing 2.3, we extend the previous example with a contract specified in dL. We make a number of
assumptions. At Line 1, we specify bounds for the used constants and variables. At Line 2, we assume that the
host vehicle starts at a position behind the leading vehicle. Finally, at Line 3, we assume that the host vehicle
is at a braking distance that is large enough to avoid collision with the leading vehicle. The safety goal x < x;
stated at Line 14 indeed formalizes this collision freedom between the host and leading vehicle, and must be

guaranteed by any possible execution.

9Although only implicitly given by Definition 2.6, we use implication (—) and equivalence (++) where possible.
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For the sake of completeness, we give a definition of the interpretation of £ formulas in Defini-
tion 2.7.

Definition 2.7: Interpretation of d£ formulas

The semantics (i.e., truth) of a d£ formula in a state o € X is defined as follows, where ¢, ¢ €
dL, « € HP, and we write 0 = ¢ to express that formula ¢ is true in state o:

Lo |: 91 ~ 92 iffﬂ@l ~ 92]](7

o= —¢iffoc = ¢pwithy € £\ [¢]

cE=¢ANYpiff o = ¢ and o = ¢ (analogously for V and or)

o = Vx¢iff o’ |= ¢ for all states o/, where 0’ agrees with ¢ except for the values of x

o = dx¢ iff o’ |= ¢ for some state 0’, where 0’ agrees with ¢ except for the values of x

o = [a]¢iff o’ | ¢ forall o’ with (0, 0") € [a]np

0= (a)¢iff ' |= ¢ for some ¢’ with (0,0") € [a]np

[Platzer 2018]

Free and Bound Variables

To relate the interaction of a hybrid program with its context, we further distinguish between free
and bound variables [Platzer 2017]. Free variables of a hybrid program « are all those variables that
may potentially be read, whereas bound variables are all those that may potentially be written to,
either through assignment (e.g,, x := x) or differential equations (e.g., x" = v). Importantly, variables
can be both bound and free, depending on the content of the program. That is, if there exist an
execution, where a variable x is sometimes written to and sometimes only read, x is both a free
and bound variable. We denote by free(a) and bound(«) the free and bound variables of hybrid
program «, respectively, and by var(a) = free(a) U bound(a) their union. The sets of free and
bound variables can be identified by a static analysis [Platzer 2017].

Example 2.7. Consider the following hybrid program:
a=(a:=0Ua:=xa<A);{x¥ =v,v =a&v >0}

Only {A,v} € free(a) represent the free variables of program «, whereas {a, x’,v,v'} € bound(«) repre-
sent the bound variables. A is only a free variable, as it is only read and never written to in every execution.
Conversely, a is not a free variable, as it is always written to in the controlling part of program « before being
read by the differential equation.

Theorem Prover KEYMAERA X

To prove the validity of d£ formulas deductively, a sound set of axioms and proof rules (i.e., a de-
ductive calculus)is required. The KEYMAERA X theorem prover [Fulton et al. 2015] implements such
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Figure 2.3.: Excerpt of proof rules supported by KEYMAERA X.

a calculus for d£ and is built on top of a small trusted kernel written in SCALA to also increase trust
in the tool support itself. Although KEYMAERA X supports a mixture of interactive and automatic
theorem proving, its focus is on powerful automation and modular proof management.

KEYMAERA X provides a set of proof rules and axioms, which we will make use of in the next
chapter. In Figure 2.3, we present an excerpt of the supported proof rules. The symbols have
the same meaning as used before. Proof rules CER and CEL handle contextual equivalence to ap-
ply the presented axioms for hybrid program transformation. That is, if Q <+ P holds for for-
mulas P and Q, then these rules allow to replace any occurrence of P in any subformula with
formula Q (or vice versa). C(_) is used to represent the current context. Among many more,
rules for solving or abstracting differential equations in a variety of ways are also supported. A
more comprehensive list is given by Platzer [2017].

Event-Triggered versus Time-Triggered Systems

In principle, there exist two design paradigms for modeling controllers in d.£, namely event-triggered
design and time-triggered design [Platzer 2018]. Event-triggered control takes action whenever specific
events occur. For instance, consider a continuous system {v’ = a} with velocity v and acceleration
a > 0, where our safety goal is to respect a specific speed limit v,,,,. To achieve this with event-
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triggered design, this corresponds to adding a specific evolution domain H(v) = v < Uy to
the diftferential equation, resulting in formulas of the form:

¢—[(-..;{Y =a&H(@©)})"](v < Upax)

Based on the semantics of d£, the dynamic system may only run as long as the evolution domain
is not violated, which guarantees the validity of v < v,,,, by design. Such systems are therefore
conceptually simple to model and verify, but are difficult to implement faithfully. For instance,
events do not consider timing constraints imposed on sensing.

In contrast, time-triggered control takes action sporadically after a certain amount of elapsed
time. In dL, this corresponds to adding a logical clock t and a time-bound ¢t < ep as evolution
constraint, where ep is the maximum amount of elapsed time between two sensor measurements.
The previous example can then be rewritten to :

= [(..;t:=0; {0 =a&t<ep})" (v < Vyax)-

Although time-triggered systems are the only real systems that are implementable, sporadic control
based on time is significantly more difficult to model and verify.

2.3. Assume-Guarantee Reasoning

Assume-guarantee reasoning [Henzinger et al. 2001; Frehse et al. 2004] is a technique to decom-
pose the verification task into smaller and better manageable subtasks, and is often mentioned
in the context of component theories to abstract input-output behavior. In general, such ap-
proaches simplify parts of the considered system through abstraction and then show that veri-
fying the simplified parts is enough to proof validity of the original system. Assume-guarantee
contracts [Nuzzo et al. 2018; Nuzzo et al. 2015; Benveniste et al. 2007] combine contract theory and
assume-guarantee reasoning, and generalize software contracts [Meyer 1992| to contracts for sys-
tems design. In Chapter 3, we rely on a notion of assume-guarantee interfaces adopted from De Al-
faro et al. [2005], which we formally introduce in the following.

Assume-Guarantee Interfaces

For the sake of presentation, we assume there exists a finite set of variables V over which we may
define a behavior, and that behaviors can be expressed in terms of variable valuations (i.e., states).
We use 0 : V — U with o € T to represent the state at some point in time, where ¢/ is a typed
domain. For the most part of this chapter, we assume U/ = R, as the focal point of the next chap-
ter will be the deductive verification of the controller logic, where most variables are defined over
R. Then, these valuations follow the same semantics of state valuations of hybrid programs (see
Section 2.2.1). Furthermore, we use symbol 5y as an abstraction for an arbitrary implementation
(i-e., behavior) over variables in V, which we can characterize by its externally observable set of ex-
ecutions. Informally, an execution is a pair of input and output states, such that each output state
is an update of the corresponding input state induced by By.



2.3. ASSUME-GUARANTEE REASONING 27

Definition 2.8: Execution, Implementation, Trace

Let V be a finite set of variables. An execution is a pair (¢'", 7°'!) € ¥ x ¥ ofinput and output
pairs of states. The set of all executions restricted to variables in V is denoted Execsy. An im-
plementation By is a subset of all executions restricted to variables in V, which we denote by
[By] C Execsy. A trace of By, is a countable sequence trace(By) = (of",o?™"), ..., (oi", out)
of executions.

Assume-guarantee contracts bound the exhibited behaviors of an implementation by a set of
executions (called guarantees) for a preselection of executions (called assumptions). The rationale is
the same as for software contracts in general, where assumptions and guarantees are described by
two predicates (i.e., the precondition and postcondition, respectively).

Example 2.8. Consider a postcondition P = {x < u} for a behavior B promising that no execution of
B will include a state pair (0", o°"t), where 0" (x) > u is true, assuming that we start in a state where
precondition {x < u} is already respected. That is, the following condition is assumed to hold:

V{o", o) € [B], 0?(x) < u. (2.)

In the following, we define assume-guarantee interfaces, which simply combine interface theory
with assume-guarantee contracts. That is, we explicitly include sets of input and output variables
to distinguish between them. As a reminder, we write ¢ |= ¢ to express that formula ¢ is valid in
state o when all free variables are replaced by their respective valuation (see Section 2.2.1).

Definition 2.9: Assume-Guarantee Interface

An assume-guarantee interface 7 is a tuple (VI", V°Ut, ¢4, ¢C), where
= V" and V°U are disjoint sets of input and output variables,
m p4 and ¢© are two predicates ranging over V" and V" U V°Ut, respectively.

Furthermore, we define the following two sets of executions induced by ¢ and ¢°C.

m Az C Execsyin yout is a set of executions representing the assumption with
Az = {(™",0°") € Execsyinyou | 0" = 7Y,
m Gz C Execsyin_pou iS a set of executions representing the guarantee with

GI S {(Uin, (TOUt) e Execsvinuvout ’(TOUt ): (PG}

The predicates ¢p* and ¢C are first-order logical formulas over real variables as defined in Def-
inition 2.3. In the following, we briefly define satisfaction, composition, and refinement of assume-
guarantee interfaces, as typical for contract-based theories [Bauer et al. 2012; Westman et al. 2013;
Benveniste et al. 2018].



Satisfaction, Composition, and Refinement

Assume-guarantee interfaces specify the input-output behavior of implementations. As usual, each
input covered by the assumption must lead to a state, where the guarantee holds. Then we say that
the implementation satisfies the assume-guarantee interface. We cover this with the following defi-
nition.

Definition 2.10: Satisfaction of Assume-Guarantee Interfaces

Let Z = (Vin, Vout ¢4 ¢C) be an assume-guarantee interface and By an implementation
over variables in V = V" U V°Ut, B, satisfies Z, written By, |= Z, if

[BvlNAz € Gz.

In the context of dynamic logic, we usually write p** — [By,]¢C with the equivalent meaning.

An important operation on assume-guarantee interfaces is their composition, which is possible if
two assume-guarantee interfaces can be established in parallel. Two assume-guarantee interfaces
are composable — which we refer to as compatible — if (1) their output variables are disjoint (syn-
tax), and (2) if the conjunction of their guarantees may imply the conjunction of their assump-
tions (semantics). We give the following definition.

Definition 2.11: Composition of Assume-Guarantee Interfaces

Let Z and 7’ be two assume-guarantee interfaces. Z and Z’ are said to be compatible iff
veut N y’out = @ and the following formula ¥ is satisfiable:

The composition is defined as:
T || I/ _ <Vin U V/in \ (Vout U VIOUt), Vout U V/OUt, l/J, (PG A ¢/G>

[De Alfaro et al. 2005]

Besides composition, the second important operation is refinement, which allows to substitute
assume-guarantee interfaces. Similar to behavioral subtyping [Liskov et al. 1994], an assume-
guarantee interface can be refined to another assume-guarantee interface if (1) the assumptions
are only weakened, and (2) the guarantees are only strengthened.

Definition 2.12: Refinement of Assume-Guarantee Interfaces

Let Z and 7’ be two assume-guarantee interfaces. Z’ refines Z, written 7' < Z, iff (1) V/" C
Vinand Vout C VUt and (2) ¢ — ¢4 and ¢'¢ — ¢C.

[De Alfaro et al. 2005]




3. A Formal Foundation for
Skill Graphs

This chapter shares material with the FASE20 paper “Skill-based Verification of Cyber-Physical Sys-
tems” [Kniippel et al. 2020a].

In the context of (semi-)automated driving, the ISO 26262 [ISO 26262 2011] standard defines func-
tional safety concepts for road vehicles in general terms for each phase in the development process,
namely (1) the requirements analysis (a.k.a. specification elicitation), (2) design, (3) implementation,
(4) integration, (5) verification, and (6) validation.! Part of the safety life cycle are the item definition
and safety goals. Within the item definition — the very first step in the development process — the
to-be-developed system has to be defined in terms of subsystems, functional dependencies, system
boundaries (e.g., the environment in which the system operates), intended use case, and some more
attributes [ISO 26262 2011]. In a second step, the item definition is then used within a hazard and risk
analysis to identify hazardous events and to derive safety goals that the system has to satisfy in or-
der to prevent such events. As an example, imagine an automated vehicle that enters moving traffic
with a too high steering angle, leading to a high lateral velocity. A hazard and risk analysis may re-
veal that a potential crash with other traffic participants is possible and conclude that a safety goal
limiting the maximum steering angle to a specific degree resolves the issue.

Following the ISO 26262 standard, Reschka et al. [2015] proposed skill graphs in the item defi-
nition as a means to decompose driving tasks (i.e., maneuvers) into functional units called skills.
Nolte et al. [2017] give the following abstract definition of a skill.

Definition 3.1: Skill (Informally)

“A skill describes an activity of a technical system which has to be executed to fulfill the
defined goals of the system”.

[Nolte et al. 2017]

Although first ideas for functional system architectures based on skills are much older [Maurer
2000; Siedersberger 2004], Reschka et al. [2015] were the first to formulate an organization scheme for
them in form of a (skill) graph structure. Similar to ISO 26262, skill graphs were intentionally kept
vague [Reschka et al. 2015] for general applicability and consequently lack a formal description and
semantics. Our goal in this thesis is much more precise: we want to leverage the simple structure
of skill graphs to formally (even deductively) verify their maneuver representations at design time.

IThe ISO 26262 standard itself proposes a development process similar to the classical V-model [Forsberg et al. 1991],
but uses vague terminology for the purpose of generalization.
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As a byproduct, we support the community centered around skill-based modeling by developing a
formal framework and tooling, including a precise formal semantics for skill graphs.

While both concepts — skill graphs and deductive verification of cyber-physical systems — have
gained popularity as research topics in recent years, their combination is not straightforward. One
key question is how to implement skills and skill graphs, such that their specification can be assured;
the ideal set of assumptions will allow enough flexibility, but at the same time prevent many mod-
eling mistakes upfront. Another key question is how to prevent costly re-verification when skills
are reused. We address both questions in this chapter, which is structured as follows. In Section 3.1,
we informally describe the ingredients of skill graphs, derive requirements for their formalization,
and present two examples for skill-based cyber-physical systems, namely a robot in two dimen-
sions and a thermostat system. In Section 3.2, we present a simple programming model for imple-
menting skills and then present the complete formalization of skills and skill graphs in Section 3.3.
In Section 3.4, we demonstrate how the verification problem surrounding skill graphs can be ex-
pressed in differential dynamic logic (L) to verify skill graphs using dL’s proof calculus. We also
address modularity in terms of verifying skills in isolation and only once. We describe our tool sup-
port and evaluate our formalization on a case study in Section 3.5. Finally, we discuss fundamental
choices we made for our proposed approach in Section 3.6, and discuss related work on functional
system architectures, skill graphs, and hybrid system verification in Section 3.7.

3.1. Elements of Skill-Based Modeling

Skills closely follow the control cycle of autonomous cars, as depicted in Figure 1.1. Essentially,
a skill is an abstract description of something that a cyber-physical system is capable of and that
can be executed with well-defined inputs and outputs. Skills can be roughly classified into either
sensing, perception, planning, controlling, or acting. Examples in the context of road vehicles include
hardware actuators, such as the powertrain or brake system, or perception algorithms, such as perceiving
movable objects through sensors. This categorization follows the design principle of separation of
concerns [Parnas 1972; Dijkstra 1976], which prevents modeling mistakes and gives skills well-defined
responsibilities.” Finally, skills can be annotated with safety goals that are elicited by the hazard and
risk analysis. These safety goals are invariant, which means that they must be guaranteed to hold
initially and by any possible trajectory of the represented functionality.

A skill graph is a directed acyclic graph that comprises a set of skills (i.e., nodes) and defines de-
pendencies between them (i.e., edges). Conceptually, skill graphs are used for designing and orga-
nizing maneuvers of a cyber-physical system. They facilitate the modeling of complex maneuvers
built from simpler skills, which interact through explicit interfaces. Moreover, they advocate the
systematic reuse of ready-to-integrate skills for multiple skill graphs, which reduces maintenance
costs and increases software quality in general. Finally, skill graphs are intuitive and therefore ac-
commodate good potential for communicating with stakeholders and non-experts. In Example 3.1,
we first discuss a concrete skill graph before describing some of the key aspects in more detail.

2Separation of concerns is known to have a positive effect on reducing modeling complexity, increasing comprehensi-
bility, and enabling functional reusability, fault localization, and artifact traceability. Besides that, De Win et al. [2002]
have argued that separating concerns plays also a key role for non-functional requirements.
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Figure 3.1.: Excerpt of a skill graph representing a maneuver to keep distance to a leading vehicle. We illus-
trate informal safety goals for the three skills sq, s¢, and s.

Example 3.1. In Figure 3.1, we depict a skill graph representing a driving task, where an unmanned host
vehicle tries to keep a distance of at least 10 m to a leading vehicle. On the top level, skill Keep distance to leading
vehicle (s1) depends on two other skills, namely (1) planning skill Select target object (s2) and (2) action skill
Control longitudinal dynamics (s¢). Whereas perception and planning skills are typically realized by software
algorithms only (e.g., deep learning for detecting an obstacle), actuator-dependent skills (e.g., action skills) also
need to incorporate control theory, as the physical environment has to be taken into account. Skills are annotated
with safety goals (e.g., maximum acceleration or minimum distance to other vehicles). Together with the skill’s
realization and its dependencies to other skills, these requirements express properties that we want to verify at
design time. Successfully verifying all skills in the context of a skill graph ensures that the represented maneuver
complies to the complete set of safety requirements.

As mentioned before, edges represent dependencies between skills. That is, higher-level skills
either depend on information from child skills or can provide input to them. For example, to
perceive movable objects, hardware sensors (e.g., cameras) have to provide the raw data to higher-
level software skills. Conversely, control skills provide input to (or activate) lower-level skills (e.g.,
actuators). Edges in a skill graph therefore represent a requires-relationship, which explains why
both sensors and actuators are at the lowest level; typically for controllers, they take input from
sensors and provide output to actuators. Furthermore, as illustrated in Figure 3.1, every path from
one skill ends in a hardware skill (i.e., sensor or actuator), which itself’is not decomposed any further.
In the following, we briefly describe the six core types that a skill can have.

Actuator. Actuators represent hardware modules tailored to particular cyber-physical systems that
allow to control variables. For instance, powertrains for road vehicles allow to control a sin-
gle variable, namely the acceleration, which influences velocity and position. Other cyber-
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physical systems may offer multiple powertrains (e.g., drones; one for each propeller) or only
switches that can be turned on or off (e.g., thermal heating systems).

Sensor. Sensors represent hardware for data acquisition, such as cameras, radars, or temperature
meters.

Perception. Perception skills represent software units that interpret sensor data in specific ways
(e.g., identifying movable objects). They may prepare such data for planning skills.

Planning. Planning skills represent software units that are explicitly concerned with strategizing and
optimizing, such as computing optimal trajectories or identifying target objects. Although the
distinction between perception and planning is diffuse, it was introduced to explicitly separate
both concerns, where perception is rather a subdomain of processing sensor data (e.g., com-
puter vision for image sensors) and planning is rather a subdomain of operations research.
Both types of skills may also rely on algorithms rooted in artificial intelligence.

Action. Action skills represent internal controlling, such as setting the acceleration or activating the
brakes. They can be thought of as spawning subprocesses that are created or killed by skills of
the observable external behavior type or other action-typed skills themselves.

Observable External Behavior. These skills represent state machines of the actual maneuvers (e.g,
keeping the distance to a leading vehicle) as seen from an external observer and are the top-
level skills. Technically, they rely on all other skills in a skill graph to form the actual controller
logic by taking input data and (de-)activating lower level skills.?

On a more abstract level, the typing of skills allows to divide them into three distinct categories,
namely hardware skills (sensor and actuator), pure software skills (perception and planning), and finally
hybrid skills (observable external behavior and action), which mix discrete and continuous dynamics.

An open question is how the underlying behavior of a skill graph is eventually realized to repre-
sent the intended maneuver. For instance, Reschka et al. [2015] widely ignore the internal descrip-
tion of skill graphs, as these models are not directly part of an established development process
in their research, or not yet linked to implementation artifacts. Foundational work on the prede-
cessor of skill graphs [Siedersberger 2004; Pellkofer 2003], however, proposed to realize skills with
state machines, where the skill graph’s hierarchy represents valid dependencies between the under-
lying state machines for communication. This way, higher-level skills can invoke state transitions
of lower-level skills, similar to hierarchical state machines [Harel 1987; Harel et al. 1998]. States at
the lowest level may then access sensors or control actuators. We will adopt a similar notion for
realizing hybrid skills, where we refer to states as modes.

Our focal point of this chapter will be the development of'a sound formal framework that precisely
defines how to construct and verify skill graphs at design time. In Section 3.1.1, we briefly discuss
the key ingredients that will be part of our formalism and in Section 3.1.2, we present two informal
examples that will paint a clearer picture of how we intend to use and verify skill graphs.

3In the remainder of this chapter, we simply use the term behavior if the context is clear.
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3.1.1. Requirements Elicitation

Skill graphs were initially introduced for self-representation and enhanced with performance mea-
surements with the goal to check safety goals at run-time through online monitoring [Reschka et al.
2015; Reschka 2017]. In this thesis, we take a step back by focusing on verifying the confor-
mance of skill graph and safety goals at design time, for which a formal foundation of skill
graphs is needed, but did not exist before. Following the informal descriptions and consid-
erations of this section, a formalization of skill graphs for the purpose of formal verifica-
tion must include the following concepts.

» Formal Description for Skills and Skill Graphs. Skills in the sense of Reschka et al. [2015]
were intentionally kept vague and did not encompass a formal description of their behavior
or even guidelines for a thorough implementation. However, skills eventually map to source
code in the development process. To analyze maneuvers represented by skill graphs, it is
important to develop concepts for modeling their internal structure. As mentioned in the
previous section, skills can be realized with a similar formalism to state machines. Another
prime aspect of this thesis is formal verification of skill graphs, where a _formal notion of a
skill - including its discrete and continuous effects — is indispensable to reason about their
correctness. In summary, hybrid skills have to be associated with a computational model (e.g.,
hybrid automaton) that is abstract enough for ignoring unnecessary details, but rich enough
for reasoning about their correctness at design time.

m Contracts. Contracts enable assume-guarantee reasoning [Benvenuti et al. 2014; Frehse et al.
2004; Benvenuti et al. 2014] for hybrid systems by abstractly describing the input-output be-
havior of skills without directly considering the internal structure. The goal is to reason about
the correctness of more complex maneuvers by decomposing them into smaller and better
manageable subtasks, which are easy to analyze and verify in isolation. Contracts are a nat-
ural follow-up to the informal description of skill graphs, where skills are already equipped
with safety invariants (i.e., valid regions of variables that must be guaranteed throughout any
execution).

® Modularity and Compositionality. Finally, the decomposition of the controller logic into var-
ious skills requires us to formalize what it means to model complex maneuvers from simpler
ones (i.e., by focusing on reusability). At the same time, we will study to what extent costly re-
verification of already verified parts can be avoided by formalizing the composition of skill
graphs that transfers individual safety guarantees to the resulting system behavior automati-

cally.

Our Approach. To give skill graphs a precise meaning and to prove that they respect their safety
requirements, we base our work on automata theory, deductive verification, hybrid programs,
differential dynamic logic d£, and KEYMAERA X (see Section 2.2). The reason is that deductive
methods help us to decompose complex verification tasks into easier manageable subtasks. In
contrast, reachability analysis, which is the de-facto standard in formal verification of hybrid sys-
tems, suffers from the state-space explosion problem, typically requires approximations, and is
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Figure 3.2.: lllustration of a 2D robot with safety behavior for stationary obstacles. The robot must stop (i.e.,
v = () before hitting the wall. Afterwards, it turns right until it is safe to continue driving,

therefore often limited to linear ODEs only. Moreover, tool support for verifying (or even mod-
eling) skill graphs did not exist before. Based on the consideration of this chapter, we introduce
the open-source tool SKEDITOR [Kniippel et al. 2020a], which supports users in modeling, an-
alyzing, and verifying their skill graphs in an IDE.

3.1.2. Running Examples

Before we formalize skill graphs, we briefly introduce two simple examples that we will use to explain
our motivation and reasoning for the proposed formalism throughout this chapter. The first ex-
ample was introduced as part of a bachelor’s thesis [Kale 2021] and focuses on a roomba-like vacuum
cleaner with collision avoidance. For the second example, we model the prominent thermostat sys-
tem as presented by Alur et al. [1995]. The reason is that — although this thesis places great impor-
tance on cyber-physical systems that autonomously move in space (e.g,, cars or robots) — this exam-
ple is simple enough to illustrate many key concepts of our framework, but also showcases that the
notion of skill graphs is broadly applicable and may capture a great variety of stationary systems.

Example 1: 2D Robot — Explore World Maneuver

Our first example is a roomba-like vacuum cleaner, which is a wheeled robot that autonomously
moves in a confined two-dimensional area. The robot drives freely, but must avoid collision with
any stationary obstacle and border. The robot periodically evaluates the sensor data of an ultrasonic
sensor attached to the front and usually moves forward in a straight line. In case of'a too close ob-
stacle, the robot stops and either turns left or right (depending on the obstacles position) to identify
anew direction without any obstacle in front. As an additional requirement besides avoiding colli-
sion, the maximal speed of the robot is limited by a fixed constant v,,,. We give an illustration in
Figure 3.2, where the robot drives in a straight line with direction (dy, d,) and eventually approaches
a wall. The perception of the closest obstacle point (0, 0,) leads to the decision to stop, and, after
coming to a halt, to turn right on the spot until it is safe to accelerate again.
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Figure 3.3.: Visual diagram in SKEDITOR of the modeled skill graph of the Explore World maneuver (left)

and schematic visualization of the underlying state machines for skills Explore World and Control
Dynamics (right).

Skill Graph. We present a possible diagram of a skill graph in Figure 3.3 that models the described
behavior. The skill graph comprises an environment sensor (i.e., ultrasonic) and an inertial sensor,
which is used to estimate the current position, velocity, and referential direction. The actuators are
as usual for mobile robots (i.e., powertrain and brake system for controlling longitudinal movement,
and steering system for controlling lateral movement). This emphasizes that each intended class
of cyber-physical systems comes with its own set of usable skills.

The actual behavior is modeled in skill Explore World (yellow) and can be described with a state
machine (see Figure 3.3, on the right). The behavior consists of three top-level modes: [Drive],
[Brake], and [Turn]. Initially, the robot is stopped (i.e, v = 0), but directly enters the driving
mode. At each control cycle, the sensor values are evaluated and the state machine may transi-
tion to a different mode. In the presence of an obstacle, the robot transitions to mode [Brake],
remains there until is has completely stopped, and afterwards transitions to mode [Turn], where
it turns until a new safe direction is identified.

Explore World depends on action skill Control dynamics (orange), which itself’is a different kind of
controller. It offers four modes, namely [Accelerate], [Cruise], [Brake] (same name but not the same
mode as above), and [Yaw]. However, modes in this case are activated via a control inputc € {1...3}.
[Accelerate] and [Cruise] build a pair to approach a reference velocity v;,,y, Whereas the other two
modes are activated in isolation. On a theoretical level, top-level skills are thought to be the con-
troller for lower level skills. That is, mode [Drive] of Explore World instantiates the pair of modes
[Accelerate] and [Cruise] of Control dynamics. If an obstacle is close enough, the controller for Ex-
plore World will transition to mode [Brake]. Analogously, this causes the controller of Control dy-
namics to transition to its mode [Brake] as well.

Behavior and Safety. The overall safety goal is to avoid collision at all cost, which we wish to ver-
ify given our modeled behavior. For the sake of completeness, we give a formal description of the
described behavior as a d£ formula. We assume that the robot is located at position (py, py) and
is initially stopped with velocity v = 0. The goal for the robot is to drive in direction (dy,d,) in a
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straight line with maximum speed v,4y. If a close obstacle is detected at location (oy, oy), the robot
decelerates early enough to avoid collision. This is explicitly modeled by the worst-case execution
time ep that represents the maximum elapsed time between two sensor measurements. Further-
more, we introduce a logical clock t that represents the exact elapsed time between to sensor mea-
surements to discretize the continuous flow of the control variables. The d£ formula presented in
Listing 3.1 expresses the overall behavior and safety goal of this maneuver, where we ignored the
concrete implementations for safeDist(v) (“is the distance safe to accelerate?”), safeAcc(v) (“have we
reached the safe maximum velocity?”), and chooseSteering(p, o) (“choose an adequate yaw rate!”). Vari-
able w represents the current steering angle in radians.

1 (A>0 &« B>0 &« B>A &« v=0 & a=0 &« w=0 & ep>0

2 & lp—ol >0 & d*+dy>*=1) — [{{

3 /* Mode 1: Drive forward with direction (dx,dy) */

4 ?(safeDist (v) < |[p—ol); {

5 w := 0;

[ /* Mode la: accelerate; Mode 1b: cruise; */
7 {?safeAcc (v); a := A; U ?-safeAcc(v); a := 0;}

8 }

9 /* Mode 2: Distance violated -> brake! */

10 U 2 (safeDist (v) >= [[p—o| &« v>0); ¢{

11 a := —-B;

12 }

13 /* Mode 3: Find new safe direction */

14 U ?(safeDist (v) >= |jp—o|] & v=0); {

15 a := 0; w := chooseSteering (p,o0);

16 }

17 }

18 /* Reset clock timer */

19 t = 0;

20 /* Dynamical system */

21 { ¥ =ovxdx, ¥V =vxdy, d¥ =—-wxdy, dy =wxdx, V=a, =1 & t<ep &« v>0 }
22 }y*]1 (|lp—o|| >0) /* Safety inv.: do not collide with any obstacle!!*/

Listing 3.1: Time-triggered hybrid program of the explore world maneuver with robot position p = (px, py)
and closest obstacle position 0 = (ox, 0y).

Besides the goal of giving skill graphs a formal meaning, this example hints at the fact that skill
graphs may also give hybrid programs more structure. Although this example is fairly small, for-
mulating more complex maneuvers will definitely benefit from reusing structures and proof re-
sults. In the remainder of this chapter, we will see how this modeled behavior in d£ can be decom-
posed into skills. These skills can be verified in isolation and composed together to even develop
new maneuvers — all while retaining some correctness results.

Example 2: Thermostat System

In this example, we model a heater with a thermostat controller. The current temperature is denoted
by x. The goal of the controller is to keep the temperature between a lower limit (/) and an upper
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limit (u). If the temperature rises above a specific temperature u — J,, the heater is turned off.
Likewise, if the temperature falls below a specific temperature I + J;, the heater is turned on again.

Figure 3.4.: Hybrid automaton for a thermostat system as presented by Alur et al. [1995].

In Figure 3.4, we illustrate the thermostat system as a hybrid automaton. Constant K is deter-
mined by the room temperature, whereas variable & is the heating power. When the heater is off,
the temperature follows the function x(t) = xo * e X (i.e., solution of the differential equation),
where t represents time and xj represents the initial temperature. Analogously, if the heater is on,
the temperature follows the function x(t) = xo * e X + h(1 — e~ X!). The safety margins 6, > 0
and §; > 0 play a key role in time-triggered systems (cf. Section 2.2.2), where we also consider the
passed time between two measurements depending on the sensor frequency. That is, it must be
ensured that the heater transits to the other mode before the next measurement may reveal a vio-
lation of the invariant, even if the current state is relatively safe.

In contrast to the previous example, the discrete controller logic of this system in each individ-
ual mode is almost trivial. If the heater is [off], the discrete controller is idling and does not con-
trol any variable in its discrete part. If the controller is [on], we may decide to either view & as
a fixed constant or to dynamically adjust & with respect to the current temperature. In the for-
mer case, no variable is changed again in the discrete controller part, which means that the whole
system only depends on the dynamic part. It is still worth studying such systems in the context
of this work, as this version of a thermostat may only be the first version in a series of incre-

mentally developed and more complex systems.

Skill Graph. The illustrated skill graph in Figure 3.5 consists of only four skills (besides a root
skill): one sensor (Temperature), one actuator (Furnace), and two hybrid skills (On and Heater). The
sensor’s temperature x is accessible by all skills on a path. Analogously, the furnace skill requires as
input the heating power &, which has to be controlled by hybrid skills on a path. We will later see
that both types of hybrid skills (i.e., action and behavior) are similar in their internal structure and
can oftentimes be used interchangeably. The difference is that each skill graph must have at least
one behavior skill of and that action skills are always lower on the hierarchy. How skill graphs are
modeled therefore varies greatly. For the thermostat system, we decided to model mode [on] in a
separate action skill On, whereas mode [Off] is modeled as part of skill Heater. Alternatively, it is
also reasonable to model both modes as part of skill Heater, which could reduce reusability, or both
modes in separate action skills, which would increase implementation and maintenance effort.

Behavior and Safety. We annotated both hybrid skills with a precondition (i.e., assumption, under
which this skill can be executed) and postcondition (i.e., guarantee or safety invariant). For the sake
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Informal Behavior

Heater If mode [on] is active, execute On. Other-
Thermostat wise, the temperature changes according to
ODE {x' = —Kx&l <«x}
Y Trans.: (1) if x > u, then [on]—[off]
Heater (2)if x <1, then [off|—[on]
\/ Assumption: | <x<uANl<u
on Safetyinv.: [ <x<u
On Set heating power h to a value grater than

u. The temperature changes according to
ODE {x'=—-K(h—x)&x <u}.
Assumption: x < u
Safetyinv.:  x <uAx <=x

Figure 3.5.: Visual skill-graph diagram of the thermostat system as modeled in SkEDITOR (left) and informal
description of its behavior (right).

of simplicity, we modeled the thermostat system in this example as an event-triggered system. That
is, we assume that J, = 6; = 0 and that a transition will always take place before a safety invari-
ant is violated. For skill Heater, we require that the currently measured temperature is between a
lower and upper bound (/ < x < u Al < u)and then guarantee that it will not leave that region
(I < x < u). Skill On is an isolated sub-behavior (similar to procedures) that only focuses on the up-
per limit x < u in both pre- and postcondition. Moreover, we specify that, in mode [on], the tem-
perature only increases by referring to x’s past edition x~. The behavior On is activated and deacti-
vated by skill Heater. Consequently, in a verification scenario, it must be ensured that skill On can
only be activated if it safe to do so (i.e., if x < u holds). The table on the right side of Figure 3.5 para-
phrases the informal behavior of both skills. Skill Heater serves as the main controller that switches
between modes [on] and [off]. Whenever mode [on] is entered, action skill On takes over. A transi-
tion to [off] is triggered if x > u (i.e., the temperature increased too much). In theory, however, the
evolution constraint of the ODE of skill On will prevent any scenario where x > u, such that x < u
is guaranteed. As mentioned before, realistic systems are not event-triggered, but time-triggered.

3.2. Modeling Computation

As described in Section 3.1, skills in the original sense can be viewed as encapsulations of some
functional behavior. This view is vague in the sense that it does not give meaning to the concrete
type of behavior that is used. In particular, a behavior can be described by many formalisms, such
as automata, labeled transition systems, differential equations, specifications, and more. We have
also seen that skill graphs unite different kind of these behaviors (i.e., hardware, pure software, and
discrete controllers with continuous flow). In this chapter, the behavior of hardware and software
skills will only be described by their assumptions and guarantees without focusing on the inter-
nal structure. In contrast, how to model and verify the controller logic represented by hybrid skills
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will be discussed in great detail. The goal of this section is to develop a programming model for
hybrid skills for the purpose of analysis and verification.

As a first step, we derive a concrete program notation for implementing hybrid skills in Sec-
tion 3.2.1 that is rooted in hybrid programs (see Section 2.2.1). Thereupon, in Section 3.2.2, we derive
a more flexible computational model, namely hybrid mode automata, for implementing hybrid skills.

3.2.1. A Program Notation for Skills

For describing the behavior of skills, we will closely follow the syntax and semantics of hybrid pro-
grams [Platzer 2008; Platzer 2010; Platzer 2012; Platzer 2018)], which itself'is only a simple nonde-
terministic programming language with support for differential equations. The reason is twofold.
First, hybrid programs provide a very simple programming model, which is expressively sufficient
for us to describe the intended controller logic at this design stage. Second, we aim at leveraging
dL [Platzer 2008; Platzer 2010; Platzer 2012; Platzer 2018] for verifying skill graphs. As d£ is defined
over hybrid programs, it is natural to only make some necessary modifications. The language we
choose for implementing skills will be denoted SL (for Skill Language). We first give a definition of
the syntax of SL and afterwards describe the difterences to hybrid programs in more detail.

Definition 3.2: Syntax of SL

The syntax of language SL for implementing skills is defined by the following grammar,
where S; and S; are programs of SL, x, x1, ..., X, are real-valued variables, 6 is a term, P, Q,
and H are first-order logical formulas in real arithmetic, M is an abstract placeholder, and
x" = f(x) is a system of ODEs:

S1,82 :=51;S2 | x := 0| havoc x,...,x, | assume H |skip|x' = f(x) & H
|if(H){S1}else{S,} | assert H |invoke M | (P)M(Q)[x1, - .., Xx]

Although our syntax slightly differs from the one used for hybrid programs, most constructs
have the same meaning; besides composition, discrete assignment, and the dynamic system,
havoc x1, ..., x, is the equivalent of nondeterministic assignment (i.e., x; := *;...;X, := %), as-
sume H is the equivalent of a test condition (i.e., ?H), skip is shorthand for assume true, and the
selection statement if(H) {S1} else {S,} is equivalent to the hybrid program ?H; S; U?—H; S,. Non-
deterministic repetition and nondeterministic choice are not part of our syntax. The reason for
the former is that a skill may only perform one execution per (synchronized) time step, which
makes repetition unnecessary. The reason for the latter is that nondeterministic choice needs to
be resolved when deriving a concrete implementation. We restrict language SL to nondeterminis-
tic assignment only, which is simpler to resolve. In the following, we briefly describe the meaning
of the additional constructs assert H, invoke M, and (P)M(Q)[x1, ..., Xn].

Assertion (assert H). An assertion is similar to a test condition, where the checkable condition H
valuates to either true or false depending on the current state. However, a violation of H will
not just abort the current run, but the program will transit to a designated error state, which
itself does not have outgoing transitions. This way, we mark violations of H explicitly as
erroneous behavior.
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Program invocation (invoke M). An invocation of an SL program represented by the abstract symbol
M, and resolved by some binding ¢ (M), simply follows the execution of the statements in M.
An invocation is the equivalence of inlining, where M represents a non-parameterized macro.
If we require that M is specified with a contract (cf. Section 2.1.1), then instead of inlining M,
we can assert M’s precondition and assume M’s postcondition to increase modularity.

Hoare triple ((P)M(Q)[x1, ..., x4]). The triple (P)M(Q)[x1,..., x| expresses that if we can assert
P, we may assume Q for all accessible variables x1, ..., x,. The last part is the framing condi-
tion [Hatcliff et al. 2012], which limits the effect of postcondition Q to specific variables. Simi-
lar to nondeterministic assignment, a Hoare triple is in general not executable on a real com-
puter and must be refined to executable statements. However, it helps in the process of in-
cremental development and asserting correctness.

Using invocations and Hoare triples directly in our syntax will give us some more flexibility com-
pared to hybrid programs alone when designing skills in isolation. Invocations allow us to increase
modularity and reusability by developing the controller logic over multiple programs. Hoare triples
allow us to develop skills and skills graphs incrementally by providing a reverse perspective; we may
first use predicates to define behavior as input-output relations and later try to find a concrete be-
havior that satisfies the Hoare triple. The semantics of SL are as follows.

Definition 3.3: Semantics of SL

Let V be a finite set of variables. The semantics of a program S € SL leads to the following
denotational definition of the transition relation [S]s. C Execy, where o, ¢’ represent the
initial and final state, respectively, 0°™" is the error state, and ¢ : M — SL replaces the
abstract symbol M by a program of SL (if defined):

m [S; S'ls. = {(0,0") | (o,0im) € [S]sL, (Tim, o) € [S']sL} with intermediate state 0;,,
m (0,0') € [x :=0O]sLiff (7,0) € [x := O]up,
[havoc x1, ..., x,]sL iff (0, 07) € [x1 :=*;...; %y := *]pp,

m (0,0

/

m (0,0') € [x' = f(x) &H]sL iff (¢,0") € [x' = f(x) & H]p,

)
) €
m (0,0') € [assume HJs_ iff (0,0") € [?H]wp,
) €
(o,0") € [if(H){S1}else{S,}]s. iff (¢, 0’) € [assume H; S;1]s. U [assume —H; Sy]si,

n [ o, 0°") ¢ [assert H]s, iff (7, 0) € [assume ﬂH]]SL] and [( o') € [assert H]s, iff
(c,0") € [assume H]]SL}

n (0,0") € [invoke M]s iff &(M) exists and (v, ¢”) € [&(M)]st

n (0,0") € [(P)M(Q)[x1, - .., xn]]st iff

(0,0") € [assert P;havoc x, ..., x,;assume QJs;.
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Example 3.2. Consider the thermostat example from Section 3.1.2 and assume we have defined a function
¢ : M — SL that maps an abstract symbol to a program in SL with (Moy, Sox) € . Assume further that
skills On and Heater are aware of variables x,1,u, K, h,s, where s € {1,2} represents the current state (i.e.,
1 + heater is activated and 2 — heater is off). We define the following two behaviors Sox, Stparer € SL:

SHearer = {if(x > u){s := 2}else{skip};
if(x < 1){s := 1}else{skip};

Soxn = {havoc h; assume h > u; \
l
if(s = 1){invoke Moy Jelse{x’ = —Kx &I < x}}

{x=—K(h—x)&x < u}}

Using the binding in ¢, we can directly invoke program Sox within program Syiearer, Which is semantically
equivalent to inlining the program. Alternatively, we may also decide to use construct

if(s =1){(x <u)Mon(x <uAh > uApast(x) < x)[x,h]}else{x' = —Kx &I < x}

in program Stiparer, Where the behavior of the heater’s activated mode is abstracted by a Hoare triple. This
abstraction is convenient during program specification and development, as it permits to reason about the
correctness of Sggarex Without developing Soy first. Importantly, the addition past(x) < x is necessary to
indicate that temperature x will only increase. In the refinement process, we may check that Soy is indeed a
correct implementation of (x < u)Mon(x < u Ah > u A past(x) < x)[x, h]| and replace the Hoare triple
to get an executable program.

We have almost succeeded in defining a small implementation language to model the behavior
of hybrid skills. However, two issues arise in the presence of SL that we briefly discuss.

Sequential ODEs. The syntax of SL allows us to sequentially compose systems of ODEs, which is
inherited from hybrid programs. Semantically, this means that each system of ODEs runs
arbitrarily often (including zero times) before the program continuous. This nondeterminism
in timing makes sequential compositions of ODEs hard to deal with. Ideally, only a maximum
of one system of ODEs is executed during the execution of all skills, where we additionally
define a logical clock together with a worst case execution time. Example 3.2 illustrates this
desired behavior for an event-triggered system, where there exist two dissimilar systems of
ODEs, but only one of them is executed per run. The goal is to enforce this behavior per
construction.

If-Else Cluttering. The granularity of'a skill should still be the responsibility of the developer. How-
ever, the more behavior a skill must cover, the more cluttered if-else conditions will be needed.
This can already be seen in Example 3.2, where the implementation of Snester is shaped like a
transition system, as it essentially covers two behaviors: the heater is on or off. Conversely, the
less behavior a skill covers, the more skills must eventually be implemented to represent the
desired behavior.” This, however, would lead to large skill graphs that lose their visual advan-
tage. Ideally, developers are able to define multiple operating modes for a skill, where each

“#For convenience, we introduce operator past(-) to explicitly evaluate a given variable in its pre-state, as variables in
postconditions may evolve based on some ODE.

>The described issue is similar to the library scaling problem for components [Biggerstaff 1994]. On the one hand, too
much integrated functionality limits reuse. On the other hand, too specialized components lead to combinatorial
growth of components needed.
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mode is represented by a program in SL. The goal is to give skills and SL programs more struc-
ture, as can be seen in Section 3.1.2, where we used state machines to increase comprehension.

Both issues will be addressed in the next section, where we define hybrid mode automata as a struc-
tural layer for SL programs.

3.2.2. Hybrid Mode Automata

Example 3.2 above illustrates that we view the controlling part of a skill-based maneuver as a (pos-
sibly huge) set of operating modes of a transition-based system.® Furthermore, examples of the ex-
plore world maneuver consist of the driving mode and the steering mode. By taking a closer look,
the driving mode is refined even further: accelerating, cruising, and braking are three possible sub-
modes, but are typically not concurrently active. To improve the structuring of SL programs, we in-
troduce a more fine-grained computational model for hybrid skills. Our considerations will lead
to a formal notion of parallel composition and mode refinement, which are both important charac-
teristics from a software engineering perspective.

Parallel composition focuses on the decomposition of the global behavior into concurrent and
communicating modes. The question which modes can operate simultaneously is answered by an
optimistic point of view: two modes can be active at the same time if they do not interfere. Refine-
ment of modes increases the level of abstraction and allows to develop the global behavior step-by-
step in a modular fashion. A notion of refinement also directly impacts reusability by allowing well-
formed combinations of independently developed modes. We develop a formal model of compu-
tation and formalize these aspects including the meaning of interference in this section precisely.

Syntax and Semantics of Hybrid Mode Automata

For modeling computation, we define hybrid mode automata, which is a customized combination
of hybrid automata [Henzinger 2000] and mode automata [Maraninchi et al. 1998; Maraninchi et al.
2003). Hybrid mode automata are labeled multidigraphs that consist of a number of discrete modes
with guarded transitions between them. An important aspect is that a discrete SL program is pro-
jected on each mode, which is executed each time a mode is entered. Furthermore, each mode is
allowed to have exactly one system of ODEs. The execution semantics of an active mode will fol-
low the semantics of SL (cf. Definition 3.3). For simplicity, we assume that set SLy;s. refers to the
domain of possible discrete programs without continuous flow (e.g., {havoc a; assume a > 0}) and
that set SLg, refers to dynamic systems only (e.g.,, {x' = 6 & H}; cf. Definition 3.2). We then de-
fine the syntax of hybrid mode automata as follows.

SIn this thesis, we distinguish between modes and states in the context of transition systems to emphasize their level of
granularity; compared to elementary states that represent the current valuation of variables, modes may combine a
sequence of computations, each leading to a new state.
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Definition 3.4: Hybrid Mode Automata (H.M.A)

A hybrid mode automaton A is a tuple (Q, 4%, V", V°Ut, Trans, Dyn, Ctrl) where:
m (Qis a finite set of modes,
m g0 € Qs the initial mode,

m V" and V°U! are sets of input and output variables in R, respectively. We require that
Vin N Vout — @

m Trans € Q x G(V) x Q is the set of transitions, which are labeled by a first-order
logical formula G over the input and output variables. We use the notation g E, q' for

(9,8,9") € Trans,

= Dyn : Q — Sy, maps a mode to a (possibly empty) system of ordinary differential
equations,

m Ctrl : Q — SLgjsc maps a mode to the discrete control part.

We denote the universe of all hybrid mode automata by HM . A.

Each mode is associated with a sequence of discrete computations based on SLyisc. Again, we ex-
cluded non-deterministic choice and repetition. Arbitrary non-deterministic choice allows to model
families of controllers, but needs to be resolved when deriving concrete implementations. For ex-
ample, a safety goal may be ensured whether we decide to accelerate or brake, but an operating con-
troller should not alternate between these two options every other cycle. We bypass this complica-
tion by focusing on controllers that are already close to the intended behavior. However, to retain
some flexibility, we still allow nondeterministic assignment. All abstractions, including nondetermin-
istic assignment and Hoare triples, need to be resolved when deriving a concrete implementation
and it needs to be ensured (i.e., proven correct) that the resolution preserves the modeled behavior.

In addition to Definition 3.4, an A € HM.A must satisfy the following correctness conditions:

Ci: A is deterministic in the sense that for each mode g € Q, if there exist outgoing transitions

(9,81,9'),(q,82,9") with 4" # 4", then g1 A g is not satisfiable.

Cy: After each cycle, A must take a transition. Thatis, Vg € Q : Vig.g4)
can be taken, we assume an implicit self-transition (q, g4, 9) exists with g5 = —(V 4 ¢ o) eTrans &)

cTrans & is true. If no transition

(g4 = trueifno outgoing transitions exist). Ifan explicit self-transition exists but no transition
can be taken, then A is ill-formed (i.e., not a hybrid mode automaton).

Furthermore, we introduce a third and fourth unique category of variables, namely global variables
(denoted V8'°b2!) and local variables (denoted V'), Global variables can be globally accessed by
any hybrid mode automaton and are (for simplicity) added to each automaton as part of the input
variables. Global variables are read-only and assumed to be initialized only once in the beginning
by the global system. Typical examples are constants, such es the upper (1) and lower (/) limit of the



thermostat system. Local variables are introduced as part of the discrete program and only visible
to the automaton itself.’” Therefore, the following correctness condition must also hold:

Cj3: Output variables of any hybrid mode automaton are disjoint from the global variables (i.e.,
Vout N vglobal — @) and local variables are disjoint from input and output variables (i.e., (V" U
Vout) M V/local — @)

Example 3.3. Consider again the thermostat system. If we ignore the partition into skills for now, then an
event-triggered representation (i.e., without considering timing) of the overall behavior as a hybrid mode au-
tomaton (Q,q°, V", Vo't Trans, Dyn, Ctrl) is given as_follows:

Q = {On, Off} Trans = {(On,x >u,Off),(Off,x <1,0n)}

q° = {On} Dyn(q) = {x¥ =K(h—x)&x <u} ifg=0n

yin = {x}uyslbal {x' = —Kx&x > 1} ifqg = Off}

veuwt = {h} {havoc I; assume I > u} ifqg = On
lobal  _ Ctrl(q) = oo

Ve = {u,,K} {assume true} ifg = Off}

The controller of mode [On] nondeterministically chooses a heating power with condition h > u, whereas
the controller of mode [Off | does nothing. The evolution constraint of both dynamic systems makes sure that
temperature x stays between lower limit [ and upper limit 1. Later, we will see how timing can be incorporated
to make the shift to more realistic time-triggered systems.

The semantics of M A is given in terms of valid execution sequences (or traces, respectively). In-
formally, an execution trace of a hybrid mode automaton is a sequence of modes together with in-
put and output state. The input state is the evaluation of all variables before executing a mode and
the output state is the result. In each control cycle, the automaton transits to a mode (possibly to
itself) and instantaneously updates all variables in the current state according to the attached dis-
crete program. Afterwards, the continuous evolution according to the attached dynamic system pro-
gresses for an arbitrary amount of time (see Definition 2.5). A convenience of our following formal-
ization will be that free variables are only associated with the previous state. For clarification, con-
sider the discrete program [x := x + 1;x := x + 1], where x is incremented twice. In the following
semantics, we view this program as [x ™ := x;x := X~ + 1;x := x~ + 1], where x~ refers to x as val-
uated in the input state. Consequently, the two programs [x := x+ 1;x := x+ 1] and [x := x + 1]
are equivalent according to our semantics, and x is only incremented by 1 in both cases. This way,
we have a clear semantics for difficult constructs, such as cycles (i.e., [x :==y + 1,y := x + 1]), and
offer a synchronization point for parallel composition (more on that later). We give a formal defini-
tion of the semantics of hybrid mode automata in Definition 3.5.

’In the remainder of this chapter, we mostly ignore local variables as part of our formalization. We assume that (1)
they are always disjoint from input and output variables, and (2) in case of name clashes, adequate renaming and
substitution suffices.



3.2. MODELING COMPUTATION 45

Definition 3.5: Execution Semantics of Hybrid Mode Automata

Let 0/" and ¢?“* denote valuations of variables in V. A valid run of a hybrid mode automaton
A = (Q,q° V", Vo, Trans, Dyn, Ctrl) is a sequence of mode switches Iy, ...,I; € Q of the

following form

rung = (o, lo, o3, ..., (oM, 1, o)

such that
= 0" and ¢?"! are input and output valuations of variables in V in mode I;,
m forallk=0,...n,
(o7, o) € [Mem(I) ; Ctrl(I) [0 — o7 1% s Dyn(l) [0 = 07 ) el
with
Mem(ly) =v] :==v1;...;0, =0, Vv, € V.

and [v; — v; |Y _is an operator that replaces all occurrences of variables v; € V on the
right-hand side of expressions or ODEs with the fresh variable v;",

m the initial execution is performed after taking the first transition from initial mode 4°,
such that (4°, G, lp) € Transand 0" = G,

m foreachi =0,...,n—1, (0", I;,0?"") is followed by (017, li11, 02 ) ifand only if there

exists a transition (I;, G, li+1) € Trans and 0}, |= G.

The length of a run corresponds with the cycles considered. Per definition, each prefix of a valid

run run 4 of a hybrid mode automaton A (including the empty run run 4 = €)is therefore also a valid
run of A.

Example 3.4. Consider the thermostat example in Figure 3.4 with modes [On] and [Off ], and assume that the
following concrete values are used: initial x = 22°C, upper limit u = 24°C, lower limit | = 16°C, 6; = 2°C,
ou = 1°C, room temperature constant K = 0.1, and constant heating power h = 30°C. That is, the heater is
switched to [Off | if the temperature rises above 23°C and switched to [On], if the temperature falls below 18°C.
With initial model [On], one of many valid runs has the form:

= On - Off e Mode Switch

({x =22},0n, {x = 22.76});1 Z
—({x =22.76},0n, {x = 23.45} )1 O 20
—({x = 2345}, Off, {x = 21.21}),-3 12
— ... 2 4 6 8 10

[t
In this scenario, we used a step size of 1 to evaluate whether a mode switch is necessary, which is also why the

discrepancy in input and output temperature appears so high. In this case, a step size of 1 is enough to keep the
temperature between 16°C and 24°C.

In the next sections, we use hybrid mode automata to formally describe the behavior of hybrid
skills. Before that, we will discuss two important operations as part of our formalism, namely parallel
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composition and mode refinement® For any larger automaton, it is reasonable to imagine that we
may start with smaller automata and subsequently combine them to eventually form the larger
one. Parallel composition as an operator takes two hybrid mode automata and combines them to
a third one that expresses the behaviors of the first two simultaneously. Refinement as an operator
substitutes a single mode with a complete hybrid mode automaton. Both operations are useful
in the context of skill graphs, as they allow us to develop hybrid mode automata in isolation and
subsequently combine them automatically. This is in alignment with skills in a skill graph that
must also be combined vertically and horizontally. Of course, both operations are governed by
constraints that we will discuss alongside the formalization in the following.

Parallel Composition

As mentioned before, parallel composition of two hybrid mode automata .4; and A, results in a new
hybrid mode automaton A = A; || A, that represents the simultaneous execution of both au-
tomata. A; and A, do not need to be completely decoupled (i.e., without any information flow be-
tween them), but it only makes sense to define compositions of two hybrid mode automata that are
compatible. For instance, consider again the Explore World maneuver of the vacuum cleaner of the
previous section. Although skill Accelerate and skill Yaw are never part of the same mode, we may
also think about activating both behaviors concurrently to let the robot drive curves. In contrast,
accelerating and decelerating at the same time does not seem to be useful, which also leads to con-
fusion on a technical level; both skills will (theoretically) write on variable a simultaneously.

Before we define, how parallel composition (or simply composition) of hybrid mode automata
looks like, we first define the (valid) composition of dynamic systems. Informally, the composi-
tion of dynamic systems is simply their combined continuous behavior. Validity is therefore based
on agreement; first, their evolution domains must not be in conflict and second, they are not al-
lowed to let the same variable evolve differently.

Definition 3.6: Composition of Dynamic Systems

Letdy = {X] = ©1&H},dy = {X), = ©2&H} € Slgy, be two dynamic systems. The
composition of d; and d, is defined by the operation & : SLgyn X SLgyn — Slgyn:

di ®dy = {Xi :®1,Xé = @z&Hl/\Hz}.

We consider a composition of dynamic systems to be valid iff the following conditions hold:

m Evolution domain H; does not conflict with evolution domain H; (i.e., Hy A H is sat-
isfiable),

m ODEs of shared bound variables have to be identical (i.e., V(x] = 61) € dy, (), = 62) €
dz:xi :x§:>61 :92).

81n the literature, this kind of refinement is also sometimes referred to as vertical or hierarchical composition, whereas
parallel composition is sometimes referred to as horizontal composition.
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Based on the previous considerations, our condition for composability is twofold. First, the
sets of output variables of both hybrid mode automata must be disjoint. Second, the dynami-
cal systems should not conflict with each other.

Definition 3.7: Composable Hybrid Mode Automata

Two hybrid mode automata 4; and A, are composable iff (1) V2" N V" = @ and (2) Vg1 €
Q1,92 € Q2 : Dyn;(g1) © Dyn,(g2) is a valid composition of dynamical systems.

Parallel composition is constructed as usual. In principle, this operation represents the
cartesian product of two automata, where each new mode inherits the behaviors and dy-
namics of the original pair of modes. Additionally, the output variables of both original au-
tomata will still be visible, whereas input variables will only be visible if one of the automata
does not declare it as an output variable.

Definition 3.8: Parallel Composition of Hybrid Mode Automata

Let Ay, Ay € HMA be two composable hybrid mode automata. We define the parallel
composition by

Ap || Az = (Q1 x Qa, (%, 93), Viru VIM \ (VPUt U VEUY), VRUt U VU, Trans, Dyn, Ctrl)
where:

® ((91,92),G, (q},95)) € Trans iff (q1,G1,97) € Trans; and (g2, Gy, 45) € Trans, with
G = G1 A Gy,

" V(g1,92) € Q1 X Q2: Dyn(q1,42) = Dyn;(q1) © Dyn,(q2),
u V(qb q2) € Q1 X QO Ctrl(q1,q2) = Ctr|1(q1); Ctrlz(qz).

Parallel composition of two hybrid mode automata is straightforward. The only interesting parts
are the dynamic system and the discrete controller per mode. For the dynamic system, we simply
build the union of the individual dynamic systems and conjoin the evolution constraint. For the
discrete controller, we use sequential composition for the individual discrete controllers. We provide
the following Theorem 3.2 to state that the class of HMA is closed under composition. That is,
larger M A can be build from simpler ones in an inductive fashion by only checking composability.

Theorem 3.1: Closed under Composition

Let A;, Ay € HMA be two composable hybrid mode automata. Then, their composition
Aj || A; yields also a hybrid mode automaton.

Proof. We need to show that A = A; || A; satisfies the correctness conditions Cy, Cz, and Cj.

Ci. Assume there exist ((q1,92), G1, (491, 95)), ((91,92), G2, (47,95)) € Trans and G; A Gy is
satisfiable. W.l.o.g., assume further that G; = g1 A g3 and G = ¢ A gu are the
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respective conjoined guards from the parallel composition with the initial transitions
(91,81,91), (91,82,q7) € Transy and (q2,83,93), (42, 84,95) € Transz. I G1 A G2 = (g1 A
23) A (g2 A gu) is satisfiable, then so are g1 A g2 and g3 A g4, which is a contradiction to
Ay, Ay € HMA. Hence, G or G, cannot be satisfiable at the same time.

C,. If for a fixed g1 € Q; and a fixed g2 € Q, the formulas \/( gﬁ and

‘ 71,814}) ETrans,
v(ngéq’z)eTransngZ fori = 1,...,nmand j = 1,...,m both evaluate to true, so does

V((ql,qz),giAgé,(q’yqé))eﬁans $118) for afixed (q1,42) € Q as:

g1V - VEIN(GV V) =(s1Ag) V(SIAG) V- V(S AgS).

Cs. Follows directly from the definition of parallel composition, which does not add global vari-
ables. Local variables are ignored in Definition 3.8, but are essentially unified. As men-
tioned before, conflicts can easily be resolved by renaming.

O

After having succeeded in constructing a valid composition of hybrid mode automata, we now
establish two important properties of our definition, namely commutativity and associativity. Com-
mutativity allows us to ignore the order when composing two automata, as the resulting automaton
will always be semantically equivalent. Associativity ensures that our binary composition operator
is enough, even for an arbitrary amount of composable automata, as it allows us to build larger au-
tomata incrementally. To state and proof both properties concisely, we first define the meaning of
non-interference between two discrete programs in SL and an additional lemma afterwards.

Definition 3.9: Non-Interference of Discrete SL Programs

Two programs Si,S; € Slgsc are non-interfering iff bound(S;) Nvar(S;) = @ and
bound(Sy) Nvar($;) = @.

Non-interference means that both programs do not write on the same variables. We ignore the
dynamical part, as this is not important for our upcoming considerations.

Lemma 3.1: Order-Irrelevance of Sequential Composition

If two programs Sq, Sy € Slgisc are non-interfering, then [S1; Sa]st = [S2; Si]st.

Proof. Follows from the semantics of SL programs (see Definition 3.3). Assume (0, 03, ) € [S1]sL
and (0, 0') € [S2]sL- We need to show that there exists (¢, 6;,,) € [S2]sL and (G5, ') € [S1]sL-
As both programs S; and S, are non-interfering, their effects on bound variables is separable.
That is, only bound variables in S; are affected by [S;]s. and analogously for S (i.e., on the bound
variables in Sy, 0j, (x) = o(x) for Sp). It follows that 07 = Uxebouna(s,) ¢ (%) U Uxrebouna(s,) (%)
isavalid intermediate state for [Sq; S2]. Applying the same reasoning, 0 = Uxebounars,) o' (¥) U
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Uxebound(s,) 0 (x) is likewise a valid intermediate state for [S;; S1]. The commuting diagram
visualizes this reasoning:

Tim
[[51]]5L/‘ \[[5‘2]]SL
o o’
[S2]sL /[[;1]]SL

Tim

Proposition 3.1: Algebraic Properties of Parallel Composition: Commutativity

The parallel composition of composable hybrid mode automata is commutative.

Proof. Let Ay, Ay € HMA be two composable hybrid mode automata. We show that A; || A
is semantically equivalent to Aj || A;.

Let A=A || A2 = (Q,4° V", V°Ut, Trans, Dyn, Ctrl). A semantically equivalent hybrid mode
automata A’ is obtained by re-defining Q' = {(42,91) | (91,92) € Q}, ¢° = (92,91), and
Trans’ = {((92,91), G, (95,97)) | ((91,92), G, (4}, 95)) € Trans}, while the other elements remain
equal for now. The critical part is the projected program ofa mode q € Q (i.e,, Ctrl(g)), which re-
sults from the sequential composition of Ctrly(q1) and Ctrly(g2). Based on semantics of hybrid
mode automata (Definition 3.5), all free variables of the projected program are replaced by fresh
variables beforehand, which we denote by Ctrl;. Tt follows that

bound(Ctrl;(q1)) N free(Ctrly(g2)) = @
A bound(Ctrly(g2)) N free(Ctrly(q1)) = @.

As A; and A; are composable, it follows that Ctrl; (1) and Ctrlp(g2) are non-interfering, and by
applying Lemma 3.1, we obtain [Ctrly(g1); Ctrlz(g2)]s. = [Ctrl2(g2) ; Ctrli(g1)]s.. Composition
ofthe dynamic system is valid, as .4; and .A;, are composable, and commutative per Definition 3.6
(i-e., conjunction of evolution constraint is commutative). Finally, this process leads to the hybrid
mode automata A’ = A||. Ay, which is semantically equivalent to .A.

O]

Proposition 3.2: Algebraic Properties of Parallel Composition: Associativity

The parallel composition of composable hybrid mode automata is associative.

Proof. Let Ay, Ay, A3 € HMA be three hybrid mode automata that are pairwise composable.
We show that (A1]|.A2)||.A3 is semantically equivalent to A1 ||(.A2||.A3). We identify the follow-
ing equivalences:
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m Cartesian product is associative up to isomorphism: (Q1 x Qz) X Q3 = Q1 X (Q2 X Q3)
and ((41,43),93) = (4%, (4,45))-

m (VIR U VAN \ (VP U VR U Ve s equivalent to (V" U V3" U VA") \ (VPU U VUt U V)
with V{% = V{" U Vj" \ (VP U V3U). Analogously for (Vi U V3%) \ (VU U (VU U VsU)).

» Union is associative: (V"' U V) U VUt = VUt U (VU U VU

= (((91,92),93), (G1 A G2) A Gs,((91,95),93)) € Transgi03 = ((41,(42,93)),G1 A (G2 A
Gs), (91, (42,93))) € Transy 3) = ((91,92,93), G1 A Ga A Gs, (91,92,93)) € Transip;3

m Finally, sequential composition of SL programs and composition of differential equations
are both associative (see Definition 3.3).

Mode Refinement

The second operation we introduce is refinement of modes inspired by Maraninchi et al. [2003).
As mentioned before, this operation takes a mode g1 € Q; in A; and a hybrid mode automa-
ton A as input and produces a new hybrid mode automaton .A. A is almost identical to A;, but
composes mode g; with automaton A; in a particular way. This operator is especially interest-
ing, as it allows to develop hybrid mode automata incrementally. The idea is to start with an ab-
stract vision of a mode and fill in the necessary details later when needed, either from scratch
or automatically by reusing already constructed hybrid mode automata. This is in accordance
with our abstraction constructs in SL, namely invocations and Hoare triples. Mode refinement al-
lows us to either inline a complete automaton or to replace a Hoare triple with it. Similar to par-
allel composition, refinements add detail to already existing modes (e.g., with possibly non-empty
discrete and dynamic control parts), but should somehow adhere to the purpose of the original
mode. This means that a refinement of a mode is regulated by a set of rules and cannot arbitrar-
ily change the mode’s intent in behavior and dynamics.

One example of such a regulation is the dynamic system. In a flattened version of'a hybrid mode
automaton, each mode is associated with a (possibly empty) set of differential equations. Elements
of that set should not contradict each other (e.g., having ODEs with dissimilar solutions for the
same variable). Parallel composition bypasses this problem per definition (see Definition 3.7). Mode
refinement does not enjoy this property. The question is therefore how a refinement of dynami-
cal systems may look like. Conveniently, the definition of the composition of dynamic systems (see
Definition 3.6) already resolves this issue on its own by requiring that each bound variable corre-
sponds to exactly one differential equation. It is therefore convenient to reuse the composition of’
dynamic systems almost as-is and require that mode refinement is only possible, if the composi-
tion of dynamical systems is valid. We adapt the composition operator for refinement slightly and
require for the composition of two dynamical systems {X] = @ & H;} & {X}, = O, & H,} that
H, = H; must be satisfiable (instead of H; A Hy). This means that mode refinement cannot in-
crease the valid region given by evolution constraints, but must operate in the existing one. We
will use the notation @ to indicate this difference.
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Relying on the composition of dynamic systems for mode refinement is somewhat coarse-
grained, but easy to implement and apply. For instance, we prohibit refinement and overwrit-
ing of differential equations. Instead, we require that differential equations for the same vari-

9 We also do not make the im-

able are identical if they are part of both dynamic systems.
plicit assumption that a non-existent ODE for an output variable y is synonymous to (y' = 0),
as this would violate a valid refinement by definition. Instead, such ODEs must be provided

explicitly to restrict possible refinements.

Definition 3.10: Refinement of Hybrid Mode Automata

Let A; € HMA be a hybrid mode automaton and q; € Q; any of its modes. A refinement
of mode g; by Ay € HM A is defined by the operation »: Q; x HMA — HMA:

g1 » Ay = (Q, 4%, (Vi UViIM) \ (VRUE U VU, VUt U V¥, Trans, Dyn, Ctrl)
where
" Q=0 \{n}UQ.

. o_{q?rq?#ql
9 =19 0
q2

: otherwise

m Trans = {(q,g, q,) € Trans; | q 7& q1 N q/ 7& ql} (keepvalidtransitions 0f.A1)
U {(q, &, qg) | (q, &, fh) € Transy A q 7’é 6]1} (handle incoming transitions ofql)
U {(lh, g E]) | qr € Qz N (ql,g, 6]) € Trans; A q1 75 q} (handle outgoing transitions ofql)
U {(q,g /\gql,q/) ‘ <q,g, L]l) € Transy, (qlrgqul) c Transl} (addtransitions 0f.A2)
Dyn; () tgEQ
= Dyn(gq) = _
7 {Dym(ql)@DYnz(‘I) rqe Q2
m Ctrl(g) = {Ctrll(q) 1€

Ctl’|1(ql); Ctrlz(q) 1q € Q>

.

Example 3.5. In the thermostat example, we describe behaviors of skill Heater and On as follows using hybrid
mode automata Apeater (on the left) and Aop (on the right):

Q = {AOn, Off}
q° = {AOn} Q = {on}
yin - {X} | \/8lobal q,o _ {On}
out = {h} V/in - {x} U Vglobal
Vglobal = {M, I, K} 1//out - {h}
Trans = {(AOn,x > u, Off), (Off,x <1,AOn)} velobal = 1y K, I}
oyn(g) = { © Ja=Aon - Tans' - )
{¥ = —Kx&x>1} ifqg=0Off} Dyn'(q) = {x'=K(h—x)&x <u}
Cti() = {invoke On} ifg = AOn Ctrl'(q) = {havoc h;assume h > u}

{assume true} ifg = Off}

For a more fine-grained solution, Loos et al. [2016] proposed differential refinement logic (ARL), which elaborates on
refinement of ODEs based on reachable states. However, this is only possible for event-based systems.
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Let [: HMA x Q — Q denote the projection of a hybrid mode automaton onto one of its modes. Mode
refinement (Apeater | AOn) » Ao, yields the hybrid automaton presented in Example 3.3, if we remove
invoke On after mode refinement (which is reasonable to do).

Similar to parallel composition and composability of hybrid mode automata, only specific re-
finements should be allowed. We define the class of admissible refinements as follows.

Definition 3.11: Admissible Mode Refinement

Let Ay, Ay € HM Abe two hybrid mode automata and g1 € Q1 amode of A;. An admissible
mode refinement q; » A, € HM A satisfies the following correctness constraints:

m for all g € Qy, Dyn;(g1)©®Dyn,(q) is a valid composition of dynamic systems,

m for all g € Q», the discrete programs of q; and g are not writing on the same output
variables (i.e., bound(Ctrl; (g1)) N bound(Ctrlx(g)) = @),

Theorem 3.2: Closed under Mode Refinement

Let Ay, Ay € HMA be two hybrid mode automata, g1 € Q; a mode of A;, and refinement
g1 » Ay € HMA be admissible. Then, g1 » Ay € HMA yields also a hybrid mode

automaton.

Proof. For brevity, we only present the proofidea here, as this is similar to parallel composition.
Observe that mode refinement is essentially composition of one mode with an automaton in-
stead of building the cartesian product. The definition of admissible mode refinement (see Def-
inition 3.11) is almost identical to the definition of composability (see Definition 3.7), and indeed
even implied. Likewise, guards of the new transitions from .4, are conjoined with the guard of
g1’s self-transition. It can be shown that if the class of # M A is closed under composition, then
it must certainly be closed under mode refinement. O

Extended Syntax for Composition and Mode Refinement

A hybrid mode automaton allows us now to organize a finite number of modes, which, however,
are not all always relevant in particular maneuvers. If we consider again the explore world maneu-
ver from Section 3.1.2, we see that skill Control Dynamics provides multiple actions depending on
an input command ¢ € {1,...,3}; acceleration and cruising, braking, and turning. Besides the initi-
ation mode, only acceleration and cruising have a transition relationship, whereas the other two
must be directly activated by input c. The top-level behavior controls this activation on its own
terms, but therefore must specify c as an output variable. To conveniently bypass this effort, we
briefly introduce two additional operations that will help us.

Output Hiding. Both parallel composition and mode refinement result in an automaton that
unites the output variables of their respective automata. Sometimes its good practice to hide
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certain output variables, when automata are composed sequentially (i.e., an output is con-
nected to an input; cf. Definition 3.8). Formally, we write .4 \ {x} to express that output vari-
able x is not exported to the outside world.

Input Binding. With input binding, we instantiate automata with a concrete value for one in-
put variable of an automaton A. Semantically, this is equivalent to a parallel composition with
a dummy automaton that models the needed behavior. For example, imagine that A has as input
¢, which we want to permanently bind to value 1. Then we can apply Agu,x || A, where Ay =
({q},{g},9,{c}, D, €, Ctrl) with Ctrl(gq) = {c := 1}. Formally, we write A[x; — v1,..., X, — Uy
to denote that variables x, ..., x, are bound to values vy, ..., v,.

Finally, we extend the grammar of SLy;s. to enable mode refinement and parallel composition on
the syntactic level. For that, we view refining automata as submodes that become active when the
respective supermode is entered, and are deactivated when the respective supermode transits to a
different mode.'® We introduce the following new keyword for communicating with submodes.

Definition 3.12: smode (-)

The grammar of SLg; is extended by keyword smode (-), where S is a statement of the orig-
inal syntax for SLgjsc and S’ is a statement of the new syntax:

§":=5]S; smode My[-]\{-} || -+ || Ma[-]\ {-}
———
binding + hiding

S = ...(as in Definition 3.2)

Again, My, ..., M, € M denote abstract placeholder symbols, where -]\ { - } denotes the suc-
cessive application of input binding and output hiding, and || retains its meaning of parallelism. These
symbols can be resolved with a given binding {snode : M — HMA. To form the complete con-
troller logic, submodes My, ..., M, need to be resolved in the following scheme, where g € Q is
the supermode in A that applies the smode (-) command.

Algorithm 3.1 (Scheme for Resolving smode (A4, || - - || \A,) of mode g).
1. Identify hybrid mode automata A;, ..., A, with (M1, A1) € &smode- If Csmode 1S undefined for
M; withi =1...n, smode cannot be resolved.

2. Reduce all A;[-]\ {-} to Al by performing input binding and output hiding.

3. A}, ..., A}, must be pairwise composable, which can be checked by applying Definition 3.7. If
not, smode cannot be resolved.

4. Build a new hybrid mode automaton by pairwise parallel composition:

Asup = (- (AL [ Ag) [T A3) |-+ [ A

10This view for transition systems is most prevalent for statecharts and hierarchical state machines [Harel 1987,
Harel et al. 1998], which ideally even enjoy the Liskov substitution principle [Liskov et al. 1986] for states (i.e., informally,

substates do not violate the purpose of the superstate).
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5. Refine supermode g by A,
Ares = q» Asup-

O

If the final mode refinement is admissible (which, again, can be easily checked; see Defini-
tion 3.11), then Ay, is a hybrid mode automaton that extends mode g with the combined behav-
iors of Ay, ..., A,. One peculiarity we ignored is that A, ..., A, can themselves define submodes
with smode (-). There exist two solutions. First, before entering step 3, these submodes can them-
selves be recursively resolved, such that the resulting A’ is free of modes that use smode (-). Sec-
ond, at step 3, submodes of Aj, ..., A), can be combined in the process by using parallel com-
position and the resolution scheme above can be applied continuously until no more submodes
remain. Both solutions are semantically equivalent.

3.3. Syntax and Semantics of Skills and Skill Graphs

In the previous section, we introduced language SL and hybrid mode automata as a means to de-
scribe the behavior of hybrid skills. In this section, we finally focus on the formalization of skills
and skill graphs, where hybrid mode automata and assume-guarantee interfaces play a key role.
The goal is to develop a framework that is modular and allows to maximize reuse of already imple-
mented elements. In particular, hardware and software skills are only described by their interfaces.
We proceed with the formalization of skills and skill graphs in Section 3.3.1. Afterwards, we present
a sound technique to compose skill graphs in Section 3.3.2, which allows to develop skill graphs (i.e.,
their represented maneuvers) in isolation and subsequently to combine them automatically.

3.3.1. Formalization

Now that we have all the ingredients together, we can finally give formal definitions for skills and
skill graphs. For this, we first assume that there exists a universe of unique identifier symbols Name,
by which we may distinguish different skills. Moreover, each skill is typed with a type of the domain

Type = {behavior, action, perception, planning, sensor, actuator}

Types correspond to a skill’s responsibility, as described in Section 3.1, but also regulate, which
skills in a skill graph can build a relationship. We proceed with the formalization of skills and skill
graphs separately.

Formalization of Skills

When focusing only on the design of the controller logic, skills can be described by only four in-
gredients, namely (1) a unique name, (2) a type, (3) assumptions and guarantees over formulas in
first-order logic with real arithmetic, and (4) a behavior that, given the assumptions, should enforce
the guarantees. Formally, we provide the following definition.
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Definition 3.13: Syntax of Skills

A skill is a tuple (name, type, Z, B), where
® name € Name is a unique identifier symbol,
m type € Type is an associated type,
m T = (Vin, Vout A4 #C) is an assume-guarantee interface,

m B3 is an associated behavior over variables V" U V°ut. For hybrid skills (ie. type €
{behavior, action}), BB is represented by a hybrid mode automaton

A - <Q/ qol Vin, VOUt, Tl”anS, Dyn, Ctr|>.

For all other skills, 3 is undefined for now.

We denote the universe of all skills by S.

As our goal is to verify maneuvers represented by skill graphs (i.e., the controller logic) as early as
possible, we only provide a concrete behavior for hybrid skills, which will become subject to verifi-

cation. The behavior of all other skills is only represented by their assume-guarantee interfaces.

Example 3.6. In Listing 3.2, we show an excerpt of the textual description of action skill On from the thermostat
example (seeSection 3.1.2). This skill is an isolated description of the behavior of the thermostat, when it is
turned on. As seen before, the discrete controller sets the heating power to a value greater than u and the single
ODE models the expected increase in temperature. The hybrid mode automaton is described on the right side,
where the discrete and dynamic control of each mode is described after using keyword behavior and a mode
identifier. The textual description comprises the three elements controller, dynamics, and transitions.

1 skill On : Action init My

2 input variables: behavior Mj:

3 x, u, k : R controller:

4 output variables: havoc h;assume h>u
5 h : R dynamics:

6 assumption: {x =K(h—x)&x <u}
7 x<u transitions:

8 guarantee: to My when x < u;
9 x < uApast(x) <x

Listing 3.2: Excerpt of the textual representation of skill On.

Skill On as illustrated in Example 3.6 does not depend on any other skill and may therefore be an-
alyzed in isolation. However, we also saw in the previous section that behavioral skills on a higher
level serve as controllers for behavioral skills on a lower level. For instance, skill Heater depends on
skill On (or at least a valid replacement). Although we provide means for describing the intended

M This simplification allows us to assume idealized sensor values, perception and planning results (all possibly with known
error rates), which clearly must be implemented when deriving a concrete program. Nonetheless, it is surely possible
to model hardware skills as hybrid automata, as demonstrated by Mitra [2021:Ch. 11] for a simple powertrain model.
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behavior in an abstract fashion (e.g., Hoare triples), eventually such dependencies must be resolved
with a concrete instantiation. Skill graphs formalize these dependencies by expressing which con-
crete skills should work together to represent the intended maneuver. Before we formalize skill
graphs, however, we first explain the new role of Hoare triples and invocations in skills.

The Role of Hoare Triples and Invocations in Skills

In Section 3.2.1, we introduced Hoare triples and invocations as part of SL. However, both con-
structs originally target the complete scope of SL, whereas hybrid mode automata explicitly parti-
tion the behavior of modes into a discrete and dynamic part. For practical usage, this notion is re-
fined to fit the needs of hybrid mode automata.

With Hoare triples, a developer has two options. First, we allow to explicitly abstract complete
modes with a single Hoare triple. For this, we add keyword abstract_behavior to signify this ap-
proach. A correct implementation is then a concrete mode itself. Second, Hoare triples can also
be used at any position in the discrete controller part of a normal behavior. Consequently, this
Hoare triple is only implementable by a concrete program of SLyc. We do not offer an option to
use Hoare triples in the dynamics part of a normal behavior.

Invocations can be used in either the discrete or dynamic part of a normal behavior. However,
invoked code fragments must also be either a program of SLgjs. or SLgyn, respectively. We signify such
fragments with prefixes ctrl and dyn. Furthermore, such fragments are shaped like procedures with
arguments and — as reasonable in the context of deductive verification — can be equipped with a
precondition (keyword requires) and postcondition ensures. We view these fragments as reusable
code snippets, which also increases modularity and reuse. In Listing 3.3, we exemplify both con-
cepts by modeling skill Heater of the thermostat example.

1 dyn ODE_off (K,x,1) init Mo,

2 requires x > I; abstract_behavior Mg,:

3 ensures x > [ Apast(x) > x; (x < u)Mon(x <uAh > uApast(x) < x|)[x,h]
4 := {¥ = —Kx&x>1} transitions:

5 to Moy when x > u;

6 skill Heater : Behavior behavior Mgg:

7 input wvariables: controller:

8 x, u, k : R skip;

9 output variables: dynamics:

10 h : R invoke ODE_off (K, x,1);
1 assumption: transitions:

12 1<x<u to Mo, when x <][;

13 guarantee:

14 I<x<u

Listing 3.3: Initial version of skill Heater.

Mode Mo, is declared as abstract and its behavior is described by a Hoare triple. Mode Moy in-
vokes code snippet ODE_off(K,x), which represents the corresponding ODE. Although mode Mon

does not have a concrete implementation yet, the description of Heater is already enough to be veri-
fied.
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Formalization of Skill Graphs

We formalize skill graphs as directed acyclic graphs, where nodes correspond to skills and directed
edges represent their dependencies. As hinted before, only skills with particular types can form
valid parent-child relationships, which we illustrate in Figure 3.6 with a defined type hierarchy.
The edges represent a can-be-child-of relationship. We omitted self-directing edges for readabil-
ity, but they exist for any skill except hardware skills.

T

External
-+ Observable

Behavior
Action

Planning

Perception

- Sensor Actuator
1

Figure 3.6.: Type hierarchy for skill graphs. Solid arrows illustrate the minimal hierarchical structure between
skills, whereas grey arrows illustrate the transitive relation. Self-directed edges are omitted, but

exist for all types except sensors and actuators.

Sensors can be child of any skill type except actuators. Conversely, actuators can only be child of
hybrid skills, which is true for planning skills as well. Perception skills, however, can be child of
planning skills. Furthermore, action skills can only be child of behavior skills. The bottom and top
element informally represent that a well-formed skill graph needs to have sensors and actuators at
the bottom and behavioral skills at the top. Next, we define the syntactic domain of skill graphs.

Definition 3.14: Syntax of Skill Graphs

A skill graph is a triple (S, r, E), where
m S C S is a finite set of skills,
m 7 € S is the root skill,

m E C S x Sisaset of directed edges between skills. An element (s,s’) € E consists of
predecessor (or parent) skill s and a successor (or child) skill s’. If the context is clear, we
use notation s --» s’ to indicate that there exists an edge (s,s’) € E.

We denote the universe of all skill graphs by G.
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To make the modeling for developers more rigorous, we impose well-formedness constraints
on skill graphs that prevent typical classes ofill-formed models. For instance, a skill graph always
contains exactly one root skill » and the typing hierarchy as explained before must be respected.
To do so, we need the path between two skills. Formally, a path of length / — 1 is a (possibly empty)
sequence of | — 1 edges 75,55, = 1 —=> S2, 52 —=* S3, ...,5_1 —-> 5. A path between skills s, s’
exists if 77;__,¢ is non-empty (empty path denoted by €), and does not exist otherwise.

Definition 3.15: Well-Formed Skill Graph

Let G = (S, r,E) be a skill graph. G is well-formed if and only if:

WF;: each skill s € S\ {r} has at least one parent s, € S (i.e,, 3s, € S : 715, _,; exists) and
there always exists a path from r to s (i.e., Vs € S\ {r} : 7r,__,; exists),

WF,: the root skill is of type behavior and each edge s --» s’ respects the type hierarchy
depicted in Figure 3.6,

WFs: G is acyclic (i.e, fors,s’ € S, if 7r;__,y exists, then 7y __,5 cannot exist),

WE,: skills of type sensor have no input variables and skills of type actuators have no output
variables,

WFs: interfaces of sensor and software skills must be compatible (see Definition 2.11),

WF;: for each variable v € V" of a non-actuator skill s, there must exist a path 7,__,y, where
v € V3" is defined. Conversely, for each variable v € Vi" of an actuator skill s, there
must exist a path 7y__,,, where v € V3" is defined,

WPF;: an output variable of a sensor or software skill is not allowed to be an output variable
of 'a hybrid skill,

WFg: forall s € S, submodes must be resolvable (see Algorithm 3.1),

WFy: foreachskills € S, Ay ¢5 — ¢ must be satisfiable, where ¢S is the guarantee of any
software skill s’ € S on an existing path 775,

The first four well-formedness constraints are straightforward. With WFs, we require that we can
see the collection of sensor and software skills as one composite with only defined output variables.
That is, software skills must not define output variables if they were introduced before on skills
on a path. WFs enforces that each input variable is connected to an output variable. WF; enforces
that hybrid skills cannot redefine output variables. Intuitively, this means that the composite of
software and sensor skills and the composite of hybrid skills are both compatible. Note, however,
that these two composites have different meanings; each sensor and each software skill should be
viewed as a single isolated process, whereas the collection of hybrid skills can be viewed as a single
running process due to our notion of mode refinement. This is why multiple hybrid skills are allowed
to define the same output variables, where compatibility is checked on the level of hybrid mode
automata. WFg enforces us to include all skills that are necessary to resolve submode dependencies.
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Finally, WFy expresses that assumptions of dependent higher-level skills (i.e., software and hybrid
skills) must be respected by guarantees of lower software skills.

3.3.2. Composition of Skill Graphs

From the perspective of software engineering practices, the advantage of skill graphs is their mod-
ularity, as they decompose the overall maneuver into smaller and easier manageable tasks. To take
advantage of this, a core idea is to design multiple skill graphs in isolation and to subsequently com-
pose them with little effort. The benefits are manifold. First, for concrete cyber-physical systems
(e.g., specific robots or vehicles), lower level skills are often shared between maneuvers. For instance,
a skill that manages longitudinal dynamics will be part of many different maneuvers. Composing
skill graphs therefore increases reusability. Second, this supports the distribution of modeling tasks
in multi-team software development. Third, when safety guarantees can be transferred from smaller
skill graphs to a larger one, then identification and location of modeling mistakes is improved. Fi-
nally, this targets scalability of the verification strategy by minimizing costly re-verification.

Our composition technique is inspired by superimposition of graph structures, where two graphs
are recursively merged together by overlapping their substructures. Starting from the root skill of
one of the skill graphs, identical skills at the same level can then be merged together to from a
new skill graph. However, this process forces us to think about a common root skill. Typically,
skill graphs do not share a common root skill, as they represent dissimilar behaviors. From the
perspective of a developer, there are two obvious reasons for composing skill graphs, which we re-
fer to as parallel composition and planned composition:

Parallel Composition. The maneuvers represented by the two skill graphs can run in parallel, which
should be exhibited by a third skill graph.

Planned Composition. The maneuvers represented by the two skill graphs should not run in paral-
lel, but should be controlled with a top-level controller to form a new maneuver.

An example for the first reason for road vehicles would be keeping a distance to a leading vehicle
while also keeping the car inside the lane. An example for the second reason would be the explore
world maneuver, where turning is only performed after the robot comes to a halt. The first class
of composition can be accomplished automatically, whereas the second class requires additional
manual effort by developing a new behavior. For a more comprehensive discussion, we introduce
so-called pure controllers. Pure controllers are typically the method of choice for behavioral skills
and are located at higher levels in the skill graph hierarchy. Instead of writing to output variables
themselves, they merely define operating modes, evaluate the incoming data, and allow to transit to
a different mode. Discrete controller code and dynamics are handled by implemented submodes.

Definition 3.16: Abstract Mode and Pure Controller

Let g be any mode and Ctrl; € SLgj its discrete program. g is called abstract if its discrete
controller is of the form Ctrl,= {skip;smode ... }. A pure controller is a hybrid mode au-
tomaton with no dynamic systems (i.e., Dyn = @), where each mode is abstract. We call a
pure controller with only one mode a combinatorial controller.
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Example 3.7. Consider the explore world maneuver illustrated in Figure 3.3. The top-level behavior Explore
World is modeled as a pure controller with three modes: [Drive], [Brake], and [Turn]. The pure controller decides
when to switch modes, but each mode delegates the actual controller output to the underlying skill Control
Dynamics. The thermostat system does not have a pure controller. Nevertheless, skill Heater could outsource
mode [Off ] to a new action skill to then be considered a pure controller.

In the following, we define both types of composition in an algorithmic fashion. The paral-
lel composition of skill graphs is essentially a simple synthesis problem, where we automatically
synthesize a new root for the original two top-level behaviors. The planned composition uses an
already defined behavior skill as a new root.

Algorithm 3.2 (Parallel Composition of Skill Graphs). Let G; = (S1, 71, E1) and G, = (Sy, 12, E2) be
two well-formed skill graphs. Their parallel composition G = G; || G; is given by the following
process if the behaviors of r; and r, are compatible.

1. Define a new skill r = (name, behavior, Z,, || Z;,, A;), where name is a unique name and A, is
a combinatorial controller with Ctrl,o= {skip;smode r; || r2}.

2. Define a new set of skills S = S; U S, U {r}.

3. Define a new set of edges E. For every s,s’ € S\ {r}, there exists an edge (s,s') € E if
(s,8') € Sy or (s,s') € Sy. Additionally, (r,71), (r,72) € E.

4. G =Gy || Gy = (S,r,E) is a new skill graph.
O

Algorithm 3.3 (Planned Composition of Skill Graphs). Let G; = (S1, 11, E1) and Gy = (Sp, 12, E2) be
two well-formed skill graphs. Their planned composition G = G; e, G, for a manually developed
hybrid skill 7 is given by the following process.

1. The behavior of r is a pure controller that refers to root skills r; and 7, in its smode (:)-
declarations.

2. Define a new set of skills S = S; U S, U {r}.

3. Define a new set of edges E. For every s,s’ € S\ {r}, there exists an edge (s,s') € E if
(s,8') € Sy or (s,s') € Sy. Additionally, (r,71), (r,72) € E.

4. G = Gy ¢, G, = (S,r,E) is a new skill graph.
]

For the parallel composition, we can see that assumptions and safety guarantees are transferred to
the new top-level behavior by parallel composition of the interfaces. For the planned composition,
the interface is manually written. In the next section, we explain how skill graphs are verified. We
will see that validity of individual skill graphs transfers to their parallel composition.
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3.4. Modular Verification of Skill Graphs

We have now established a formalization of skill graphs based on assume-guarantee interfaces and
hybrid mode automata that enables us to finally reason about correctness of skill graphs and con-
structing associated proofs. In its simplest form, we may try to prove that the behavior of a skill in
isolation indeed adheres to its specification (see Definition 2.10). This gives us the following task
for each skill s € S of interest with its behavior B and environment £:

PN E — (B¢l (3.1)

The environment is simply an invariant that expresses known facts about variables in V8%, For
instance, # > [ is a known fact about constants u and / of the thermostat example and therefore
& = u > I. If the behavior would constitute a simple hybrid program, Equation 3.1 would represent
a valid d£ formula, and proving it based on dL’s calculus would suffice. For SL and hybrid mode
automata, we first have to translate ; into a valid hybrid program, which is straightforward based
on the fact that SL and hybrid programs are closely related.

Besides verifying that each skill is valid, validity of a skill graph additionally requires that all
assumptions of each skill are met. For instance, if a sensor or software skill only operates within
specified error margins, hybrid skills of a valid skill graph must be able to work within these error
margins. Assuming smaller errors would potentially require to replace sensor or software skills.

In Section 3.4.1, we present how complete skill graphs are transformed into hybrid programs
and how the overall verification problem can be expressed as a formula in d£. In Section 3.4.2, we
demonstrate how correctness of skill graphs can be transferred to their parallel composition.

3.4.1. Transformation to Differential Dynamic Logic (4 L)

To verify correctness of a hybrid skill (cf. Equation 3.1) using the calculus of d£, we first trans-
late its hybrid mode automaton to a syntactically valid hybrid program. Following the semantics
of a hybrid mode automaton, the idea of the translation is to split the behavior into two alternat-
ing parts. First, a transition is taken to proceed to the next mode.'” This step always happens in-
stantaneously without advancing time. Second, the mode is executed, where first the discrete con-
troller is executed (again instantaneously) and subsequently the dynamic system runs and advances
time. This also means that discrete controller and dynamic system must be translated from SL to
the syntax of hybrid programs. In the following, we present the translation scheme in a top-level
manner, where we first explain how the hybrid mode automaton is translated, and afterwards how
discrete controller and dynamic system are translated.

In Figure 3.7, we present the translation of a hybrid mode automaton to a hybrid program. To
identify modes, we add a new variable m to the hybrid program that represents the current mode
and assign each mode 4 a unique id denoted id(q) € IN. For simplicity, we assume that id(q°) =
0. As usual, the initial mode is ¢q°. Afterwards, the behavior alternates between taking a transi-
tion and executing the current mode. Both actions are resolved using nondeterministic choice to-
gether with evaluating the current mode m. This guarantees that in each run only the discrete

12Note that this can also mean that the initial mode is not the first mode that is executed. However, the first transition
that is taken is always an outgoing transition of the initial mode.
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transy ama(A) = {m :=id(q°); (transitions 4; modes 4)*}

transitons4 = { |J ?2(m=id(g) A g);m:=id(q)}
(9.8/4')ETrans
modes 4 = { |J?m = id(q); past,; mode, }
q€Q
past, = x; :=X1,...,X, =X,  forallfreevariablesin g

mode, = {transs. (Ctrl(q)); transs (Dyn(q)) }
Ctrl(q) = Ctrl(q)[x; — x; |;ms  forallfreevariablesing
Dyn(q) = Dyn(q)[xi — x; |ns  forallfreevariablesing

Figure 3.7.: Translation of hybrid mode automata to hybrid programs.

controller of the respective mode is executed. Following the semantics of hybrid mode automata
(see Definition 3.5), free variables are replaced by their past version, which has only an effect if out-
put variables are not only written, but also read.

Function transg, () takes an SL program and translates it to a valid hybrid program. Most con-
structs we define in SL are straightforward to translate. Only the assert statement and the Hoare
triple need more care. For the assert statement, we add a new unique variable called assert. In the
beginning, we assume that assert will be equal to 0. If an assert statement cannot be satisfied in
the current run, we add statement assert:=1. In the proving process, we still check if assert=o holds
in the final state. If that is not the case, we will not be able to prove correctness of the behavior."?
For Hoare triples, we follow the semantics of SL by first asserting the precondition, then applying
nondeterministic choice to variables of the frame, and finally assuming the postcondition. In Fig-
ure 3.8, we present the final translation of statements of SL to statements of hybrid programs.

In the following, we formalize the generation of verification conditions to verify hybrid skills in
isolation and to assert the correctness of complete skill graphs.

Verification Condition Generation

To verify a skill in isolation, we require that the contained hybrid mode automaton is free of
submodes (see Algorithm 3.1). We may further assume that for resolving all submodes, we can
refer to a public repository of skills, such that a skill is only verifiable if all submodes lead to ex-
isting skills and can indeed be resolved. Clearly, in the context of a skill graph, we have then
to show that the exact same skills are also part of that skill graph. Then, for a hybrid skill
s = (name,1,Z, A), Equation 3.1 is rewritten as

¢ N E Nassert = 0 — [transyaga(A)]¢S A assert = 0, (3.2)

Bt would also be possible to directly extend the syntax of hybrid programs with a new assert keyword and to extend dL’s
calculus with a new rule [assert Q]P +» (Q A P), where Q is a logical formula and P a formula in d£. However, it is
more convenient (and trustworthy) to apply d£ as-is.
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transs, (if(H){S1 }else{S,}) =?H; S1U?—H; S,
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Figure 3.8.: Translation of programs in SL to hybrid programs.
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where variable assert is expected to remain unchanged (i.e., no assertions are violated). Clearly,

verifying each skill in isolation following Equation 3.2 is not ideal, as higher level skills in a skill

graph may refer to lower level skills via smode (-). Consequently, some automata are poten-

tially resolved more than once and essentially re-verified, which introduces undesired redun-

dancy. Only proving the top-level skill suffices to establish correctness of a maneuver, but also

does not take advantage of the modular structure of skills. To make the leap towards more so-

phisticated modularity, we first derive a technical result with respect to compositionality, and af-

terwards discuss how we can improve the verification process.

Theorem 3.3: Proof Rule — Split Verification Condition

Let s = (name, T,Z, A) be a skill. Then Equation 3.2
P2 N E Nassert = 0 — [transyga(A)]PS A assert = 0 (33)

is valid if the following two formulas are also valid:

(3(4° g/9) € Trans : (3.4)
(PANE = Q) NPA ANE Nassert =0 — [past,; mode, ¢S A assert = 0)
and (VgeQ: (3-5)

gSANEN \/  gAassert=0— [past,; mode,|¢$ A assert = 0).
(q',8.9)€Trans




Intuitively, Equation 3.4 expresses the initial execution of the first mode after taking the first
transition. Remember that a well-formed hybrid mode automaton must transition at each step,
but the transition is unambiguous. Therefore, (¢4°,¢,9) € Trans is guaranteed to exist and it is
unique. Additionally, we can assume that ¢ holds initially. Afterwards, safety guarantee ¢S must
hold indefinitely. Equation 3.5 evaluates the correctness of each mode in isolation. It can assume
¢S, but not ¢! anymore, as the initial condition might be violated by any previous executed mode.
In the following, we proof this claim. Key steps are unrolling the loop presented in Equation 3.2
once and using ¢& A £ A assert = 0 as the loop invariant afterwards.

Proof. We prove Equation 3.3 based on d £ (cf. Section 2.2.2), where I' = ¢ A € A assert = 0 and
A = ¢S Aassert = 0

(*)2 (eval)
I'Am =id(q) F- [past,; modeg; (...)"]A ,
I'Am =id(q) F [U?m = id(q'); past,,; modeg; (... )"]A Z;f:l;)
I Am=id(q) F [modesy; (...)*]A A 0.0)
(*)1 el I'Am=0F [U?(m =0Ag);m:=id(g); modes 4; (...)*]A (Ur;fold)
r'-A I' A m =0 | [transitions_4; modes 4; (transitions 4; modes 4)*]A

(iter. [*])
' [m :=0; (transitions_4; modes 4)*|A

['F [transyaa(A)]A

(*)1 represents the state where the loop is repeated zero times. We consider this state to be

(Unfold)

trivially true, as the safety guarantee must also hold initially for a maneuver. The evaluation of
(), corresponds to Equation 3.4. Afterwards, we proceed as follows, where ] is a loop invariant.

()5

JA V g I [past,; mode,]]
(4',8,9)€Trans

(Vg € Q)
(*>3 (eval) & (eval) — : (Unfold)
IFAm=id(q) -] A HA J b [transitions_4; modes 4]] oop)
oop,

I' Am =id(g) I [(transitions_4; modes 4 )*|A
(*)2

We choose | = A A £ for the loop invariant.* Then, (x); and (*)4are valid, and (x)s corre-

sponds to Equation 3.5. For readability, we shortened the prooftree. For clarification, the term
V(¢,g,9)eTrans § Stems from the fact that we consider each transition from a mode 4 to g with
guard g. For each transition, we get one, new proof obligation, where current mode m and guard
g are part of the antecedent of that proof obligation. Consequently, we can unite all proof obli-
gations with identical values for variable m using the inference rule for the logical or in the an-
tecedent. O

The technical result of Theorem 3.3 enables us to think about how verification conditions
can be simplified even further. For abstract modes with empty dynamical systems, one consid-
eration is to not resolve submodes, but to abstract them with corresponding assume-guarantee

141n general, this choice for ] may not always succeed, which is why the implication in Theorem 3.3 is only unidirectional.
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contracts. In particular, submodes of a skill are associated with skills and therefore the respec-
tive interfaces are known. We have also defined composition for assume-guarantee interfaces
(see Definition 2.11), which we can exploit. For instance, consider a mode g with controller
Ctrl; = {skip;smode M; || M,}, where M; and M, can be traced back to interfaces Z; and
7Z,. We may then reformulate the controller as follows:

Ctrl, = {skip;assert ¢ A ¢S — 7' A ¢3'; assume ¢ A @5 }.

This also means that verification of g after the first transition reduces to the following formula
if g is a mode of skill s = (name,,Z, A):

= @SAEN ) g—= (P APT = ¢ APP)) A (PF A PS — ¢F).

(¢',8,9)ETrans

Abstract modes without ODEs are therefore particularly interesting, as the verification con-
ditions reduce to formulas of first-order logic for these modes. For pure controllers, we can
generalize this idea with the following corollary.

Corollary 3.1: Proof Rule — Modular Verification of Pure Controllers

Let s = (name, T,Z, A) be a skill and A a pure controller. Furthermore, let ‘-I’f;‘ and ‘I’,?
denote the assumption and guarantee, respectively, of the assume-guarantee interface of the
resolved submode for mode g. Then,

PN E Nassert = 0 — [transy v a(A)]PS A assert = 0
is valid if the following two formulas are also valid:

3(q%g,q) €ETrans:  ((PANEEG NPENE — ‘{’g‘) A (‘I’ff —¢F)  (3.6)

and Vg€ Q: (¢SAEN \ g—>‘{’§‘)/\(‘FqG—>¢S). (3.7)
(4',,9)ETrans

Proof. As s is a pure controller, we know that Ctrl 4(q) = {skip; assert ‘I’j?;assume ‘Pg} and
Dyn 4, = @. Based on Theorem 3.3, we get:

(1) (4% g,q) € Trans 4 :
(PENE =G NPANE Nassert =0 — [past,; mode,|¢S A assert = 0)

(2) VgeQ:
(pSAnEN \/ gAassert=0— [past,; mode,|¢S A assert = 0).
(9',8,9)ETrans

To simplify the proof, we observe that past, = x™ := x;... and substituting each occurrence of
a free variable x in Ctrl 4 (q) with their previous edition x~ cancel each other out, which is why
we can ignore it in the following proof. We proceed by deduction, where we use I' and A as the
respective placeholders for the precondition and postcondition:
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(*)1 (*)2

T =¥ — [assert := 1][?¥(]A LY, Y5 F A
(D
T [{2-7][assert := 1][?¥7]A 0 T=Y¥4 — (Y7 = A)
[+ [{?-¥ assert := 1][7¥]A I 29 [2¥5]A
T [{2-7; assert := 1U2¥ }][7¥7]A
{?2-¥#; assert := 1U ?‘Pg‘}; ?"I’?]A

(=7)
(D)
(v

(2

(transsi (+))

I
I I [transs, (skip; assert ‘I’g‘;assume ‘Y{?)]A
T [ (Unfold)

mode,|A

Branch (x); affirms that if precondition I cannot imply ¥Z!, then a failure is the consequence.

Hence, I' — ‘I’;I“ must hold. Branch (), affirms that if we can assume ‘I’;;‘, then ‘I’g implies the

postcondition. Hence, ‘I’EC/; — A holds. Together, we get:

(T =¥ A (Y — 1),

which, when applied to formulas (1) and (2) for each mode, results in Equation 3.6 and Equa-
tion 3.7. O

A special case that we need in the following is Corollary 3.1 applied to skills with combinatorial
controllers. In this case, only one mode exists and the guard of its self-transition reduces to true
due to the correctness constraints of hybrid mode automata. The two formulas of Corollary 3.1 for
askills € § and mode g € Q4 to prove then reduce to:

E@AAE =Y A (YT = ¢7)
and E (¢S NE — ‘I’gl) A (‘I’,? — ¢°).

3.4.2. Compositional Verification

In the previous subsection, we addressed the modular verification of skill graphs and what it means
to verify hybrid skills in isolation to assert their validity. Validity of an entire skill graph follows
naturally from the validity of each individual skill.

Definition 3.17: Valid Skill Graph

Let G = (S,r,E) € G be a well-formed skill graph. G is valid if and only if for all hybrid
skills s € S (type € {behavior, action}), formula

PN E Nassert = 0 — [transy g (As)] ¢S A assert = 0

is valid. We write |=¢ s to express that s is valid in G and we write |= G to express that the
entire skill graph is valid.

Now we can formulate the main theorem of this chapter. Essentially, this theorem expresses that
if two skill graphs are provably correct and both represented maneuvers can run in parallel with-
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out interfering, then we can combine them to a third skill graph that is automatically provably cor-
rect. Even stronger, we can infer a new proof, which is simply the conjunction of all the individ-
ual results, namely the proofs of individual skills (i.e., their union), proof of compatibility between
the roots hybrid mode automata, and Corollary 3.1.

Theorem 3.4: Parallel Composition of Skill Graphs Retains Validity

Let G1, G2 € G be two valid skill graphs and let the hybrid mode automaton of their roots be
compatible. Then, their parallel composition G; || G; yields also a valid skill graph.

Proof. Assume that G = G; || Go = (S,r,E) with r = (name, behavior, Z,, || Z,,, A,) being
the new root skill. A, is a combinatorial controller with the single mode g and therefore by
definition also a pure controller. Applying Corollary 3.1 results in the following two formulas:

1) E@NESF)AET = ¢F)
@) F@TAE =Y A(YT — 7).

Skill 7 is constructed in a way, such that ¢/ = (¢S A P — @i A pf}) and ¢F = ¢ A ¢7. How-
ever, the submode of A,’s single mode is also the parallel composition of r; and r,. Consequently,
Y= (¢ Ay — ¢ Ag))) and ¥ = @i A ¢ Tt follows that ¢! = ¥/ and ¢f = Y. This
leads to:

W) E@AE =) A (PF = ¢) = true
(@) E(@FAE =) A (7 = ¢F) = true.

Condition (1) is easy to see. The left conjunct of condition (2) reduces to (7} A ¢7l) — (¢5 A
¢S — o8 A ¢f), which is a valid formula. O

3.5. Case Study: Vehicle Follow Mode

In this section, we describe our tool support and demonstrate our concept on a case study of a ve-
hicle_follow mode (i.e., an advanced adaptive cruise control), where the goal of the host vehicle is to
safely follow another vehicle with a specified distance and activated lane keeping assistance. In
particular, we give an overview of our tool SKEDITOR in Section 3.5.1. We explain how we model
and verify the vehicle follow mode and present results in Section 3.5.2. Finally, in Section 3.6, we
discuss threats to the validity of our approach.

3.5.1. Open-Source Tool Support

We implemented the modeling, analysis, and verification of skill graphs in a tool suite with the name
SKEDITOR. The implementation is written in Java and based on Graphiti'®, which is an Eclipse-
based graphics framework for creating graphical domain-specific languages. This way, we are able

Bhttps://wuw.eclipse.org/graphiti/
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to embed our framework into the Eclipse IDE and make use of all its features. The language for
implementing skills is written in Xtext'®, which is a framework for creating textual domain-specific
languages. The initial version of this tool support was developed in the course of a bachelor’s the-
sis [Belli 2018]. In Figure 3.9, we illustrate the key aspects of SKEDITOR that directly reflect the theo-
retical concepts we developed throughout this chapter, namely (1) realizing skills with hybrid mode
automata and modeling skill graphs, (2) translating skill graphs to proof obligations in d.£, and (3)
asserting the correctness of these proof obligations with KEYMAERA X.

([ Analyses | [ Composition | [ Modularity/Reuse |
t t
SKEDITOR KeEYMAERA X

[ e Proof Obligations

7z
—1 Correctness
skill Graph Skill Realization with SL Proofs

Modeling and Analyzing Verification

Figure 3.9.: Schematic overview of SKEDITOR.

Typical for Eclipse, users of SKEDITOR can create specific projects to model their skill graphs,
which is done in a dedicated * . sked file. Skills and partial skill graphs can also be modeled in iso-
lation to establish a repository of reusable skills and skill graphs, which can be imported to new skill-
graph models via a dialog. Besides additional UI components, such as wizards for the composition
mechanisms (see Section 3.3.2), several analysis components ensure that the well-formedness con-
straints of skill graphs and hybrid mode automata are satisfied. For instance, validity and compat-
ibility of all interfaces in a skill graph are checked using the Z3 SMT solver [De Moura et al. 2008].

For realizing skills, the grammar of hybrid mode automata and SL is exactly implemented as de-
scribed in Section 3.2 and Section 3.3. Submodes that are referred to by applying smode - are resolved
by using a skill’s name. Resolution is successful if the respective skill is either found in the corre-
sponding skill graph or available as an isolated module in the repository. SKEDITOR ensures that all
names of skills in a project are unique. Importantly, SKEDITOR does not enforce all well-formedness
constraints, as it provides the distinction between partial and complete skill graphs. For instance,
if a submode cannot be resolved, a skill graph is labeled as partial (or incomplete), and can be com-
pleted in the future. The same holds true if input variables are not provided by lower-level skills.

Verification is accessible for partial and complete skill graphs. However, unresolved submodes
prohibit a verification. To make the verification process more comfortable, KEYMAERA X is di-
rectly integrated in SKEDITOR and enables either the automatic or interactive verification of skill
graphs. To verify a skill with KEYMAERA X, a user has the option to (1) either fully inline depended
functionality to create the complete hybrid program (and verification problem in d£) of a maneu-
ver or to (2) use abstraction mechanisms where possible, such as the composite interface for sub-

nttps://www.eclipse.org/Xtext/
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Figure 3.10.: Combined skill graph expressing the overall follow mode.

modes. If certain dependencies cannot be resolved, SKEDITOR automatically applies the abstrac-
tion mechanism even if inlining was applied. For instance, this is the case for Hoare triples, where
only the translated abstraction is proven. A valid implementation for a Hoare triple must be pro-
vided manually in the current version of SKEDITOR.

3.5.2. Setup

We illustrate our skill-based modeling and verification approach with a vehicle follow mode per-
formed on the hard shoulder that consists of two sub-behaviors. First, the host vehicle must keep a
minimum distance to the lead vehicle to be able to perform an emergency brake without the pos-
sibility of a collision. Second, the host vehicle must not deviate too far from lane’s center. This
case study is adopted from Nolte et al. [2017], and was further extended in previous work [Kniip-
pel et al. 2020a]. Essentially, the overall behavior combines an adaptive cruise control with lane
keeping assistance for an unmanned vehicle operating on the hard shoulder. In Figure 3.10, we il-
lustrate the complete corresponding skill graph.

The overall skill graph can be decomposed into five smaller skill graphs. In the following, we
characterize these smaller skill graphs by their root skills.

G1 (Control longitudinal dynamics). This substructure represents a typical cruise control with max-
imum velocity v;,,y. The skill itself controls the acceleration and braking force. Over a con-
trol variable c, it is possible to access the brakes and to decelerate. Although this is an action
skill and the substructure represents a partial skill graph, a combinatorial controller as a new
root skill would suffice to create a well-formed skill graph.
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Skill Type Safety Requirement
Follow hard shoulder Behavior Combines safety guarantees of Control lateral dynamics and Control longitudinal dynamics.
Control lateral dynamics Action  Lateral controller must guarantee overshoot of less than 25 cm and vehicle deviates from the

center of the lane by at most half the lane width.

Control longitudinal dynamics ~ Action  Vehicle speed must not exceed 2.7 ms~!

Keep distance to leading vehicle Behavior Vehicle must keep a minimum distance of 10 m to leading vehicle

Follow mode Behavior Combines safety guarantees of Keep distance to leading vehicle and Follow hard shoulder.

Table 3.2.: Excerpt of safety requirements for five hybrid skills of the vehicle follow mode.

G; (Control lateral dynamics). This substructure represents a lane keeping assist to keep the car in-
side the current lane. For this, it controls the yaw rate of the steering system. Analogous to
Control longitudinal dynamics, this substructure represents a partial skill graph.

G3 (Follow hard shoulder). This skill is a combinatorial controller and represents the parallel com-
position of the longitudinal and lateral dynamics. That is, the hybrid mode automaton of
Follow hard shoulder consists of one abstract mode, which references both skills Control lon-
gitudinal dynamics and Control lateral dynamics. Informally, Follow hard shoulder controls the
current velocity while simultaneously keeping the vehicle inside the lane.

G4 (Keep distance to leading vehicle). This skill adds a distance measurement to the cruise control.
That is, if the distance to the leading vehicle is too close, Keep distance to leading vehicle
switches from cruise control to a mode that regulates the distance by decelerating the host
vehicle.

Gs (Follow mode). The overall behavior is a planned composition of the two sub-behaviors Keep
distance to leading vehicle, which is active if the distance to the leading vehicle is getting too
close and, Follow hard shoulder, which is active otherwise.

The informal safety guarantees for the skill graph of our case study are also adopted from
Nolte et al. [2017]. We present an excerpt of informal safety guarantees for the five skills mentioned
above in Table 3.2. Typically, safety requirements are given informally and must be translated to
their formal counterpart. In particular, behavioral skills Follow hard shoulder and Follow mode are
modeled as pure controllers and were developed with the already existing skill graphs in mind.
Therefore, they combine the safety guarantees of their referenced skill graphs.

This incremental development of more complex maneuvers further emphasizes the high reuse
potential of our framework that we developed throughout this chapter. For this case study, we are
particularly interested in how much verification effort we are able to save during the development of’
all five skill graphs Gy, ..., Gs. In particular, we concentrate on the following research question:

RQ: Towhat extent can our proposed skill-based approach including its emphasis on compositional verification
reduce verification effort?
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Proof Statistics
Skill Graph Obligation Step  Autom. Time [s]
Gq Monolithic 3,769 v 22.1
Gy Monolithic 7,223 v 68.2
Gs=G||G:  Monolithic 16924  (24) 312.2
Theorem 3.4 - v <10
Gy Monolithic 4,746 v 29.3
Submode abstraction 2,288 v 15.2
Gs = Gz ery Gy Monolithic 22,018 (31 485.9
Corollary 3.1 - v <10

Table 3.3.: Comparison of the verification effort for skill-based compositional verification.

3.5.3. Results and Insights

In the following, we present results of our case study, where we compare verification effort of a
monolithic modeling of all maneuvers with our approach that prioritizes abstraction and reuse.
All measurements were conducted on an Intel i7-6600U CPU @ 2.60GHz with 12 GB RAM. For
verification, we employed KEYMAERA X in version 4.7.3. Moreover, we used Z3 [De Moura et al.
2008] in version 4.6.0 as the internal solver for quantifier elimination, solving ODEs, and as regu-
lar SMT solver for checking validity of conditions. The Follow Mode case study is contained as ex-
ample in our online repository of SkEDITOR.”

In Table 3.3, we summarize the verification results for the five skill graph introduced in the
previous section. The obligation describes whether the respective skill graph was verified as a
whole (i.e., monolithic), or a different condition was checked that leads to an equivalent veri-
fication outcome. The proof statistics report on (1) the number of automated proof steps pro-
duced by KEYMAERA X, (2) whether the obligation was verified automatically or needed a num-
ber of user interactions, and (3) the execution time for the automatic proof search (i.e., exclud-
ing time for user interaction). Theorem 3.4 and Corollary 3.1 were checked independent of KeY-
MAERA X, which is why no proof steps are reported.

As illustrated, the monolithic models of G1, G, and G4 could be verified automatically, whereas
Gs and Gs needed a small number of user interactions. However, the parallel composition of G; and
Gy, which results in G3, was automatically established by Theorem 3.4. Furthermore, the planned
composition of G3 and G4, which results in Gs, was likewise automatically established by Corol-
lary 3.1. The three skill graphs Gy, G2, and G4 also needed the least number of proof steps. Whereas
the monolithic model of G4 needed 4,746 proof steps, submode abstraction reduced the number
of proof steps by approximately half. Proving correctness of the monolithic models of G3 and Gs
took the longest and needed user interaction. In contrast, both the parallel composition for Gz and
the planned composition for Gs with the newly introduced root skill FM were the most efficient,
as only satisfiability of the respective conditions needed to be checked.

Uhttps://github.com/AlexanderKnueppel/Skeditor
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The research question can therefore be answered positively. With respect to KEYMAERA X-4.7.3,
most time was spent during quantifier elimination, which decides truth of real-arithmetic formu-
las. Our case study therefore highlights that reusing skills or complete skill graphs can signifi-
cantly reduce the time spent during the automatic verification. Even more, user interaction could
be completely avoided in our case study to establish skill graphs G; and Gs. However, it is im-
portant to not overclaim this insight, as necessary user interaction is directly related to the user-
modeled skill graph and how precisely it is specified.

3.5.4. Threats to Validity

Results of our evaluation are confronted with some threats to validity that we discuss in the follow-
ing.

Internal Validity. The reported proof steps and measured execution time may greatly depend
on the employed version of KEYMAERA X and the underlying solver for real arithmetic. Repro-
duction may therefore lead to different results, as KEYMAERA X is actively developed. However,
the goal of this case study is to show that complete re-verification can be avoided, and that ver-
ification of monolithic models is costly. Under ideal circumstances, verification of a parallel
or planned composition reduces to checking satisfiability of first-order logical conditions. The
follow-mode maneuver in our case study constitutes such a non-trivial instance. We are there-
fore confident that our compositional verification approach allows to reduce verification effort
independent of the employed version of KEYMAERA X.

The skill-graph model could be modeled differently, which may lead to a different outcome.
We acknowledge that the results depend on the skill graph’s shape and the implementation of
all skills involved. Again, we used the case study as a non-trivial example to demonstrate our
proof-of-concept. Moreover, interactive verification as applied in this evaluation is still challeng-
ing and takes considerable effort. Consequently, the trade-off between complexity of a case study
and the feasibility of verifying it must be considered.

External Validity. Our verification results may not generalize to other maneuvers or application
domains, as we only evaluated a single case study. The goal of our evaluation was to emphasize
that our theoretical considerations of this chapter translate to the verification of non-trivial mod-
els. Moreover, the conditions we use that enable the application of Theorem 3.4 and Corollary 3.1
are not tied to a specific maneuver or application domain. In particular, the automotive domain
provides typically only a small number of actuators (e.g., powertrain for braking and accelerating,
and steering system), which quickly leads to interference of different maneuvers and consequently
limits parallel composition. We expect that other application domains, such as robotics or multi-
coptors, will benefit even further from our theoretical and practical considerations.

3.6. Discussion

Besides the demonstration of our concept on the vehicle follow mode controller, we discuss
fundamental choices we made in the formalization and implementation of skill-based mod-
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eling and verification in the following. Focal points are language design, verification strat-
egy, verification properties, and limitations.

Minimalist Language Approach. Instead of relying on general-purpose languages, we decided to
design our own domain-specific language for implementing skills, where the language itself’is in-
spired by labeled transition systems and hybrid programs. The reason for this is twofold. First,
our primary focus at design time is to verify that maneuvers respect specific safety guarantees. The
programming concepts we combined in language SL are completely sufficient to model any kind
of controller logic that we intend to verify. In particular, sensors, perception skills, and planning
skills are only described by their specification. It can be argued that the underlying software of’
theses functions is typically more difficult to implement (e.g., due to uncertainties, computer vi-
sion algorithms, or machine learning approaches), which we can ignore at this stage in den devel-
opment process. Moreover, simpler languages (e.g., without objects and heaps) are also inherently
easier to verify, which improves the verification process as a whole. Of course, before an actual de-
ployment, such controllers are typically re-implemented in some practical language to also con-
sider non-functional properties, such as performance.

Second, hybrid mode automata focus more on realistic behaviors compared to hybrid programs.
One goal of hybrid programs is to be able to represent a large family of possible controllers (i.e.,
by applying nondeterminism). Eventually, however, a very specific and deterministic controller
must be realized. Although this saves verification effort, as each realized controller part of that
family will be correct with respect to the family’s specification, implementation effort is still high
to eliminate nondeterminism. Hybrid mode automata remove nondeterministic choice as a lan-
guage construct, which prevents this otherwise upcoming implementation eftfort. In summary, our
choice was driven by easy modeling, more applicable verification, and also by an easier realiza-
tion of a model in a general-purpose language.

Theorem Proving versus Reachability Analysis. In the context of formal verification of hybrid sys-
tems, reachability analysis is the predominant verification technique performed by model check-
ers [Benvenuti et al. 2014; Frehse et al. 2011; Frehse et al. 2004]. Typically, model checkers compute
either an over-approximation of the set of reachable states or apply other kinds of heavy abstrac-
tions to reduce the size of this set. Afterwards, it is checked whether any of theses states violates
given safety properties. As usual, model checking hybrid systems suffers from the state-space ex-
plosion problem, which limits scalability. In contrast, we rely on a deductive technique (i.e., the-
orem proving) to formally verify safety requirements of modeled maneuvers. Consequently, we
avoid such costly techniques for over-approximation and are also able to verify maneuvers at de-
sign time. Furthermore, we complete successful verifications with a proof, which increases possi-
bilities for improving re-verification based on proof reuse, compositionality, and modularity. One
disadvantage of theorem proving is its tendency to perform inadequately in case of a mismatch be-
tween specification and implementation. In the worst case, identifying the reason why a particular
verification problem is not provable is almost impossible. Another disadvantage of theorem prov-
ing is that complex verification problems may require user interaction, as opposed to model check-
ing, which is completely automatic. Ideally, a development process integrates both approaches:



74

model checking in the beginning mostly for debugging purposes, and theorem proving for certi-
fication and improved re-verification at the end.

Specification Formalism. We use dL for specifying safety properties of skills. The reason is that d.£
combines hybrid programs with a logical proof calculus, which aligns with our goal of deductive
verification and generating proofs. We limit ourselves to safety invariants only, which must hold at
all times during operation. The reason is that we consider these properties the most crucial ones
that must be guaranteed at all cost and cannot be ignored (e.g., collision avoidance). Nevertheless,
it is possible to extend the specification language to cover temporal properties over the execution
of modes, as we already encode the overall behavior as an automaton and defined the execution
semantics as traces. For instance, we could try to verify that the explore world maneuver lets our robot
rotate on the spot only until it is safe to drive forward. This way, we not only verify that maneuvers
are safe, but we can also verify whether specific driving decisions are modeled as intended.

Model versus Real World. Naturally, most real-world problems concerned with cyber-physical sys-
tems are very complex. This constitutes an adversary not only for the verification procedure, which
is inherently plagued with scalability problems, but also for any modeler and developer, who must
design these systems. An important question in our case is: what is the trade-off between (a) model-
ing provably-correct maneuvers as presented in this chapter and (b) maneuver execution in a real-world set-
ting? This question will be the thematic anchor of the next chapter, where we make the leap from
verifying maneuvers at design time to validating (i.e., simulating) them at run-time. Nonetheless,
we base our verification model on the logical foundation for cyber-physical systems emphasized
by, which is profound and has been successfully applied to a number of case studies [Jeannin et al.
2017; Loos et al. 2011]. As typical for theorem proving and deductive verification, success often de-
pends on the complexity and sophistication of the specification.

3.7. Related Work

In the following, we discuss the role of skill-based modeling in the context of software engineering
practices and elaborate on differences of our approach to related work on hybrid systems verifica-
tion.

Roots of Skills and Skill Graphs

In 1970, Mesarovic et al. [2000] authored a textbook about hierarchical and multilevel systems in
large-scale industrial automation. The key essence was a formal theory about the coordination pro-
cess that rigorously describes how specific levels in the hierarchy of such systems may interact with
each other. Based on the work of Mesarovic et al. [2000], first concepts of bringing this hierarchical
modeling into the realm of automated driving together with decomposing hierarchical function-
ality into subsystems (later to be known as skills) were introduced by Maurer [2000]. Siedersberger
[2004] and Pellkofer [2003] extended these concepts further by introducing skill networks, which can
be seen as the immediate predecessors of skill graphs. Skill networks are also directed and acyclic
graphs with skills as nodes and dependencies as edges, but only consist of three hierarchical levels:
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actions, behaviors, and actuators. Identical to our approach, behaviors and actions only differ in their
fuzzy assessment of abstraction (i.e., whether a specific behavior is the focus of a skill network). In
contrast to Maurer [2000], their focus was also on skill realization and skill activation, which they man-
aged to describe with a mix of state machines and UML sequence diagrams. We adopted and gen-
eralized these considerations mathematically and practically by proposing hybrid mode automata
for describing the activation of modes and language SL for implementing skills.

A decade later, skill networks were further extended, but mostly used to describe a maneuver’s ar-
chitecture on a conceptual level. Bergmiller [2015] enhanced skills with performance metrics to en-
able monitoring the quality of active skills during operation. A corresponding performance model
allows to derive decisions in the context of automated driving based on a current performance eval-
uation. Importantly, Bergmiller [2015] focused on by-wire-vehicles and did not consider perception
or planning as part of skill networks explicitly. Finally, Reschka et al. [2015] proposed to incorporate
skill networks in the item definition of ISO 26262 [2011] as a description for functional modules of’
driving tasks and their dependencies. They refined skill networks to the notion of skill graphs as
adopted in this thesis. Besides sensor and actuator skills (among other data sinks, such as displays),
they also considered perception and planning skills as an additional software layer.

Since then, skill graphs played a key role in publicly-funded research projects’® combining
model-based software engineering practices and automated driving [Nolte et al. 2017; Bagschik et al.
2018]. We contribute to this corpus of research by giving skill graphs a mathematical foundation
that enables their analysis and verification at design time. Before, skill graphs were only used
in a pen-and-paper fashion in the concept phase to describe and visualize functional dependen-
cies. With SKEDITOR and our formal framework presented in this chapter, we bring skill graphs
into the realm of real software engineering practices, where skill graphs can be modeled, imple-
mented, verified, and even composed to create new maneuvers.

Modeling and Verifying Hybrid Systems: State of Practice

Today, the most popular formal models to describe hybrid systems can be assigned to one of three
archetypes, namely hybrid automata [Henzinger 2000; Alur et al. 1995; Alur et al. 1992], hybrid in-
put/output automata [Lynch et al. 2003; Mitra 2021], and hybrid programs [Platzer 2008; Platzer
2010; Platzer 2012; Platzer 2018]. Related formalisms include hybrid dynamical systems [Goebel et al.
2012] or switched systems [Liberzon et al. 1999]. All models differ in their syntax and expressive-
ness. For instance, hybrid automata are easy to comprehend and put great emphasis on the dynam-
ics of'a system, but they are not compositional. That is, reasoning about smaller parts of a hybrid
automaton is insufficient to reason about properties that correspond to the whole system. There-
fore, Lynch et al. [2003] proposed hybrid input/output automata as a compositional evolution of
hybrid automata. Hybrid programs constitute a simple and nondeterministic program notion for
modeling cyber-pyhsical systems that is also compositional. Besides the fact that hybrid programs
can encode hybrid automata [Platzer 2008], they also allow to model families of cyber-physical sys-
tems due to their nondeterministic language constructs.

180ne example of a publicly-funded research project is Controlling Concurrent Change (nttp://ccc-project .org),
which focuses on model-based methods for integrating over-the-air updates at run-time. A second example is
aFAS [Stolte et al. 2015], which aims at developing an unmanned and autonomously driving protective vehicle.
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To implement skills, we adopt the notion of an automata-based approach together with hybrid
programs as proposed by Platzer [2018], which has been applied successfully to numerous case stud-
ies including adaptive cruise control for road vehicles [Loos et al. 2011], airborne collision avoid-
ance [Jeannin et al. 2017}, and switched systems [Tan et al. 2021]. In contrast to pure hybrid automata,
where each state represents a single assignment followed by evolution of the continuous system,
our formalism allows to project larger programs onto states, similar to mode automata [Maran-
inchi et al. 1998; Maraninchi et al. 2003; Alur et al. 2001].

Another formalism specialized in modeling concurrent cyber-physical systems based on events is
given by process calculi, such as hybrid communicating sequential processes [Chaochen et al. 1995;
Liu et al. 2010] and HyPA [Cuijpers et al. 2005]. These formalisms are well studied and have been
subject to theorem proving and model checking. In our approach, we did not focus on concurrency
and communicating processes, but rather on single synchronous controllers.

An active area of research is interoperability between different modeling languages, formalisms,
and tools. The tool HYST [Bak et al. 2015] aims at bridging the syntactical gap between a number
of hybrid automaton modeling languages. Moreover, IPL [Ruchkin et al. 2018] is a domain-specific
modeling language, which unites the verification of properties across different architectural views.

Verifying hybrid systems is mainly addressed by (1) model checking by reachability analysis, and
(2) theorem proving. Reachability analysis aims at approximating the complete set of reachable
states, which is compared to the set of desirable states of a given safety property. Although this tech-
nique focuses on full automation, it suffers from the state-space explosion problem. Well-known
model checkers include SPACEEx [Frehse et al. 2011], FLow™* [Chen et al. 2013], and C2E2 [Duggi-
rala et al. 2015]. Most tools in this context focus on specific key aspects and differ in expressiv-
ity. Whereas SPACEEx focuses on piecewise affine automata [Le Guernic 2009] (i.e., only linear dy-
namics), FLow* and C2E2 both support verification of non-linear dynamics. In contrast to theo-
rem proving, model checkers are less expressive and often highly specialized for a particular class
of hybrid systems. Moreover, they incorporate complex data structures and algorithms, which also
influences trust in the respective code base and the verification results.

As our focus is on deductive verification, we based our skill-based modeling approach on hy-
brid programs and d£. Most proof assistants in the context of deductive verification, such as
CoqQ [Coq Development Team. The Coq proof assistant, 1989-2021], AGDA [Agda Development Team. The
Agda wiki, 2007-2021], LEAN [Moura et al. 2015], and IsABELLE/HOL [Nipkow et al. 2002], are based
on a tactics language to carry out proofs. For hybrid programs, there exists Bellerophon [Ful-
ton et al. 2017], which is integrated into KEYMAERA X and constitutes a library of powerful tac-
tics for discharging obligations in d£. Tailored to our context of skill-graph models, we formal-
ized two proof rules (see Theorem 3.3 and Corollary 3.1) that enable us to reuse verification ef-
fort by simplifying the verification problem.

Kamburjan et al. [2022] presents a similar translation scheme to d£ to the one developed in this
chapter for a hybrid extension of ABS called HABS. In contrast to skill-based modeling and verifica-
tion, HABS is an active objects programming language with rich focus on concurrency and distributed
computation. The goal is therefore to be less domain-specific, and to provide a more general ap-
proach for programming and verifying cyber-physical systems. The upside is that HABS can be
used directly to develop all sorts of correct cyber-physical systems (including the interplay between
independent components). That is, developers have the chance to implement the system resource-
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efficiently while getting strong correctness guarantees, due to a focus on concurrency. The down-
side is that HABS requires much more expertise than the skill-based approach discussed in this
chapter, and the integration into a software development process is not discussed. SKEDITOR pro-
vides a lower entry-barrier to the modeling of cyber-physical systems and focuses specifically on
maneuvers. Due to is focus on model-based design, numerous specific analyses are available that
would be difficult to apply in a too general setting. However, the downside is that the skill-based
approach discussed in this chapter is less expressive than HABS (e.g., there exists no explicit focus
on concurrency), which may hinder the optimal modeling of specific cyber-physical systems.

3.8. Chapter Summary

The goal of this chapter was to investigate how skill graphs can be modeled at design time, such
that they become amenable for formal deductive verification. In particular, key questions were how
do we specify safety properties of skills and how does a minimalistic programming language look
like to proof safety compliance. For this, we specified skills with assume-guarantee interfaces and
focused on a tight coupling with differential dynamic logic (L) for deductive verification. We argue
that our assume-guarantee approach enables modularity and reusability for skill implementations,
and logical proofs provide strong guarantees, which maximize trust in the designed controller.

We proposed hybrid mode automata as an additional layer for modeling the behavior of skills
based on the concept of operating modes. This is a natural follow-up to previous work on skills and
skill graphs, where skills are conceptually realized by state machines. Nonetheless, hybrid mode
automata constitute a much more precise mathematical notion that enables analyses and deduc-
tive verification of skill graphs at design time. In particular, we realize modes in a hybrid mode au-
tomaton with SL programs, which is a small extension of hybrid programs. Together with assume-
guarantee interfaces, we formalized skills and skill graphs precisely, including important well-
formedness constraints that can be statically checked by our tool support. Moreover, we presented
two important compositions of skill graphs, namely parallel composition and planned composition.
Both compositions are important in the context of software engineering practices, as they priori-
tize modular development and enable reuse. Alongside the theoretical ground work, we proved that
compatible, valid hybrid mode automata can be composed and that validity transfers to the compos-
ite automatically. This result is invaluable to conquer scalability problems in formal verification.

We presented our tool support SKEDITOR for modeling and verifying skill graphs, which we used
to evaluate our approach. SKEDITOR allows to translate skill graphs into hybrid programs with dif-
ferent degrees of abstraction (e.g., using contracts versus inlining) that can then be verified applying
dL’s deductive calculus. In a case study of a vehicle follow mode, we illustrated that both compo-
sitions are useful and that they effectively reduce proof effort. Most importantly, shared skills only
needed to be verified once, which further emphasizes the modularity of our framework.

Finally, our considerations and case study illustrated that specifying and deductively verifying
skill graphs is feasible at design time to rule out violating behaviors as early as possible. How-
ever, there still remains the question whether the specification correctly reflects the intention of’
the maneuver. An insufficient specification eftectively renders the verification results useless. In
the next chapter, we show how valid skill graphs can be refined to concrete implementations and
how simulations can help to validate skill graphs.






4, Virtual Prototyping of
Skill-Graph Maneuvers

This chapter shares material with the IS0LA20 paper “Scaling Correctness-by-Construction” [Kniippel et al.
2020b].

In the previous chapter, we systematically discussed how to model, specify, and verify maneuvers
of cyber-physical systems by combining skill graphs with differential dynamic logic [Platzer 2008].
As a result, a modeler is able to generate correctness proofs during the early design stage for the
controller logic with KEYMAERA X [Fulton et al. 2015] to mathematically assert conformance of the
respective maneuver and its specification. We have seen that our high-level abstraction of maneu-
vers combines comfortable modeling with scalable verification. The drawback of such high-level ab-
straction is, however, the presence of abstraction gaps when deriving concrete executables: (i) several
abstraction mechanisms provided by our formal model, such as Hoare triples and non-determinism
(see Section 3.2), must be resolved by end-users, (ii) hardware driver and software skills must also
be implemented by end-users, which can lead to new bugs, (iii) correctness of the controller logic
alone does not provide sufficient insights on the usefulness of the maneuver, and (iv) the modeled
dynamics may not sufficiently reflect the real world. In particular, the last two gaps require us to
develop concepts for maneuver validation at run-time, such as virtual simulation and monitoring.

In this chapter, we show how to derive implementations for virtual simulation from verified
skill graphs, while maintaining a software engineering perspective that prioritizes software correct-
ness, reuse, and modularity. We give a high-level overview of our verification and validation pipeline
in Section 4.1. In particular, we introduce a component-based architectural framework called
ArcHICORC [Kniippel et al. 2020b] as an intermediate layer between verified skill graphs and vir-
tual simulation. ARcHICORC extends the principles of CorC [Runge et al. 2019a] (see Section 2.1.3)
by structuring correct-by-construction programs into UML-style software components [UML 2
2017], which conceptualizes correct-by-construction architectures. All together, we provide means for
formal specification and deductive verification from an early system’s model, over the architec-
tural level to the source-code level. We identified this to be an underrepresented research area,
which is worth to explore. In particular, for the first time, we integrate correctness-by-construction
through ARcHICORC into an iterative development process. We present ARCHICORC’s component
model in Section 4.2 and the corresponding tool chain in Section 4.3. In Section 4.4, we evalu-
ate our verification and validation pipeline empirically. Finally, we discuss related work on the
correctness-by-construction approach, component-based design with support for contracts, and
end-to-end verification of cyber-physical systems in Section 4.5.
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Figure 4.1.: Schematic overview of steps in the proposed verification and validation pipeline.

4.1. Overview of the Verification and Validation Pipeline

Before introducing the main concepts of ARCHICORC and how skill graphs can be translated for
simulation, we give a high-level overview of the key ingredients of our our verification and vali-
dation pipeline. We show a schematic overview in Figure 4.1, which depicts an iterative develop-
ment process consisting of four consecutive steps.

Step 1: Proving Maneuver Safety. The process begins with modeling and specifying the intended
maneuver of a cyber-physical system as a skill graph (see Chapter 3). Then, a user translates the
skill-graph model to differential dynamic logic (d£) and employs KEYMAERA X (either automati-
cally or interactively) to generate correctness proofs. At this stage, we have asserted that the maneu-
ver satisfies specific safety properties (e.g., collision freedom or maximum velocity) under a set of
optimistic assumptions. In particular, software and hardware skills are only abstractly represented
by their input variables, output variables, and specification. Eventually, these skills must be im-
plemented and, to maintain safety, the correctness of their implementations with respect to safety
properties must be assured. A different aspect is that the skill-graph models enjoy a high-level of
abstraction, such as nondeterminism and Hoare triple specifications. All these aspects must be
considered when deriving a concrete implementation in the next step.

Step 2: Synthesizing and Implementing a Component Architecture. The development process con-
tinues with a translation of the verified skill graph to a component-based architecture. We choose
to focus on this intermediate layer, as component-based software engineering is usually a means to
enable systematic reuse, rigorous abstraction from implementation details, and extensively focuses
on decomposition [Gossler et al. 2005]. That is, building complex components from simpler ones
is a key characteristic. In particular, we exploit ARcHICORC [Kniippel et al. 2020b], which builds on
top of CorC [Runge et al. 2019a] (see Section 2.1.3) and enables a developer to establish a component-
based correct-by-construction architecture. ARCHICORC components follow the UML notation [UML 2
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2017] and define provided and required interfaces that comprise method signatures. In contrast to
traditional component-based software engineering, method signatures m in ARcHICORC compo-
nents are associated with a contract {¢}m{y} and can therefore be either developed by CorC or
become subject to post-hoc verification. To increase reuse, each software and hybrid skill in a skill
graph is implemented by exactly one ARcHICORC component (i.e., with a one-to-one mapping) in
a strictly defined manner. Hardware skills must be implemented by the respective simulation en-
vironment. As typical for software components, composite components allow component nesting,
such that only the top-level component’s specification is visible to the environment. For example,
a planning skill for calculating the next waypoint on a trajectory may be mapped to a composite
component providing methods for retrieving the calculated coordinates, and is eventually devel-
oped by composing numerous more components internally. Additionally, dependencies between
skills in the original skill graph directly correspond to connectors between components, which can
therefore be generated automatically. In summary, this process leads to a correct-by-construction
architecture. The ARcHICORC component model is introduced in Section 4.2.

Step 3: Code Generation and Compilation. After software and hybrid skills are mapped to compo-
nents and a component-based architecture is established based on the dependencies between skills,
the architecture is translated to source code in a general-purpose programming language (e.g., JAvA
or C++). Although the code generation itselfis unverified per se, each part of this process is verifi-
able when following best practices. That is, behaviors of components ideally follow the correctness-
by-construction approach and checking validity of connections between components (horizontally
and vertically) reduces to satisfiability checks based on their interface specifications. In particular,
behavior of software skills is typically developed manually starting with the top-level component’s
specification. For hybrid skills, KEYMAERA X provides means for generating C++ code of the con-
troller [A. Miiller et al. 2018b] when provided a d £ formula, which we use as inspiration for our tool
chain. The generated controller code can be automatically translated to an underspecified CorC
program (i.e., with missing intermediate specifications). With additional manual effort, this enables
verification of the generated controller code.! In addition to the controller code itself, one particu-
larity is the synthesizing of monitor code. Considering a £ formula, the synthesized source code
corresponds to the discrete part of the hybrid program, but ignores the precondition and safety
guarantee. KEYMAERA X additionally integrates MoDELPLEX [Mitsch et al. 2016], which synthesizes
C++ code for monitoring violations of these conditions including the evolution constraint of the
dynamical system. This way, assumptions and guarantees of the verified skill-graph model can au-
tomatically be transferred to the executed controller for manual or automatic inspection.

Step 4: Validation. The final step is to validate the derived executable on a set of scenarios. Similar
to test cases in software testing, form and shape of scenarios depend on the analyzed functionality.
For instance, the explore world maneuver (see Section 3.1.2) puts little restrictions on the actual sce-
nario (i.e., the purpose is simply to guarantee collision freedom and otherwise drive freely), while

Although the current version of CorC does not guide users in finding simple intermediate conditions automatically,
there exist considerations to increase automation in the future. In particular, our generated controller code is free
of loops, which should make the automatic identification of intermediate specifications simpler (e.g., using weakest
precondition calculus [Dijkstra 1975]).
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a lane keeping assistance for an automated vehicle should be simulated on actual roads with lane
markings. For the visual simulation environments, we aim to integrate AirSim [Shah et al. 2018§]
by Microsoft, which is used for ground and air vehicles, and the robot operating system (ROS) to-
gether with gazebo, which is a mature framework and visualization environment for all kinds of
robotic systems. As mentioned in step 2, the respective simulation environment must implement
sensor and actuator skills to interface with the generated maneuver resulting from the previous
step. Validation is typically performed manually, but supported by the automated monitoring of’
safety conditions. This allows to classify monitor violations as passable (i.e., violation does not have
an impact on safety), severe (i.e., violation does have a high chance of impacting safety), or even fatal
(e.g., vehicle collided with an object). Although there may still remain unsafe corner cases, valida-
tion is an important tool. For example, the derived controller is untrusted, as parts of the imple-
mentation are not verified during the first step. Additionally, it helps in identifying new assump-
tions that can be fed back into the development of the original skill graph.

As depicted in Figure 4.1, we exploit multiple provers and solvers to derive a correct executable
from a skill graph: KEYMAERA X is used to verify controller correctness of the underlying hybrid
system, CorC and the program verifier KEY [Ahrendt et al. 2016] are used to enable deductive ver-
ification on the derived implementation. Additionally, the SMT solver Z3 [De Moura et al. 2008]
is employed to verify satisfiability of pure first-order logical conditions, such as contract compli-
ance between connected components. All tools are mature and applied in a multitude of safety-
related scenarios, which further increases trust in the obtained results of our verification and val-
idation pipeline and the developed maneuvers.

4.2. The ARcHICorC Component Model

ArcHICORC [Kniippel et al. 2020b] is a tool that extends CorC with capabilities for UML-style com-
ponent modeling. Although the idea is straightforward, such tool support increases the usability
of CorC programs; it allows to systematically group correct-by-construction implementations into
reusable components with defined interfaces to establish a repository of correct-by-construction li-
braries. In contrast to CorC, which focuses on independently developed algorithms without owner-
ship and means for reuse, ARCHICORC aims at making the correct-by-construction approach avail-
able at scale. In particular, ARCHICORC consists of four main ingredients.

1. A component and interface description language to describe components, their required and
provided interfaces (i.e., required and provided operations), and the connections between
them. Operations can be annotated with specifications following the design-by-contract
paradigm, where the concrete syntax is inspired by JML.

2. A mapping from operations of provided interfaces to either CorC programs or regular im-
plementations.

3. A light-weight formal reasoning framework to check hierarchical and vertical compatibility
of composed components, making the architecture correct-by-construction.
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Figure 4.2.: Schematic workflow of ARcHICORC’s development process.

4. A code generator that translates ARCcHICORC components to (correct-by-construction) Java or
C++ code.

In the following, we introduce the ARcHICORC development process and component model in
more detail.

As typical for component-based modeling, software components combine a behavioral model (i.e.,
implementation details of the provided functionality) with an interaction model (i.e., how compo-
nents communicate with each other) [Gossler et al. 2005, UML 2 2017]. In ARCHICORC, the behav-
ior is represented by CorC programs, while interaction between components in based on classical
component interfaces. Before formalizing parts of the ARcHICORC component model, we first sketch
an overview of the ARcHICORC development process.

Asillustrated in Figure 4.2, a user first creates a high-level structure of'a component and associates
required and provided component interfaces with it. Such interfaces comprise method signatures
that are additionally annotated with a precondition and postcondition. As usual, components can
be reused and hierarchically structured to form so-called composite components [UML 2 2017]. In a
second step, method signatures of associated provided interfaces are mapped to compatible CorRC
programs. Informally, compatibility depends on two requirements: first, the method signature’s
specification of the CorC program must follow the Liskov substitution principle [Liskov et al. 1986]
for preconditions and postconditions. That is, the precondition cannot be strengthened and the
postcondition cannot be weakened in the CorC program with respect to the method signature.
Second, method invocations in mapped CorC programs must be resolvable, which means that the
corresponding method signature must be part of the component’s scope (e.g., part of the required
interface). Besides connecting a method signature to an already developed CorC program, a user
can also try to derive a new correct-by-construction program starting from the method contract.

Valid compositions of components are guaranteed by formally reasoning about their contract
compatibility. Horizontal reasoning checks whether connections between components are valid
by proving that each component satisfies the assumptions of any component it is connected to.
Vertical reasoning ensures that components can be substituted by other components satisfying
again the Liskov substitution principle. In the final step, an ARcHICORC component is trans-
lated to correct-by-construction library code. In the following, we formalize ARcHICORC’s com-
ponent model and give examples with concrete syntax.
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4.2.1. Interface Definition

Similar to UML-style component modeling, the interaction of ARcHICORC components is re-
alized via required and provided interfaces that comprise method signatures. Additionally, each
method signature m; corresponds to a Hoare triple of the form {¢}m;{¢} (ie., is specified with
precondition ¢ and postcondition ). We refer to such Hoare triples as method contracts. Iden-
tical to CorC, method contracts are expressed using a simplified version of the Java Model-
ing Language (JML) [Leavens et al. 2000].

Definition 4.1: Component Interface

A component interface [ is a pair (M, F):

® M is a set of method signatures m; € M of the form {¢}m;(T ay,...,T a,) — T r{y},
where T is a type universe (i.e., a placeholder for any particular type of interest), each
method signature m; maps a sequence of passed arguments aj, ..., a, to a result value
r,and ¢ and ¢ are the precondition and postcondition, respectively. We use shorthand
{¢}m;{y} if the context is clear.

m Fis a set of typed variables called fields.

In contrast to the previous chapter, where variables and parameters were restricted to real values
only, all arguments and the return value of a method signature, and fields may use any type per-
mitted by an underlying type system. For the sake of presentation, however, we assume only prim-
itive data types and standard typing rules (e.g., as presented by Pierce et al. [2002]). Explicit defini-
tions of fields (i.e., variables) are permitted as a means for communication between methods. That
is, fields are shared variables between method signatures. As will be formally defined later, compo-
nents may implement specific interfaces (i.e., labeled as provided interfaces), while requiring func-
tionality provided by other components (i.e., labeled as required interfaces). Considering required
and provided interfaces of one component, fields of required interfaces are read-only by method
implementations of provided interfaces (i.e., interpreted as getter methods), whereas fields of pro-
vided interfaces are both readable and writable by their corresponding method implementations.

Example 4.1. We revisit the thermostat example from the previous chapter (see Section 3.1.2), where two hybrid
skills, namely Heater and On, are responsible for choosing a heating value h to keep temperature x between a
lower limit 1 and an upper limit u. Furthermore, the behavior of skill Heater internally invokes the behavior of
skill On. In the following, we exemplify a potential definition of a provided and required interface associated
with the implementing component for skill Heater with the concrete syntax provided by ARcHICORC. We refer
to the provided interface as |HeaterP and the required interface as |HeaterR. Then the concrete syntax of
implemented interfaces according to Definition 4.1 may take the following form:
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archicorc _interface IHeaterP { archicorc interface IHeaterR {
double h; double h;
//@ requires QHeater; //@ requires ¢on;
//@ ensures Pueaters //@ ensures Yon;
void ctrlStepHeater (void) ; void ctrlStepOn (void);
/S /)
} }

The implementing component has the obligation to implement method void ctrlStepHeater(void), but
is allowed to invoke method void ctrlStepOn(void) implemented by another component. When invoked,
both methods may update their respective variable h. For instance, executing void ctrlStepOn(void) may
update THeaterR.h, which can be read by void ctrlStepHeater(void) to update IHeaterP.h.

For the specification, it is tempting to propagate the precondition and postcondition of the corresponding skill
to the component level. For instance, postcondition Preater could be defined as I < x A x < u according to
Section 3.1.2. However, this is not a valid postcondition for void ctrlStepHeater(void), as the change of
x is a result of the underlying dynamic behavior and not a result of the method’s implementation. Instead of
specifying that the final implementation complies to the safety invariant, the goal is rather to specify that the
implementation complies to the modeled controller that enforces the safety invariant. We postpone the derivation
of component interface specifications for hybrid skills to Section 4.3.1. For software skills, the precondition and
postcondition can be propagated as-is.

In the following, we introduce two standard operations on component interfaces that increase
flexibility of our formalization, namely interface merging and method hiding. In standard component-
based modeling, each required interface Iq of a component must be connected to a provided in-
terface of another component I, such that all required method signatures can be resolved. In our
formalism, multiple provided interfaces of different components may be merged together to match
arequired interface. Informally, component interfaces are merge-compatible if equally named meth-
ods are identical in signature and method contract, and equally named fields have the same type.

Definition 4.2: Merging of Component Interfaces

Let I = {L,..., I,} with [; = (M;, F;) be a finite set of merge-compatible component inter-
faces. Then, their merging is defined as

merge(I) = (| M, [JFi).

To be able to only provide a subset of methods of a component interface, we introduce an operator
to hide methods and fields.

Definition 4.3: Hiding of Methods and Fields

Let I = (M, F) be a component interface, M" C M be a subset of method signatures of I, and
F' C Fbe a subset of fields of I. Hiding M’ and F in I is defined as

hide(I, M',F') = (M\ M/, F\ F).
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4.2.2. Contract Refinement

We mentioned before that components may provide and require interfaces, and that method sig-
natures of provided interfaces are eventually mapped to method implementations.”> In particular,
ArcHICORC is built on top of CorC, which is the primary program notation for such method im-
plementations. Therefore, method signatures of our interface definitions (see Definition 4.1) and
method contracts used as starting point in CorC programs (see Section 2.1.3) are based on the same
formalism.> A mapping between both concepts is established again based on the Liskov principle
and referred to as contract refinement [Hatcliff et al. 2012; Meyer 1988; Liskov et al. 1994]. Intuitively,
given two method contracts c = {¢p}m{y} and ¢’ = {¢' }m'{¢'}, method contract ¢’ is a valid sub-
stitute for method contract ¢ if ¢’ preserves all behaviors specified by c.

Enabling contract refinement is desirable for at least two reasons. First, developers may link any
CorC program to a provided method signature that constitutes a valid contract refinement. The
alternative of only mapping identical method contracts can be seen as too restrictive from a soft-
ware engineering perspective. Second, contract refinement can also be checked at the level of con-
nections between provided and required interfaces. This way, specifications of mapped method
contracts must not be identical, as long as the provided method contract preserves the behavior of’
the required method contract. Before giving a formal definition of contract refinement, we intro-
duce the following predicate equalSig for two method signatures, where type(-) is a helper func-
tion returning the type of the passed variable name.

Definition 4.4: Matching Method Signatures

Let {¢p}m(T ay,...,Tax) — T r{yp} and {¢'}m'(T by,..., T b)) — T '{¢'} be two method
signatures. We say that the two method signatures m and m’ match iff method name, num-
ber of arguments, argument types, and type of the return value are identical. We introduce
predicate equalSig : M x M — B stating whether two method signatures match as follows:

equalSig(m,m’) < | = kAm = m' ANtype(a;) = type(b;) Atype(r) = type(r’) Vie {1,...,1}.

Equality for method names (i.e., m = m’) means that both are lexicographically equal and equality
for method arguments (i.e., type(a) = type(b)) means that a and b are equally typed. For sake of
presentation, we do not apply the Liskov substitution principle on types, which would allow to
define equality in a broader sense. We then define the refinement of method contracts as follows.

2We postpone the formal introduction of components and their interplay with component interfaces to the next sub-
section.

3Although the distinction is subtle, in contrast to method contracts, method signatures explicitly specify arguments and
return types. In CorC'’s original work, there did not exist a concept of such signatures, as all variables were globally
accessible. This changed with the introduction of the method call rule [Runge et al. 2019a; Bordis et al. 2020] (see
Section 2.1.3). We will use method contract and method signature interchangeably.
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Definition 4.5: Method Contract Refinement

Letc={¢}m(Tay,...,Tay) = Tr{p}andc = {¢'}m'(T by,..., T b;) — T r'{¢'} be two
method signatures. Method contract ¢’ refines ¢, written ¢’ < ¢, iff method signatures of m
and m’ match (i.e., equalSig(m, m’) is satisfied) and the following condition holds:

= ¢ = ¢'[bi \ ai] Ay[old(b;) \ old(a;), 7"\ 7] = ¢

As mentioned before, contract refinement also plays a role between required and provided inter-
faces. In particular, each method contract of a provided interface that is linked through a connec-
tor to a method contract of a required interface must satisfy Definition 4.5 (i.e., be a valid contract
refinement). With the following definition, we lift contract refinement to the level of interfaces.

Definition 4.6: Component Interface Refinement

LetI = (M,F)and I = (M, F) be two component interfaces. Component interface I’ refines
I, written I’ < I, iff

Vm' e M : Im e M, s.t. {¢'tm'{¢'} < {¢p}m{p} ANF CF.

Example 4.2. Example 4.1 introduced interface IHeaterR. Consider the following interface |OnP that refines
IHeaterR iff ¢, = $pon and Pon = Y5, hold:

archicorc _interface IOnP {
double h;
// ...possibly more fields

//@ requires ¢g,;

//@ ensures Y5,/

void ctrlStepOn (void);

// ...possibly more method signatures

}

In component-based architectures, required interfaces of components are eventually connected to compatible
provided interfaces of other components. In this context, component interface refinement is a convenient notion;
it constitutes a compatibility check between connected, but non-identical provided and required interfaces. In
particular, IOnP may provide other methods and fields to the ones promised in its method signature, which
increases reuse. We introduce components and connections between component interfaces in more detail in the
next subsection.

4.2.3. Component Definition and Composition

A typical characteristic of component-based engineering is that components can be aggregated to
build more complex components from simpler ones, eventually leading to a hierarchy of compo-
nents. The lowest level of a component hierarchy consists of so-called atomic components that can-
not be decomposed any further and are associated with actual computation. The other type of com-
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ponent is represented by composite components with the sole purpose to hierarchically structure
sub-components to reuse implemented functionality, but also to hide implementation details.

For describing computation, we denote by the abstract symbol P the universe of possible pro-
grams (or implementations). Informally, P refers to a sequence of statements in some program-
ming model (e.g., a COrRC program or a Java method). For the sake of presentation, we use the term
program rather loosely if the context is clear. Furthermore, in alignment with design-by-contract,
we say that a method signature {¢}m{} is satisfied by a program p € P, written p = {p}m{yp},
iff starting from a state where ¢ holds, executing p results in a state that satisfies ¢ and execution
of p is guaranteed to terminate. We define an atomic component as follows.

Definition 4.7: Atomic Component

An atomic component is a triple (I,, I, Impl), where
m ], is the (possibly empty) provided interface,
m [, is the (possibly empty) required interface,

m Impl : M, — P is a mapping that associates each method signature m € M, with a
valid program in P U {@}. An atomic component is well-formed iff Vc = {¢p}m{y} €
M, : Impl(m) exists A Impl(m) |= c.

We denote the universe of all atomic components by Katom-

Example 4.3. We again consider the thermostat example to exemplify the concrete syntax provided by
ArcHICORC for describing atomic components. Each definition of an atomic component starts with the key-
word atomic_component and contains a list of provided and required interfaces. Additionally, provided in-
terfaces can be mapped to CorRC programs, which usually live in files with file ending *. corc.

atomic_component Heater {
provide IHeaterP {
ctrlStepHeater —> CorC/control_heater.corc
/).
}
require IHeaterR;

}

In this example, the COrRC program cont rol_heater provided by atomic component Heater has access
to all method signatures defined in component interface |HeaterR. These methods have to be provided by
another component implementing an interface that is compatible to IHeaterR.

In contrast to atomic components, composite components only indirectly establish a mapping
from their provided interface to programs. Typical for UML-style components, they use delegate
connectors that link external method signatures (i.e., required and provided interfaces) to particular
interfaces of sub-components. Formally, we define such components as follows.
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Definition 4.8: Composite Component

A composite component is a tuple (Ip, Iy, Ksyup, Conn, Dele,, Dele, ), where
m ], is the (possibly empty) provided interface,
m ], is the (possibly empty) required interface,
m K, is a finite set of contained sub-components (either atomic or composite),

m Conn C {k.I, |k € Kyp} x {k.I, | k € K3} is a set of connections between provided
and required interfaces of sub-components in Ky,

m Dele, C {k.I, |k € K} and Dele, C {k.I; | k € Ky} are sets of delegate connectors.

We denote the universe of all composite components by Keomp.

Example 4.4. Construction of composite components in ARCHICORC is similar to other UML-inspired com-
ponent models [Haber 2016; Becker et al. 2009; Atkinson et al. 2008]. The thermostat example contains the two
atomic components Heater and On, which may be composed to form a new composite component named Ther-
mostat:

composite component Thermostat {
contains {
atomic _component Heater, On;
}

provide IHeaterP;

conn On.IOnP —-> Heater.IHeaterR;
dele Heater.IHeaterP -> this.IHeaterP;
}

As illustrated in the previous examples, component Heater provides interface IHeaterP and requires in-
terface ITHeaterR, while component On provides interface IOnP. The keyword conn is used to connect a pro-
vided interface with a required interface on the same level. In this example, interface IOnP is linked to interface
IHeaterR. The keyword dele delegates a required or provided interface of a sub-component to the composite
component’s level. Here, interface ITHeaterP is exposed to the environment.

In ArRcHICORC, connections between components are always established as part of compos-
ite components. That is, even connected top-level components are contained explicitly in a spe-
cific root composite component. As the previous example illustrates, connectors link required
interfaces of one component to provided interfaces of another one. Connections are valid if
component interface refinement between them is satisfied (see Definition 4.5). Moreover, a well-
formed composite component comprises only well-formed sub-components and must guaran-
tee that internal connections and delegate connectors are all valid. We give the following for-
mal definition of well-formed composite components.
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Definition 4.9: Well-Formed Composite Component

Let k = (Ip, Iy, Ksyp, Conn, Dele,, Dele,) be a composite component. Component k is well-
formed iff the following conditions hold:

WF;: Let I} be any sub-component’s required interface. Then, each method signature m’ € I
is linked either to a method signature of a sub-component’s provided interface or — if’
there remain unlinked method signatures — I is an element of the set of delegate con-
nectors Dele,. Therefore, I] has to be a valid refinement of the merge of all connected
provided interfaces of sub-components and the component’s required interface, and
the following condition must be satisfied:

VK" € Koy - K'.I < merge({L, | (K".I, I,) } U {1, | K".I, € Dele,}).

WFE,: Each method signature in I, is linked exactly to one method signature of a provided
interface of a sub-component through a delegate connector. Therefore, the following
condition must be satisfied: I, < merge(Dele, ).

WHE;: All sub-components in Kj,;, are well-formed.

In line with component-based software engineering, well-formed composite components con-
stitute (partial) correct-by-construction architectures. First, each well-formed composite compo-
nent is self-contained, such that all requirements of required interfaces of sub-components are
fulfilled. Furthermore, with component interface refinement (see Definition 4.6), we provide a
checkable condition that prohibits invalid connections between interfaces during construction.
Second, behavior of atomic components is implemented following the correct-by-construction
approach (see Definition 4.7), which guarantees that the implementation of provided functional-
ity complies with its specification. Finally, well-formed composite components are translated to
source code, which we illustrate in the next subsection using JAvA as example. As our component
model is simple on purpose, it is straightforward to manually verify that our code generation pro-
cedure leads to correct-by-construction source code.

4.2.4. Excursion: ARcHICORC Code Generation in JAva

So far, we introduced the high-level structure of the ARcHICORC component model and ex-
plained how CorRC programs are bundled together. Although we will discuss the role of
ArcHICORC in our verification and validation pipeline in the next section, the initial inten-
tion was to make correct-by-construction components available for larger software projects. In
particular, after successful construction, well-formed ARcHICORC components can be trans-
lated to Java implementations with JML [Leavens et al. 2000] contracts. Then, the generated
code can be imported as every other Java package. For the sake of completeness, we explain
the Java/JML code generation process in more detail.

Considering an ARcHICORC component model subject to code generation, only provided meth-
ods of the top-level composite component are visible and accessible from outside the architec-
ture. At the same time, the goal is to retain correctness during code generation. As CorC was de-
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veloped following the principles of Java already, there exists a trivial translation from CoRrC pro-
grams to JAvA implementations [Runge et al. 2019a]. In Table 4.1, we illustrate the correspondence
of the constructs of ARcHICORC components and generated JavAa implementations, which we dis-
cuss in more detail afterwards. In general, all generated interfaces and classes will be part of the
same JAvA package. In particular, provided interfaces will simply be translated to regular Java in-
terfaces with specified method signatures, where fields are replaced by respective get and set
methods. The actual components are translated to Java classes that implement the correspond-
ing provided interface and implementations for required interfaces will be propagated accordingly
using helper classes. In particular, top-level components will be publicly accessible, whereas com-
ponents on a lower hierarchy are only visible internally.

Formal Construct Transformation
@ For all required / provided interfaces interface [ {
I=(M,F)

V({(P}m(Tl a1, .-, Ty an) — Thes 7’{1/1}) eEM:
//@ requires ¢;
//@ ensures ;
public Ty m(Ty ay,..., Ty ay);

VfeF, with type T:

//@ ensures \result == f;
public T get_f();

// Only for provided interfaces:
//@ ensures f == f';
public void set_f (T f');

@ Atomic component K € Kyom with
provided interface I, = (M, F,) and re-
quired interface I, = (M,, F,). Vfe Fp with type T:

class K implements Q {

private T f;

//@ ensures \result == f;

public T get_f() { return f; }

//@ ensures f == f';

public void set_f(Tf") { f = f'; }
If I, is non-empty:

public RegAdapterg req =

new RegAdapterk(); ()

// Method implementations ... (3
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(3® Method implementation for atomic
component K = (I, I, Impl) with I,, =
(Mp, Fp) and I, = (M, Fy).

(@ Adapter for required interface I,
of component K €  Kaom U Keomp,
which is a  sub-component of
a composite component K* =
(I;, I}, K? ,, Conn, Deleyeg, Deleproy).  We
only depict the adapter implementation
for internal connection between inter-
faces of sub-components. The adapter
implementation for delegate connectors
of required interfaces is analogous. The
only difference is that instead of consid-
ering pairs from set Conn, we consider
interface I} and set Deleyeq, such that the
add method also accepts implementa-
tions of I;\.

V({¢p}m(T1 a1,..., Ty an) = Tres r{9p}) € My

//@ requires

//@ ¢If €F— regx.get_f1;
//@ ensures
//@ YIf €F+— regx.get_f1;

public Ty m(Tyay,..., Ty ay) {

if Ty is not void:

return Impl, (ay,...,a,); //CorC impl.
otherwise:

Impl, (a1,...,a4);

class RegAdapterg implements [ {

V(I,,K.I;) € Conn:
private @ provider;;
public add(% elem) {

provider; = elem;
}

VfeF with type T and I;f matches f:
//@ ensures \result == f;
public T get_f() {

return provider;.get_f£();
}
V({@Im(Th ax,..., Ty an) = Tres r{9}) € M,

and %Jﬂ matches m:

//@ requires ¢;
//@ ensures Y;
public Ty m(Tyay,..., Ty ay) {

return provider;.m(ay, ..., a,);



(%) Composite component K € Keomp with
K = (Ip, I, Ksp, Conn, Deleyy, Deleyrop ).
If K is the top-level component, then
modifier = public. Otherwise, modifier
is removed.

(® Constructor for composite component
K = (IP/ Iy, Ksyp, Conn, Delereq/ Deleprov)
with required interface I, = (M,, F;).

(2 Method implementation for compos-
ite component K = (Ip, Ir, Kgp, Conn,
Deleyeq, Deleproy) with I, = (M, Fy) and
I = (M, Fp).
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modifier class K implements Iy |
VK, € Koup :
private Kéub sub; = new Kéub();
// Getter / Setter:
VfeF, with type T and Kéub'lp € Deleyron

and f matches K;ub.lp.f:

//@ ensures \result == subj.get_f ();
public T get_f () {return sub;.get_f();}
//@ ensures subj.get_f () == f';

public void set_f (T f') {sub;.set_f(f);}
If I, is non—-empty:

public RegAdapterkg req = new RegAdapterk();
// Constructor ... (&
// Method implementations ... (7)

// Argument only if K is top-level component
public K (I, arg) {
reqg.add(arg) ;

vI<;'ub € Ksub with Ki -Ir € Delereq:

sub
sub;.req.add(req) ;

K, € Kgyp with (K, .1, Kl I} € Conn:

S

VK!

sub’

subj .reqg.add (sub;) ;

V({(P}m(T] al/' ° '/Tn Iln) — Tres T{lp}) € Mp:
//@ requires

//@ $Lf €F+— regg.get_f1;
//@ ensures
//@ YIf €F+— regg.get_f1;

public Ty m(Tyay,..., Ty ay) {
There exists K;ub € Ksyp, such that

m matches K;ub.lp.m with K;uh.lp € Deleprov:

return sub;.m(ay,...,a,);

Table 4.1.: Excerpt of code Translation from ARcHICORC components to correct-by-construction Java

code [Kniippel et al. 2020b].

In the following, we briefly elaborate on each of the seven sections in the code generation process

illustrated above.
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. Initially, all required and provided component interfaces are translated to regular Java inter-

faces including JML contracts for all method signatures. For fields, corresponding methods
are added. Required interfaces only add get-methods, whereas provided interfaces also add
set-methods.

. Atomic components are translated to regular Java classes with package visibility implement-

ing their provided interface. For non-empty required interfaces, a specialized helper class
with the name ReqAdapter is instantiated that is used for resolving access to methods from
the required interface (see 4).

. Provided methods of atomic components are implemented by CorC programs, which may

use ReqAdapter to invoke required methods or simply invoke any of the provided methods.

. The adapter class is a helper class for components that is used for resolving access to meth-

ods from the required interface. The class is needed, as our formalism allows to have a n-to-
1 mapping for connections between provided and required interfaces. That is, we allow that
numerous provided interfaces implemented by other components cover only parts of the re-
quired interface, but demand that merging all these provided interfaces satisfies the required
interface (see Definition 4.9). In particular, there exist two versions of this class. The first ver-
sion (which is illustrated in Table 4.1) connects the required interface of a component with all
connected provided interfaces on the same level, and resolves the respective method calls. The
second version considers delegate connectors (i.e., connections between two required inter-
faces), and is constructed analogously.

. A composite component implements its provided interface and instantiates all contained sub-

components. Ifit is the top-level component, the class becomes publicly available. Otherwise,
the class is only visible inside the package.

. The constructor of a composite component aims at establishing all relevant connections.

First, the required interface of the composite component is delegated to the corresponding
required interfaces of sub-components. Second, the constructor connects provided interfaces
with the right adapter for required interfaces of sub-components. If the composite compo-
nent is the top-level component and its required interface is non-empty, the respective Java
interface is added as an argument, and an implementation must be provided by end-users.

. Instead of implementing provided methods by CorC programs, the matching method from

the respective sub-component is resolved and invoked using the set of provided delegate con-
nectors. If the result type of the method is non-void, the result value is returned. Otherwise,
nothing is returned.

Example 4.5. In our running example, we modeled the thermostat as a composite component containing

atomic components Heater and On. In Listing 4.8, we show the generated code based on the thermostat compos-

ite component. Although we did not consider a required interface for the thermostat component before, we added

interface ISensorAndParametersR, which gives access to the sensed temperature x and constantsu,1, and K.

The constructor ensures that both objects heater and on are rightfully connected, and that object

on has access to the user-provided implementation for ISensorAndParametersR. Furthermore, class
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1 package ThermostatExample;
2 public class Thermostat implements IHeaterP {

3 public RegAdapterThermostat req = RegAdapterThermostat();
4 private Heater heater = new Heater();

5 private On on = new On();

6

7 public Thermostat (ISensorAndParametersR arg) {
3 req.add(arqg) ;

9 heater.reqg.add (on);

10 on.reqg.add(req);

11 }

12 //@ ensures h == heater.get_h();

13 public void set_h (double h) ({

14 heater.set_h (h);

15 }

16 //@ ensures \result == heater.get_h();

17 public double get_h () {

18 return heater.get_h{();

19 }

20 //@ requires ¢;

21 //@ ensures 1;

22 public void ctrlStepHeater () {

23 heater.ctrlStepHeater(); //Correct-by-construction

24 }

25}

Listing 4.8: A thermostat implementation generated by ArRcHICORC.

Thermostat exposes the control method ctrlStepHeater() from the IHeaterP interface, as shown in
Line 22. Method heater.ctrlStepHeater() is the correct-by-construction implementation of the control
method developed with COrC and — depending on the sensor input — modifies the heating value heater.h.
After deployment, an end-user can interface with the thermostat class by providing an implementation for
ISensorAndParametersR (ie., the sensor component), invoking the control method, and finally propagating
the value from variable h to the actuating component.

4.2,5. Discussion

We consider the ARcHICOoRC component model to be starting point for implementing correct and
reusable libraries (or packages) following the correct-by-construction approach. In this section, we
discuss current obstacles and limitations, how they can be overcome, and future directions.

Specifications Beyond Preconditions and Postconditions

Following Hoare-style reasoning [C. A. R. Hoare 1981] and design by contract [Meyer 1992], our
formulation in the previous sections considers only simple contracts comprising one precon-
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dition and one postcondition. In the last decade, more advanced specification concepts were
introduced to make specifying software more practical and enjoyable, and sometimes to make
verifying software automatically even feasible.

Framing. By introducing method calls in CorC programs (see Section 2.1.3), employed verifiers
must know, which locations are possibly changed and which locations are guaranteed to remain

unmodified. In the current version of ARCHICORC, this information is encoded as A;u; = v?ld,
old
i

reduced by introducing additional syntactic sugar called framing condition [Hatcliff et al. 2012] or

where v9'¢ expressed the value of v; before method execution. Instead, specification effort can be
modifier clause [Liskov et al. 1986; Leino 1998], such as the keyword assignable as used in JML [Leav-
ens et al. 2000], to use a set-theoretic notion for modifiable locations.

Multiple Specification Cases. Modern specification languages support the definition of more than
one contract for one method referred to as specification cases. For instance, JML provides the keyword
also [Chalin et al. 2005] to connect multiple contracts. In essence, each specification case defines a
different behavior with respect to a unique assumption. Again, separation of specification cases is
mostly syntactic sugar, as shown by Chalin et al. [2005]. That is, given # specification cases with their
unique precondition ¢; and postcondition ¢;, translating all n specification cases into a single con-
tract leads to precondition \//' ¢; and postcondition A/ ¢9'9 = ;. However, explicit syntax for spec-
ification cases certainly improves readability of specifications and will be addressed in the future.

Class Invariants. Besides method contracts, another kind of specification is represented by class
invariants [Leavens et al. 2007], which allow to specify unchangeable conditions of class mem-
bers with one-time effort (i.e., only once per class in object-oriented programs). Consequently,
methods must implicitly conform to the class invariant before and after any method execution,
while the alternative is to add the invariant’s condition to each precondition and postcondi-
tion explicitly. Class invariants in CorC are represented by global conditions (see Section 2.1.3).
In ArRcHICORC, however, there is currently no concept for specifying invariants that must be re-
spected by all methods of an interface. We aim at adding a special keyword to ARcHICORC's in-
terface description language as part of future work. Global conditions of corresponding CorC
programs then have to be implied by the invariant.

Listkov-style Compatibility between Specification and Data Types

ArcHICORC aims at managing correct-by-construction library functions and therefore connects
interface methods with CorC programs based on refinement. By relying on CorC, a crucial step
is the last refinement (e.g, typically assignments), which involves a move from the specification
language to the programming language. It is therefore important to think about how data types
of the specification language are represented in the programming language, consequently leading
to potential errors. For instance, natural numbers in specifications are often represented using an
abstract infinite domain, whereas Java, for example, bounds natural numbers to a finite domain.
There are three possible solutions to this problem [Beckert et al. 2005]. First, if possible, we
could change data types on the implementation level to exhibit the same semantics as pro-
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vided by the specification language. Second, we may do the opposite by modeling data types
of the specification language similar to their implementation-level representation. Third, we
may think of a controlled incorrectness in our refinement rules, usually referred to as retrench-
ment [Banach et al. 1998; Beckert et al. 2005). A retrenchment framework is able to prove the
absence of cases that lead to such problems.

As ArcHICORC's focus is primarily on component-based design for CorC programs and code
generation, it shifts this problem to CorC itself. In particular, CorC does not violate the re-
finement from specification to implementation by integrating JML as specification language
and by employing the deductive verifier KEY as part of its tool chain. Consequently, CorC ap-
plies the second solution by only allowing implementation-level data types in its specifications.
However, as identified by Beckert et al. [2005], there are certain drawbacks of this solution. For
instance, hiding of implementation details is reduced and not all implementation details are
even known during the specification phase.

In summary, a promising direction is to study retrenchment in combination with the correctness-
by-construction approach. Retrenchment promotes the idea of implementation hiding by focus-
ing on more abstract specifications for refinement calculi beyond implementation-level data types.
Moreover, with the rise of functional programming, developers of a future generation may think of’
types as mathematical objects with infinite domains rather than class-related objects as promoted
by object-oriented programming. As mentioned before, lifting the data types of established pro-
gramming languages to infinite domains is infeasible. Therefore, allowing infinite domains for
data types of specification languages is best addressed by applying retrenchment.

Floating-Point Support in Deductive Verification

CorC integrates the deductive program verifier KeY as back-end in its tool chain. A big challenge
is to reason about floating-point arithmetic conforming to the IEEE 754 standard, which has only
very limited support in the current release version of KEY. In contrast, there exist other deduc-
tive verifiers, such as FRAMA-C [Cuoq et al. 2012] for C and SPARK [Barnes 2012] for Ada, who sup-
port floating-point reasoning more properly. Unfortunately, ARcHICORC is built on top of CorC
and also aims at bridging the gap between hybrid systems, which rely heavily on real arithmetic,
and machine-executable code. Consequently, a large part of the generated and constructed CorC
programs in the translation process (which we discuss in the next section) remains unverified or
at least requires high manual verification effort.

While this is currently a rather unpleasant drawback of our tool chain, there exist very re-
cent efforts to integrate proper floating-point reasoning into KeY [Abbasi et al. 2021]. Instead of
adding new rules in KeY’s sequent calculus for directly handling floating-point arithmetic, SM'T
solvers with a theory of real arithmetic are integrated (i.e., similar to KEYMAERA X). Slight addi-
tions to JML, however, require CorC to potentially enhance its specification language as well.
As ArcHICORC directly interfaces with CorC, proper floating-point reasoning becomes available
as soon as CorC updates to a supporting KEY version.
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Figure 4.3.: Transformation of skill graphs to ARcEICORC components.

4.3. Tool Support for Virtual Validation of Skill Graphs

In the previous section, we introduced the ARCHICORC component model and hinted at the fact
that skill graphs are translated to component-based architectures. The goal is to support incre-
mental model and specification debugging (i.e., is my modeled maneuver accurate enough for the real
world?), which is best addressed by virtual validation. At the same time, ARcHICORC incorporates
deductive verification and correctness-by-construction on source-code level, which is another layer
to reduce potential defects when making the leap from model to implementation. To aid de-
velopers in deriving verifiable implementations that conform to a model’s needs, we provide tool
support in SKEDITOR for implementing skill graphs with ARcHICORC components. In Figure 4.3,
we give a simplified overview of the relationship between skill graphs and ARcHICORC compo-
nents, which we briefly explain in the following.

After a verified skill graph is developed, both software and hybrid skills are translated to boiler-
plate ARcHICORC components. In particular, each component is equipped with a specialized re-
quires and provided interface. Software skills are translated to composite components with their
required and provided interface consisting of their input and output variables, respectively. Addi-
tionally, each such component provides method void update(void), which has the purpose to (1)
call the update method of dependent software skills and (2) update their respective variables. Inter-
nally, the update method is implemented manually following the guidelines of ArcrHiCorC. Hy-
brid skills are translated to atomic components fully automatically based on their controller im-
plementation in SL, which we explain in more detail in Section 4.3.1. Next, the ARcHICORC com-
ponents are connected following the dependency structure of the original skill graph. This results
in a new top-level composite component that requires sensor values and parameters, and exposes
the controlling function of the top-level behavioral skill. Finally, implementation of hardware skills
(i-e., sensors and actuators)is given by a simulation platform supported by ARcHICORC, which must
interface with the composite component to establish a closed-loop feedback control.

To transfer the model-level execution semantics established in the previous chapter (see Sec-
tion 3.2.2) to the implementation level, each supported simulation platform is required to pro-
vide an instantiable template implementation of the control loop employed at run-time. As
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this is a manual one-time effort per simulation platform and the template is instantiated for
all maneuvers equally, we argue that the instantiation is correct-by-construction. As we primar-
ily focus on time-triggered systems, we reserve the variables t and ep measured in milliseconds
for clock time and maximum elapsed time between two sensor measurements, respectively. As
EP is typically undefined in the modeling phase, it must be concretized in the respective tem-
plate implementation of the control loop.

An example of such a simulation environment that we integrated is AirSim [Shah et al. 2018],
which allows us to translate ARcHICORC components to C++ code and simulate the respective ma-
neuvers in realistic 3D environments with highly accurate physics. In Section 4.3.1, we explain how
skills are translated to ARcHICORC components and how source code is generated. In Section 4.3.2,
we show how simulation platforms interface with our tool chain using AirSim as example.

4.3.1. Automating ARcHICoRC Component Generation

In the proposed development process, each skill in a skill graph is mapped to an ARcHICORC com-
ponent. For software and hardware skills, each skill is mapped to an ARcEICORC composite compo-
nent with one required and one provided interface that mirror the dependencies of the skill-graph
model. For instance, consider a perception skill for identifying obstacles in front of a vehicle that gets
as input sensor values from a Lidar sensor and outputs a list of obstacles. The required interface
will request a Lidar sensor object provided by a Lidar sensor component, while the provided inter-
face will provide the list of obstacles to connected, higher-level skills. In contrast to hybrid skills,
which are only allowed to use real values, components based on software skills may communicate
with arbitrary objects in their interfaces, as long as the respective classes are available. We exem-
plify the required and provided interface of such a software skill in the following.

archicorc_interface IPerceptionR { archicorc_interface IPerceptionP ({
// Lidar sensor // List of objects
Lidar sensor_data; List<ObstacleData> obstacle_data;
} //@ requires ¢;

//@ ensures YP;
void updatePerception (void) ;

}

As can be seen, each provided interface gets a unique update method for updating all provided
variables in the current cycle. This method must be implemented internally by end-users using
atomic components. Although we will not go into too much detail on how the update process
works, as it is straightforward, there are two implicit aspects that arise during the code genera-
tion process, but are indeed hidden from end-users. First, invoking the update method of a skill
will also first automatically invoke all update methods of dependent software skills on lower lev-
els. This ensures that required variables are always up-to-date. Second, invoking the same up-
date method more than once during the same cycle will not have any additional effect, which
saves computational power. As ARCHICORC promotes the correctness-by-construction approach,
we hope that implementation defects can be reduced.
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For hybrid skills, each skill is mapped to an ARcHICORC atomic component with one required
and one provided interface, where the respective code of provided methods is mostly generated
automatically. The reason is that hybrid skills are based on hybrid mode automata and SL programs,
which allows us to translate this behavior to general-purpose programming languages. In fact, as
SL is syntactically and semantically close to hybrid programs, our translation process is inspired by
KEYMAERA X’s own code generation process [A. Miiller et al. 2018b].

Each component resulting from a hybrid skill provides a control method that modifies the cur-
rent state once according to the underlying hybrid mode automaton. Control methods of depen-
dent hybrid skills are added to the required interface. Importantly, we allow modelers to abstract
away certain parts in their formalization using nondeterministic assignment, which must be re-
solved during implementation. We solve this by adding additional methods to the provided inter-
face attached to the respective component that must be implemented by hand. The following in-
terfaces for a behavioral skill exemplify this solution.

archicorc_interface IBehaviorR { archicorc_interface IBehaviorP {
// Parameters // Output variables
double pq,...; double o0q,...;
// Input variables // State ID
double iy,...; int state_id;
// Dependent hybrid skills //@ requires ¢uy;
//@ requires Y},; //@ ensures Yey;
//@ ensures w;j; void ctrlStepBehavior (void) ;
void ctrlStepActiong (void);
// Output from Action // Resolve nondet. assignment
double o; € {01,...}; //@ requires L,/
/... //@ ensures ¢L&H
} double aj();
V2R

bool monitorSatisfied(State prior);

}

As illustrated above, key element of the provided interface is the ctrlStep method that ad-
vances the state each cycle. Automated code generated for the ctrlStep methods resembles the
underlying structure of the hybrid mode automaton. An important question is how the specifi-
cation (i.e., precondition ¢.; and postcondition ) is obtained. We solve this issue by trans-
lating the corresponding hybrid mode automaton to a logical formula, which we then use as post-
condition, while using the skill’s assumption and environmental conditions as precondition.
Finally, we add a method to the top-level component for monitoring whether any control actions

violate the original (and verified) controller model. Input argument State is a simple struc-

4Translating the hybrid mode automaton to a logical formula is largely inspired by the translation process of hybrid
programs to dL [A. Miiller et al. 2018b; Mitsch et al. 2016]. We omit further details, as the procedure is only of technical
nature.



4.3. TooL SUPPORT FOR VIRTUAL VALIDATION OF SKILL GRAPHS 101

ture used as shorthand for the collection of input and output variables. We discuss the gen-
eration of monitor code at the end of this section.

In the following, we explain how the main control function — ctrlStep — is generated from the
initial discrete control structure represented by hybrid mode automata. Although there exists a
directly corresponding CorC implementation of the ctrlStep method, we discuss the translation
only using plain C++ for the purpose of readability. We start with the following structure and explain
the translation informally for each aspect (i.e., modes and discrete programs) of a hybrid mode
automaton. Methods prefixed with two underscores are internal helper methods.

void ctrlStep (void) {
State result = __ _updateAndGetState();
// [...generated controller logic...]
__updateState(result);

}

Internally, we use a unique State object to bundle all input and output variables together. The
two helper methods illustrated above are essentially wrappers for all get and set methods, and are
used to initialize the temporary state object and to update the output variables of the respective
component. Additionally, method __updateAndGetState () initially invokes all update meth-
ods of dependent software skills, such that each cycle necessary output variables of software skill
are updated. In the following, we explain how code for the ctrlStep method is generated.

Modes. Similar to the previous chapter, each mode gets a unique mode identifier state_id €
IN U {0} and ctrlStep starts with transitioning to the correct state using conditionals:

// Transitions
if (current.state_id == 0) {
: 0
if (__cond,_g)
result.state_id = ...;

else if (__cond}_,)

result.state_id = ...;
else if ...
}
else if (current.state_id == 1) {
}
else if ...

Symbol __cond!, returns the ith guard of the respective transition from the current mode to another
mode. For instance, in our thermostat example, modes Off and On are associated with state_id 0
and 1, respectively. If temperature x almost reaches lower limit 1, the thermostat system transitions
to mode On. In the translation process, _cond8 equals x <1+ ¢;, with §; > 0. In contrast to
KEYMAERA X [A. Miiller et al. 2018b], we eliminated arbitrary nondeterministic choice in our models,
which makes the generation process more straightforward.
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Afterwards, each mode itself’is then translated surrounded by conditionals based on the current
state of result.state_id similar to the structure above. Next, we explain how each mode includ-
ing deterministic and nondeterministic statements, terms, formulas, and submode abstractions is
translated.

Deterministic Statements. Discrete assignments and if — else statements are directly translated
to C++ code. That is, x :=0 is translated to result.x = trans_expr(6); and if (H){ A}else{B} is di-
rectly translated to:

if (trans_formula (H)) {
trans_stmt (A) ;

} else {
trans_stmt (B);

}

The three translation functions prefixed with trans_ are recursively resolved until they result in
syntactically-correct C++ code. A particularity is represented by assume and assert statements.
Both statements leave the state unchanged but will report on violations during execution.

Terms and Formulas. One problem that arises from translating models based on d.£ (or most other
abstract representations of cyber-physical systems) to machine-executable code is the handling of
real arithmetic. Floating-point imprecision of real-valued variables can lead to violations not based
on the control logic, but solely based on the underlying architecture. Ensuring safety margins and
guaranteeing a sound representation in machine-executable code is therefore of paramount im-
portance for real production code, as pursued by the VeriPhy project [Bohrer et al. 2018] for hy-
brid programs. As the main goal of this thesis is restricted to simulation and functional cor-
rectness only, we provide only an unsound translation. Nevertheless, we translate all parame-
ters and variables used to a floating-point data type with the highest precision of the underly-
ing architecture. For C++, this is achieved by using the long double primitive data type.> When
variables or parameters are accessed in terms or formulas, we compile them by either using the
current state (i.e., result.x for accessing variable x) or the globally accessible parameter struc-
ture (i.e., parameters.A for accessing constant A).

Nondeterministic Assignment. Nondeterministic assignment is often used to introduce vari-
ability into the controller code. That is, for a given variable, the controller should be safe re-
garding a variety of values instead of only a concrete one. As mentioned before, we generate
specific methods as part of the interfaces for these occurrences. We assume that nondetermin-
istic assignments are typically paired with assume H statements, which may serve as a possi-
ble postcondition for these assignments. For such a given pair havoc x;assume H, we provide
the following translation, where ¢, = H.

>If supported by the architecture and compiler, long double will match a 128-bit floating-point type. Otherwise, at least
a 64-bit floating-point type is guaranteed.
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//@ requires ¢ ,.;
//@ ensures ¥ ,.;

long double x() { ... } /*Implement nondeterministic assignment */

void ctrlStep(void current) ({
/S
result.x = this->x();
Y2

}

If possible, the helper function x() is constructable employing the correctness-by-construction
approach and CorC or verifiable using post-hoc techniques [Ahrendt et al. 2016]. For the pre-
condition ¢7,,, we only insert facts about the current parameters, as given by the skill-graph
model. In the future, more sophisticated analyses based on weakest precondition are possi-
ble to derive a more precise precondition.

Another abstraction mechanism that we introduced in the previous chapter were Hoare triple
specifications. Here, precondition and postcondition are explicitly given and translated to a
valid specification as-is. In contrast to nondeterministic assignment, we assume that Hoare
triples play a larger role in the modeling phase and ideally are resolved before an machine-
executable implementation is derived. Therefore, we omitted the generation of dedicated
methods for this abstraction mechanism.

Submode Abstraction. Recall that submodes in modes are used for activating the hybrid
mode automaton of a lower level skill (see Chapter 3). In our generated controller code,
this means that the ctrlStep of another component is invoked and must consequently be
accessible through the required interface:

void ctrlStep(void) {
Y
__setState (&0therComponent, &result);
OtherComponent—->ctrlStep () ;
result = _ _getState (&OtherComponent, &result);
Y

}

Here, OtherComponent is an implementation of an interface that provides the method ctrlStep
as well. To avoid name clashes, the ctrlStep is typically suffixed with a unique identifier. Helper
methods are again used to update respective variables of the dependent component and to trans-
fer any state changes to the upper-level component.

Generating Monitor Code. As apparent in our verification and validation pipeline, we make the
leap from a verified controller model to an untrusted controller implementation in C++. The rea-
son is that (1) nondeterminism must be resolved, but how it must be resolved is free to the de-
veloper, and (2) we (at least) provide means for verifying the correctness of the implementation,
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but due to practicality, we do not enforce it. In particular, conditions used in the d£ model, such
as the initial safe prestate or the safety guarantee, are eliminated in the process of deriving an
implementation. To still be able to assess whether our controller behaves as intended, we addi-
tionally generate monitor code for our top-level controller in a dedicated method with signature
bool monitorSatisfied(State prior). Eventually, the monitor code can be used throughout run-
time to report condition violations of the controller (i.e., deviations of controller model and im-
plementation) that would otherwise be unnoticed.®

The generated code compares the current state of the controller with the previous state, which
we explicitly provide as argument (the current state is obtained from the atomic component itself).
If the current state is not a valid poststate of the given prestate according to our modeled con-
troller, the monitor is not satisfied. We exploit MoDELPLEx [Mitsch et al. 2016] in our process that,
given a d£ model, generates monitor code automatically. Besides generating monitor code for the
controller, it is also possible to generate monitor code based on the modeled dynamics. This way,
it is possible to assess whether the real world behaves according to the assumed world. In our tool
chain, we will only generate code that monitors the controller.

Example 4.6. We revisit a simplified version of the thermostat example. Translating the controller code to d L
may result in the following logical formula:

state_id = 0 & x >= u() & (
x >= 1() & hpost = h & statepost = 1 & Xpost = x
)
| state_id =1 & x <= 1() & (
hpost >= u() & x <= u() & statepost = 0 & xpost = x
)

Depending on state_id, the formula represents valid conditions for changes resulting from executing the
controller. For instance, the controller itself does not modify temperature x in any state, which is why before
and after executing the controller, x must remain unchanged (highlighted). Translating the logical condition
to C++ code results in the following implementation:

bool monitorSatisfied(State prior) {
return (prior.state_id == 0.0L && prior.x >= this.params->u
&& prior.x >= this.params->1 && this.h == prior.h
&& this.state _id == 1.0L && this.x == prior.x)
|| (prior.state_id == 1.0L && prior.x <= this.params->1
&& this.h >= params->u && prior.x <= this.params->u
&& this.state _id == 0.0L && this.x == this.x);

6As presented by Bohrer et al. [2018], it is common practice to also provide fallback maneuvers in case of a severe
condition violation (e.g., an emergency brake), which is why monitoring is indispensable during execution.
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4.3.2. Example: Interfacing with AirSim

To conclude this section, we explain how the generated ARcHICORC components from skill-graph

models can be used with AirSim. Essentially, the generated code implements a step in the control

loop accessible by the top-level behavior skill of the skill graph. Based on the current state given by

the sensors, the control step is executed to compute the post state. Afterwards, essential variables

of the post state are propagated to the actuating components. In our tool chain, we automated this

process for AirSim’s car simulation. To illustrate how the generated code may interface with a sim-

ulation platform such as AirSim, we present a stripped-down version for the instantiated main loop

of a lane keeping assistance maneuver in Listing 4.9.
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ParametersLKA params;

params.ep = EP;
S/
msr::airlib::CarRpcLibClient client = ...;// Init.

LaneKeepAssistance assist = new LaneKeepAssistance (&params);

Y

while (loop(chrono::duration_cast<chrono::milliseconds> (end - begin))) {
begin = std::chrono::steady_clock::now();
// O Sense (generated by ArchiCorC)
StateLKA current = __getCurrentState(); //get position,

//velocity, etc. from simulation

// @) Control (generated by ArchiCorC)

_ _setState(&assist, &current);
assist->ctrlSteplLKA();

StateLKA post = __ _getPostState (&assist);

// () Monitor (generated by ArchiCorC)
if(!assist->monitorSatisfiedLKA (current)) {

// Monitor violated —> report!

// (@ Actuate (manually implemented)
setThrottle(&client, post.a);
setBrake (&client, post.b);
setSteering(&client, post.w);

end = std::chrono::steady_clock::now/();

Listing 4.9: C++ implementation of closed-loop control for a lane keeping assistance using AirSim.

Object LaneKeepAssistance represents the top-level behavior skill and provides method

ctrlStepLKA. The while-loop represents the closed-loop feedback control. First, the updated

state (e.g, car’s position and velocity) is requested from the runtime @. This is where sensor com-
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ponents, which are implemented for each simulation platform differently, interface with the gen-
erated controller. Second, the control method ctrlStepLKA computes the next state based on
the current one @. Third, violation of monitored conditions is checked (3), which may either
be reported or even trigger fallback behavior (e.g., emergency brake). Finally, computed values
of control variables are propagated to the actuating components (4). Most importantly, all other
implementation details are hidden from the runtime environment, allowing the seamless inte-
gration of our approach into other simulation environments.

4.4, Evaluation

The above sections and the previous chapter raised some questions that we try to investi-
gate by empirical experiments and a qualitative assessment. In particular, we aim at dis-
cussing the following three research questions.

RQ-1: To what extent do we rely on nondeterministic assignments in practice?
RQ-2: To what degree do correctness guarantees hold at the level of implementation?

RQ-3: To what extent is validation of skill graphs insightful with respect to an incremental development pro-
cess?

With RQ-1, we aim at investigating the portion of nondeterministic assignments in our case
studies. Several modes may use nondeterministic assignments, which is sufficient (and even
convenient) for the verification phase, but must eventually be resolved at the implementation
level. Although we only consider a small number of case studies, the number of nondetermin-
istic assignments can still give an impression on additional effort that must be spent during
the implementation phase. Furthermore, nondeterminism exhibits an additional source of dan-
ger; while deterministic assignments are translated automatically to source code, nondetermin-
istic assignments must be implemented manually and are only assumed during the verification
phase. This is also the reason, why we directly integrated the correctness-by-construction ap-
proach in the architectural layer of our pipeline.

With RQ-2, we investigate the feasibility of our verification and validation pipeline. In particu-
lar, we evaluate whether safety guarantees can be transferred from the verification model to the ex-
ecution model following the guidelines of’ ARcHICORC. Finally, with RQ-3, we discuss our expe-
riences with the proposed development process.

We characterize our non-trivial case study of a road vehicle and the evaluated subject maneuvers
in Section 4.4.1. In Section 4.4.2, we present results and discuss insights on the questions asked
before. Finally, we discuss limitations and possible threats to validity in Section 4.4.3.

4.4.1. Case Studies and Setup

Although the concept of skill graphs is applicable to a diverse set of cyber-physical systems, we
aim at evaluating our pipeline in the context of automated driving similar to the conducted case
study in Section 3.5. In particular, we employ AirSim [Shah et al. 2018] as simulation environment
to validate to what extent correctness guarantees of the skill-graph models can be transferred to
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implementation level. For automatic driving, the final goal is indeed to develop skill graphs for each
maneuver from a catalog of basic driving maneuvers that can be safely applied in road traffic.” The
purpose of this evaluation, however, is a proof of concept of our verification and validation pipeline.

Our verification and validation pipeline proposes two novel modeling concepts that did not exist
before, namely skill graphs presented in the previous chapter and ARcHICORC presented in this
chapter. Consequently, we cannot expect to study real-world driving maneuvers and transform them
into our approach error-free and without considerable effort. Instead, we created all case studies
from scratch, which may serve as a baseline for further empirical assessments in the future.® The
rationale behind creating skill graphs completely from scratch and translating them to machine-
executable code is twofold. First, emphasis is on coming up with a model design that follows the
language’s intention. We believe that this way, modeled maneuvers display a higher quality in terms
of design. Second, developing all case studies from scratch simultaneously allows us to think about
how to reuse implemented skills across maneuvers and how to decrease verification effort upfront.

In total, we created five maneuvers including validation scenarios in AirSim to demonstrate the
applicability of our verification and validation pipeline. All studied maneuvers are modeled as skill
graphs, verified, and eventually implemented in C++ supported by ARcHICORC. As ARCHICORC is
limited with respect to floating-point reasoning (see Section 4.2.5), parts of the implementation re-
main unverified. However, such parts are already in a form that allows to verify them when rea-
soning with floating-point arithmetic becomes available. A short description of the maneuvers and
their safety requirements is given in the following.

Explore World (Vehicle version). This maneuver is similar to the Explore World maneuver described
in Section 3.1.2 for the robotic domain. The goal is still to (randomly) explore an area without
colliding with any object. The difference is that this maneuver is now applied to a vehicle
with different kinematics preventing rotating on the spot. Instead, the turning circle must be
considered explicitly. Safety goals are (1) respecting a maximum velocity (v < vy4y), and (2)
avoid collision.

Safe Halt. The goal of this maneuver is to drive forward in a straight line and come to a haltifneeded
(i-e., either in front of an obstacle or a particular point) without collision or overstepping.
Safety goals are again (1) respecting a maximum velocity (v < v,4y), and (2) avoid collision.

Lane Keeping Assistance. This maneuver captures the lateral aspects of following a lane, where it is
not allowed to deviate too far from the lane’s center point. For this, the vehicle must drive on a
lane with perceivable solid lane markings. Safety goal is to respect a maximum lane deviation

(y < ymax)-

Adaptive Cruise Control (Unoptimized and Optimized). This maneuver captures the longitudinal as-
pects of following a car while keeping a safe distance. We further split the adaptive cruise con-
trol maneuver into two versions, an optimized version and an unoptimized version. The opti-
mized version resembles a more sophisticated controller on the modeled level without nonde-

7For example, a catalog of basic driving maneuvers as necessary for road traffic is given by Bergmiller [2015].

8 Although all case studies were created from scratch, the majority was inspired either by existing concepts of skill graphs
including an informal specification, or by some of the KEYMAERA X projects found online (https://github.com/
LS—-Lab/KeYmaeraX—-project s).
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terministic assignments, whereas the unoptimized version is simpler and leaves more room
for the implementation. Safety goal is to avoid collision with the leading vehicle.

As our evaluation aims at investigating whether our concept is feasible, we only built simple
scenarios to test each driving maneuver in isolation. For the Explore World maneuver, we cre-
ated a closed world with numerous static obstacles. For the Safe Halt maneuver, we used the
same world, but placed the vehicle in front of an obstacle in a straight line. For the lane keep-
ing assistance, we modeled the street and encoded the ground truth of the lane markings to
eliminate sensor uncertainty. For the adaptive cruise control, we added a second, leading vehi-
cle in front of our vehicle that drives in a straight line.

4.4.2. Results and Insights

In the following, we share results obtained with our case studies. In particular, we are interested in
usefulness and feasibility of our proposed approach. First, we investigate to what degree nondeter-
minism plays a role in our case studies. Next, we investigate whether safety guarantees from veri-
fied skill-graph models can be transferred to the implementation level. Finally, we discuss our ex-
periences. The concrete models are contained as examples in SKEDITOR.’

RQ-1: Nondeterminism

In Figure 4.4, we illustrate the number of top-level modes (i.e., modes of the behavioral skill) and the
number of nondeterministic assignments. Noteworthy, all Hoare triple specifications used during
the modeling phase were eliminated beforehand (i.e., were only used for incremental development
of the skill-graph models themselves). We discover that the Optimized Adaptive Cruise Control defines
five modes, whereas all other case studies define only three modes. We additionally observe that the
majority of case studies make use of nondeterministic assignment, with the Explore World maneuver
being the front runner with five nondeterministic assignments. The two exceptions, the Optimized
Adaptive Cruise Control and Safe Halt, use only discrete assignments.

The implementation eftort for the nondeterministic assignments may differ greatly. For instance,
assignments for acceleration a are often written in the models as havoc ajassume —B < a < A,
which leaves more room for the concrete implementation. For fast results, it is therefore tempting
to just assign a constant value to a (e.g,, a := A), which, however, often leads to non-optimal driv-
ing behavior. In the initial version of the Safe Halt maneuver, we had a similar nondeterministic
assignment havoc a;assume 0 < a < A, which we replaced by the discrete assignment a := A.

Based on our results, we conclude that the correctness-by-construction approach is indeed a valu-
able paradigm to bridge the gap between nondeterminism and safe implementation. In particular,
nondeterministic assignments are essentially tiny programs, where the postcondition can be iden-
tified either manually or automatically by a light-weight analysis.

https://github.com/AlexanderKnueppel/Skeditor
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Figure 4.4.: Number of top-level modes (behavior) and nondeterministic assignments per case study.

RQ-2: Validation and Safety Violations

In the following, we investigate the feasibility of our approach by simulating and validat-
ing the generated implementations of each case study in AirSim. As mentioned before, each
maneuver was successfully verified, which leads to the question whether correctness guaran-
tees transfer to the implementation level.

In Table 4.2, we summarize results from the performed experiments. In particular, for the fail
statistics, we report three values. First, column passable reports on the percentage of monitor viola-
tions that we consider as acceptable. These stem from violations of nondeterministic assignments
or other issues in the initial state, but do not violate the safety invariants. Second, column severe re-
ports on the percentage of violations of the safety invariants. Finally, failure rate is the time spent
in monitor-violating states with respect to the simulation time.

We observe that none of the five maneuvers violated any of the safety invariants during their
simulation, which is why all reported violations are considered as passable. Furthermore, the
failure rates are all low. However, we identified that oftentimes the initial state (i.e., a halted
state with zero velocity for all five case studies) violates the monitor condition, while dur-
ing movement the failure rate converges towards zero. Other times, the failure rate increases
for a short amount of time. We assume that the conversion of arithmetic reals to floating-
point precision results in sporadic problems.
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Fail Statistics

Maneuver Safety Goal Passable Severe Failure Rate (@) Sim. Time
Explore World Vv < Vyux; DO collision 100% 0% 1.07% 5m
Safe Halt v < Vyux; DO collision 100% 0% 3.03% ca. 6-12s.
LKA lane deviation (y < ymax)  100% 0% 1.63% 30s
ACC (Unoptimized) no collision 100% 0% 2.72% 30s
ACC (Optimized) no collision 100% 0% 2.36% 30s

Table 4.2.: Simulation results.

RQ-3: Experiences

In the following, we illustrate the obtained results and our gained experiences following the pro-
posed development and simulation process using the Optimized Adaptive Cruise Control and Safe
Halt case studies as two representative examples. In Figure 4.5, we depict the position, veloc-
ity, acceleration, and failure rate over time of the Optimized Adaptive Cruise Control case study.
The leading vehicle alternates between accelerating and braking as shown by the acceleration
(lower left), and aims at keeping the velocity between 8 m/s and 12 m/s (upper right). The po-
sition (upper left) of our host car shows that it tightly follows the leading car, but always keeps
a minimal distance that is considered safe. The failure rate (lower right) shows the aforemen-
tioned issue, where the initial state violates the monitor condition due to imprecision, but af-
terwards does not violate the monitor condition anymore.

In contrast to the optimized version, the unoptimized version is simpler and provides nondeter-
minstic assignments for braking and acceleration. Moreover, the implementation switches acceler-
ations only between the maximum braking force B and maximum acceleration force A. Although
safety invariants still held at execution, we considered this behavior to be less convenient for hu-
man drivers. We realized that optimizing this behavior is best addressed in the modeling phase, as
we decided to add additional modes for more fine-grained control.

In this specific case, we considered that resolving nondeterministic choice at implementation
level to realize the same optimization would be significantly more difficult for two reasons. First,
modes and their implementation in SL provide a local view on the parameters involved (e.g., velocity),
whereas the implementation is much more detailed and scattered. The unoptimized version sets
the acceleration to a fixed constant. The optimized version, however, views the acceleration as a
function depending on variables and parameters, such as velocity, distance to leading vehicle, and
worst-case execution time. Considering optimality of such functions increases effort during the
implementation phase. Second, verifying correctness of such optimization is also more promising
in the modeling phase, as numerical optimization is best addressed with differential dynamic logic.

The second example illustrating the safe halt case study is shown in Figure 4.6. The vehicle
must keep a maximum velocity of 10 m/s and starts 40 meters in front of an obstacle. Similar
to the unoptimized adaptive cruise control case study, the vehicle only switches accelerations be-
tween the maximum braking force B and maximum acceleration force A (upper left). The fail-
ure rate (lower right) shows an increase in monitor violations after four seconds. Although we
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Figure 4.5.: Measurements for the Adaptive Cruise Control case study with the leading vehicle keeping a velocity
between 8 and 12 m/s.

did not exactly locate the cause for this issue, as both safety guarantees were not violated, we as-
sume that sensor uncertainties may play a role.

While failure rates should not be dismissed, the above experiments increase our confidence in the
proposed link from verified skill-graph models to actual implementations. All evaluated maneuvers
transferred their safety guarantees to the simulation. Although the first two case studies required
more implementation effort (e.g., due to interfacing with AirSim and processing sensor data), the
automatic code generation and reuse of existing implementations allowed us to implement the
final three case studies considerably faster. We therefore believe that our verification and validation
pipeline is particularly valuable for virtual prototyping of maneuvers and experimenting with them.

4.4.3. Threats to Validity

Results of our evaluation are confronted with several threats to validity that we discuss in the follow-
ing.
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Figure 4.6.: Measurements for the Safe Halt case study with a maximum velocity of 10 m/s.

Internal Validity. The maneuvers that we evaluated may not represent real maneuvers as applied
in practice. First, all of our maneuvers have relatively small model sizes and code bases. We ac-
knowledge the fact that we only focus on stripped down versions of maneuvers for assessing con-
troller correctness without fallback routines, as the goal of this thesis was not the development of
production-ready maneuver implementations. Second, the majority of the case studies focus only
on either the lateral (i.e., lane keeping assistance or longitudinal aspect (i.e., safe halt and adaptive cruise
control) of driving behavior. We tried to overcome this limitation by also providing a version of the
explore world maneuver adapted for vehicles with larger turning circles. That is, explore world com-
bines several aspects of driving behavior, while avoiding collision at all costs.

Reported failure rates greatly depend on the specifications we used, which may be incomplete
with respect to real-world driving maneuvers. In particular, we mainly focused on single safety
guarantees, such as collision freedom, maximum velocity, or deviation of a lane’s center. Again, the
Explore World and Safe Halt case studies combined two safety guarantees each, namely respecting a
maximum velocity and avoiding collision. Moreover, we showed that safety guarantees of verified
models hold at the level of implementation for each of the five case studies, and expect the same
results for more complex maneuvers, such as the follow mode from the previous chapter.
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Although we used ARcHICORC for promoting the correct-by-construction approach, it could not
be successfully applied as-is in our pipeline due to its lack of support for floating-point reason-
ing. We are therefore confronted with the threat of faulty implementations. We addressed this
threat by manual inspection of the code. Moreover, safety goals were not violated during execu-
tion, which increases our confidence that no major defects were part of the derived implementa-
tions. As our case studies were rather simple, most nondeterministic assignments could be replaced
by a single concrete assignment used for simulation. However, most of our maneuvers are there-
fore highly unoptimized. Additionally, we applied simple sensing provided by AirSim for avoid-
ing collisions and manually provided the ground truth of the lane for the Lane Keeping Assistance
case study. This way, manual implementation was reasonable.

External Validity. It is questionable to which extent our results can be generalized to more com-
plex driving maneuvers, as we only evaluated five basic maneuvers. While more complex maneu-
vers would potentially lead to new insights, deductive verification of such maneuvers is still chal-
lenging and takes considerable effort. For instance, the Adaptive Cruise Control needed user interac-
tion during verification, as the underlying model is optimized. Furthermore, implementing soft-
ware skills performing tasks with respect to computer vision and artificial intelligence introduce
additional bias, as these tasks are active research areas. Regardless of this threat, our results il-
lustrate that our verification and validation pipeline works in principle for non-trivial maneuvers.
Furthermore, most related work in this domain use the same level of complexity for their evalua-
tions [A. Miiller et al. 2018b; Loos et al. 2011; Bohrer et al. 2018].

4.5. Related Work

We already presented an overview of model-based verification and validation approaches for cyber-
physical systems in Chapter 1. In the following, we focus our discussion on related work that is
close to the content of this chapter, namely the correctness-by-construction approach, component-
based design with support for contracts, and end-to-end verification of cyber-physical systems.

Refinement Calculi and the CorC Ecosystem

The goal of refinement calculi is to provide a logical foundation for the stepwise construction of’
programs starting with an abstract specification. Pioneers in this field, who originally put the idea
of stepwise program construction and correctness of program transformation forward, included
Dijkstra [1972], Wirth [2001], Gerhart [1975], and C. A. R. Hoare [1969]. In this work, we applied
the correctness-by-construction approach as proposed by Dijkstra [1976] and Kourie et al. [2012] to
implement methods of provided interfaces. Related to the correctness-by-construction approach
is Event-B [Abrial 2010], a framework which provides a formal automata-based language together
with a notion of refinement to derive machine-executable code. The most prominent tool sup-
port to develop and reason about programs in Event-B is given by the Ropin platform [Abrial et al.
2010]. Although the correctness-by-construction approach to programming and Event-B pursue
the same goal, they differ in their level of abstraction. Event-B abstracts from concrete program-
ming, which requires additional care with respect to soundness in the code generation process,
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whereas the correctness-by-construction approach results directly in compilable source code. Other
refinement-inspired tools specifically targeting programs include ARCANGEL [Oliveira et al. 2003),
which is based on Morgan’s refinement calculus [Morgan 1994] (i.e., an extension to the original
refinement calculus with many more refinement rules) and SOCOS [Back et al. 2007; Back 2009,
which mainly considers invariants instead of pairs of precondition and postcondition.

To enable the correctness-by-construction approach in our tool chain, we integrated CorC
[Runge et al. 2019a] into ARCHICORC. The reason for this decision are manifold. First, the feature
set and future plans of CorC are sufficient for the purpose of ARcHICORC. In particular, both
tools target object-oriented languages and the small kernel of CorC'’s theoretical foundation in-
creases trust in its correctness. Second, CorC and ARcHICORC are based on the same technol-
ogy stack, namely the Eclipse Modeling Framework. This leads to easier maintenance of the bridge
between both tool suits and provides better user experience, as ARCHICORC artifacts and CorC
programs can all be part of the same module. Third, CorC is well-maintained and actively de-
veloped, whereas most other frameworks in the field of stepwise program construction are not
maintained anymore and also never reached a level of maturity, which we would consider suf-
ficient enough for proper integration into ARcHICORC.

In spite of its young age, CorRC was already extended in several directions. First, Runge et al. [2020]
extended CorC with a notion of information flow control-by-construction. Instead of checking
confidentiality of data post-hoc by static information-flow analyses, information flow control-by-
construction defines refinement rules for constructing secure programs. Second, Bordis et al. [2020]
introduced VARCoRC, which is an offspring of CorC that focuses on correctness-by-construction
for software product lines, instead of only considering monolithic programs. Finally, ARcEICORC,
as presented in this chapter, lifts CorC to an architectural level by bundling correct-by-construction
implementations in software components and providing means for code generation.

Architectural Design with Support for Contracts

ArcHICORC aims at scaling the correctness-by-construction paradigm to large software projects by
organizing CorC programs in a UML-style component-based architecture and providing means
for source-code generation. In particular, it follows a UML-style modularization to separate con-
cerns and to focus on reusable components. Consequently, the ARcHICORC’s component model is
simpler compared to most of the component models applied in practice. Many contract theories
are applied to embedded systems and component-based system’s engineering with a focal point
on heterogeneity [Henzinger et al. 2007; Rawat et al. 2015] (i.e., contract theories that unify multi-
ple functional and non-functional domains, such as software, hardware, mechanical, and electrical
parts). Typically, component models in such theories [Benveniste et al. 2007; Benveniste et al. 2009;
Sangiovanni-Vincentelli et al. 2012] comprise a set of input and output data ports (instead of inter-
faces) and a component behavior that relates such input and output streams. Contracts mainly fol-
low the assume-guarantee paradigm [Benveniste et al. 2018]. In contrast to ARcHICORC, these com-
ponents are typical dynamic in the sense that they follow a trace-based execution semantics.
There exist other tools and frameworks besides ARcHICORC that aim at combining UML-style
component modeling with architectural specifications following the design-by-contract princi-
ple. Some examples worth mentioning include CBABEL [Rademaker et al. 2005], RADL [Reuss-
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ner et al. 2003], XCD [Ozkaya et al. 2014] and its extension for visual modeling VXCD [Ozkaya
2017], and X-MAN [Lau et al. 2012]. In comparison with most of these tools, the purpose
of our modeling approach differs. Their primary focus is to abstract away from any con-
crete programming model, whereas our focus is to organize correct-by-construction programs,
which are constructed using a general-purpose programming language, and eventually gener-
ate a correct-by-construction architecture.

Furthermore, many contract-based frameworks propose to specify temporal properties as part
of their assumptions and guarantees [Cimatti et al. 2015; Cimatti et al. 2012], including means for
checking contract refinement. A popular implementation is given by the OCRA tool [Cimatti et al.
2013),'° which leverages linear-time temporal logic to even specify properties sufficient for hy-
brid systems. OCRA has been integrated into larger tool chains and frameworks focusing on re-
quirements formalization and contract-based architectural development, such as FOREVER [Barac-
chi et al. 2014] and AuToFocus [Broy et al. 1999]. In contrast to ARcHICORC, these frameworks aim
at industrial-size architectural models and employ model checking to verify their properties. It is
certainly interesting to consider, which role the development process proposed in this and the pre-
vious chapter could take in such complex frameworks to focus on safety properties only.

Simulation

Simulation is an integral part of our verification and validation pipeline. There exist numerous sim-
ulation environments to choose from, which all come with advantages and drawbacks. Most pop-
ular in the research community, GAzEBO [Koenig et al. 2004] is a simulation platform that offers a
modular design that allows developers to integrate different physics engines and to create complex
robotic systems with arbitrary sensor models and simple 3D worlds. Furthermore, GAZEBO main-
tains a close relationship with the robot operating system (ROS) [Quigley et al. 2009; KoubAa et al.
2017, one of the most prominent open-source frameworks for personal and industrial robotic sys-
tems. Therefore, GAZEBO is typically used for simulating systems based on ROS modules. Although
GAzEBO comes with numerous features to increase realism in simulations, its rendering engine
cannot compete with engines such as the Unreal engine or Unity, which makes it difficult to cre-
ate visually-rich environments close to real-world scenarios.

To focus on visually-rich environments, AIRS1M [Shah et al. 2018] is a recent platform based on
the Unreal engine that focuses primarily on automotive vehicles and flying drones. Most appealing,
AirSim comes with pre-existing physical models of automotive vehicles and numerous 3D wolds
(e.g., urban neighborhood or city), which saves development time and reduces the risk of introduc-
ing insufficient physical behavior. Especially, using independently-developed models and simula-
tion environments is necessary in our evaluation to not invalidate empirical results.

In our validation and verification pipeline, we currently integrate both simulation platforms
mentioned before. We primarily use GazeBo/ROS for robotic systems, such as the vacuum cleaner
robot introduced in the previous chapter (see Section 3.1.2), and AirSim for automotive vehicles,
such as applied in our evaluation for various driving maneuvers. Moreover, the modularity of our
combined tool suite (i.e., SKEDITOR and ARcHICORC) allows to extend the current set of simulation
environments and to add new ones in a plug-and-play fashion.

Onttps://ocra. fbk.eu/
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4.6. Chapter Summary

The goal of this chapter was to develop a proof-of-concept methodology for moving verified skill
graphs from the conceptual to the executable. Our focal point was twofold. First, one main con-
cern was to retain correctness guarantees throughout the refinement process. Second, the other
main concern was to also focus on important software engineering aspects, such as reusability and
modularity. We argue that focusing on these concerns is necessary for enabling adaptation of our
methodology in real software engineering processes.

In particular, we sketched a verification and validation pipeline for cyber-physical systems,
where we explained how abstract maneuvers represented by skill graphs can be refined to a
component-based architecture amenable to simulation and validation. With the correctness-by-
construction approach, including its component-based manifestation ARcHICORC, we propose
a framework that guides developers in deriving implementations that hold correctness guaran-
tees for parts that cannot be generated automatically. Introducing an architectural intermedi-
ate layer supported by the design-by-contract paradigm can drastically increase reuse and reduce
verification effort and implementation defects. Nevertheless, in its current stage, our verifica-
tion and validation pipeline is only proof-of-concept and considerably depends on the features
provided by the underlying third-party tools. We simulated the derived controller implementa-
tions in AirSim to inspect the appropriateness of the abstract model of a maneuver. The pursued
and accomplished goal is that the link from a formal skill-graph model to execution is achiev-
able in practice for non-trivial maneuvers. We have evaluated that all five case studies indeed
transferred their correctness guarantees to the execution stage.

Although the correctness-by-construction approach can render post-hoc verification obsolete,
it also comes with the disadvantage of increased specification and development effort, which is
why our methodology allows both approaches. However, there exist two key problems for us
in the context of deductive program verification, when it comes to adoption in software engi-
neering processes. First, how can we assess precision of our our specification? Second, how
can we maximize automation and efficiency of deductive program verifiers? We aim to address
both of these questions in the next two chapters.



5. A Study on Mutation
Analysis for Software
Contracts

This chapter shares material with the FormaliSE21 paper “How much Specification is Enough? Mutation
Analysis for Software Contracts” [Kniippel et al. 2021a].

As indicated in the previous chapter, automatically verifying the correctness of source code
requires a sufficient specification of the intended behavior. In post-hoc verification, which
is also supported by ARcHICORC (see Chapter 4), we prove specification compliance only af-
ter the implementation was completed. This poses a major challenge for software developers
working with deductive verification, as specifying software precisely is considered to be difficult,
prone to error, and time consuming [Baumann et al. 2012; Hihnle et al. 2019; Gleirscher et al.
2018]. Due to low adoption rates, lack of expertise and tool support complicate matters fur-
ther [Gleirscher et al. 2018; Gleirscher et al. 2019

As a consequence, developers often tend to not specify all but only the simplest properties that
their implementation must satisfy. In this case, multiple diverging implementations may be covered
by the same specification and therefore labeled as correct.' This misleading sense of correctness is
the root cause for numerous software quality problems. First, method invocations can be abstracted
with their respective contract [Ahrendt et al. 2016; Kniippel et al. 2018b]. If the contract, however,
does not cover properties which the caller relies on, automatic verification becomes typically im-
possible. As a solution, either (1) contracts have to be adapted, (2) a different, sufficiently specified
method has to be invoked instead, or (3) the implementation has to be inlined instead of relying on
contract abstraction. The drawbacks are wasted development time, implementation clones, and de-
creased performances during verification. Second, during software evolution, developers that cre-
ate or modify methods must always be aware of imperfect specifications of callees, which leads to
code smells [Van Emden et al. 2002]. Third, software bugs can be overlooked if parts of the imple-
mentation are unspecified. Again, a misleading sense of correctness may even reinforce the emer-
gence of critical software bugs, as testing effort is typically reduced.

While an exact method to compute the distance between specification and implementation is de-
sirable, to the best of our knowledge no such method does currently exist. Moreover, this problem
has gained little attention in the research community. Consequently, when proposing novel analy-
ses, there currently exists no adequate baseline to compare against. In this chapter, we investigate
this topic with a study on how to quantify the precision of software contracts by means of mutation analy-

1\We use the term diverging to mean that multiple implementations have same method signature and return type but
exhibit different observable behaviors.
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sis [Papadakis et al. 2019; Jia et al. 2010; Offutt et al. 2001]. Originally, mutation analysis (or mutation
testing) in the context of software development is used to evaluate the quality of existing test suites
by performing small modifications on programs called mutations [DeMillo et al. 1978]. The goal is
to check to what extent the test suite is oblivious to these modifications. If too many mutants sur-
vive (i.e., are not killed), the test suite is typically of low quality and needs improvement. In justifi-
cation of this evaluation approach, DeMillo et al. [1978] postulated two hypotheses:

m Competent Programmer: This hypothesis states that the majority of software bugs introduced
by senior developers can be attributed to small syntactic mistakes rather than conceptual fal-
lacies.

m Coupling Effect: This hypothesis states that there often exist a coupling of small and complex
mistakes, such that identification of one small mistake may lead to the discovery of other,
more severe problems.

We assume that both hypotheses hold similarly for contract-based software, as there exists a cor-
respondence between test cases and software contracts. That is, valid test cases specify instances
of correct functional behavior, which is also the goal of software contracts. We argue that the key
question of this chapter (i.e., whether a mutation analysis is a promising technique to compute a contract’s
strength) is worth to discuss. In particular, our mutation analysis applies mutation operators that we
adopted from the literature [Ma et al. 2006; Hou et al. 2007] to programs and method contracts. Af-
terwards, the mutation score is computed, which is defined as the percentage of killed mutants and
therefore is able to approximate a contract’s strength. Furthermore, mutants that survive consti-
tute examples of unspecified behaviors and can be further inspected by developers.

Although we are confident that our insights apply to other programming and specification lan-
guages, we consider again JAvA programs with JML contracts [Leavens et al. 2006] and employ the
deductive program verifier KEY 2.6.3 [Ahrendt et al. 2016] to prove contract compliance automat-
ically. In Section 5.1, we first illustrate the challenges raised above on a motivating example. In
Section 5.2, we give a definition of contract strength and present a taxonomy of causes for incom-
plete contracts. In Section 5.3, we propose a mutation analysis framework for measuring a contract’s
strength and then empirically evaluate this framework in Section 5.4.2. Finally, we discuss related
work on measuring the precision of specifications in Section 5.5.

5.1. Motivating Example

We exemplify the problem and consequences of incomplete specifications raised above by means
of a contract in JML from the open-source project Paycard [Engel et al. 2010]. The Paycard appli-
cation allows users to create paycards with user-defined limits and provides operations for charg-
ing them. Furthermore, all charging attempts are logged in a singleton structure called LogFile,
where each such entry is represented by class LogRecord.

In Listing 5.1, we show an excerpt of class LogRecord, which declares method setRecord for
initializing its members. The precondition following the keyword requires assumes that argu-
ment balance and class member transactionCounter are non-negative integers. After execut-
ing method setRecord, the postconditions following the keyword ensures then guarantee that
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1 package paycard;

2 public class LogRecord ({

3 /*@ public invariant /empty ==> (balance >= 0 && transactionId >= 0);
4« @/

5

¢ private /*@spec_public@*/ static int transactionCounter = 0;

7 private /*@spec_public@*/ int balance = -1;

s private /*@spec_public@*/ int transactionId = -1;

9 private /*@spec_public(@*/ boolean empty = true;

10

11 /*@ public normal_behavior

12 @ requires balance >= 0 && transactionCounter >= 0;

13 @ ensures this.balance == balance &&

14 @ transactionId == \old (transactionCounter);

15 @ ensures transactionCounter >= 0;

16 @ assignable empty, this.balance, transactionId, transactionCounter;
17 @*/

18 public void setRecord(int balance) throws CardException({

19 if (balance < 0) {

20 throw new CardException();

21 }

22 this.empty = false;

23 this.balance = balance;

2% this.transactionId = transactionCounter++;
25}

w6 //[...]

27}

Listing 5.1: Excerpt of class LogRecord from the Paycard case study to illustrate incomplete specifications
(adopted from [Kniippel et al. 2021a]).

(1) field this.balance equals argument balance, (2) field transactionId is set to the value that
class member transactionCounter held prior to method execution, and (3) the value of class
member transactionCounter remains non-negative. The frame condition represented by the
keyword assignable states that only the four fields empty, this.balance, transactionId, and
transactionCounter are allowed to be written to by method setRecord. Finally, the class invari-
ant following the keyword invariant must hold before and after each method execution and en-
forces that both fields balance and transactionId remain non-negative after object creation
as long as boolean field empty valuates to false.

Employing the deductive program verifier KEY [Ahrendt et al. 2016], contract compliance of
method setRecord is automatically provable, which may increase trust in the method’s correct-
ness. At the same time, there exist other diverging implementations that also satisfy the illus-
trated specification. That is, method setRecord is underspecified, which consequently enables the
masking of unintended defects by allowing non-equal implementations to adhere to the same
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specification. First, the second postcondition guarantees that class member transactionCounter
remains non-negative after method execution (Line 15). The implementation, however, incre-
ments transactionCounter by one each time method setRecord is called on an object of type
LogRecord (Line 24). Therefore, eliminating the increment operator in the implementation con-
stitutes a valid implementation, but certainly stays in conflict with the intended behavior (i.e.,
that this.transactionId must be unique). Second, method setRecord sets field empty to false
(Line 22), which is not specified. As a consequence, the class invariant (Line 3), which depends on
the valuation of field empty, becomes useless in terms of modular reasoning; any method that de-
pends on setRecord’s contract is oblivious to the fact that field empty is set to false.

As emphasized in this example, underspecification of method contracts comes with at least two
major drawbacks. First, although correctness of method setRecord is automatically provable, im-
precise (or incomplete) contracts can mask unintended implementation errors and therefore pro-
vide a misleading sense of safety with respect to the verification result. For instance, uniqueness
of field transactionId is not guaranteed. Second, modular reasoning on the basis of contracts is
impaired. In the context of deductive verification with the purpose of saving verification effort, it
is typically desirable to replace method calls with corresponding contracts instead of inlining im-
plementations [Ahrendt et al. 2016; Kniippel et al. 2018b]. However, this requires that contracts
are precise enough. For instance, setRecord’s contract does not specify that field empty is set to
false. Proving correctness of another method that invokes method setRecord and relies on this
fact will only be possible if the invoked method is inlined. setRecord’s contract is therefore less
applicable as a callee in the context of other methods.

Both drawbacks pose major obstacles for developers who want to follow the design-by-contract
principle and apply deductive verification in their software projects. The aim of this chapter
is to investigate to what extent a mutation analysis can help to identify incomplete contracts and
also to quantify their incompleteness. In the next section, we define explicitly what we mean
by incomplete contracts and discuss their causes.

5.2, A Taxonomy for Incomplete Specifications

Before presenting our mutation analysis approach in the next section, we must first give a definition
of a contract’s strength and explore various causes for incomplete specifications. Although we are
confident that our considerations transfer to other programming and specification languages as
well, we again focus on Java and JML. In Section 5.2.2, we give a definition of the completeness and
strength of a method contract as considered in this chapter. In Section 5.2.2, we discuss several causes
for incomplete contracts and set the focus for the remainder of this chapter.

5.2.1. A Definition of Contract Strength

With contract strength, we refer to how precisely a method contract covers the corresponding imple-
mentation. That is, the more diverging implementations comply to the exact same specification, the
weaker the contract is. We give an illustration of this intuition by means of'a Venn-diagram in Fig-
ure 5.1.
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Figure 5.1.: Venn-diagram illustrating the difference in completeness of two specifications for diverging im-
plementations. The shapes display allowed behaviors of either the specification or implementa-
tion (adopted from [Kniippel et al. 2021a]).

The figure abstractly presents two method contracts abbreviated with C; and C,, and three method
implementations abbreviated with m, my, and m3. As can be seen on the left, all three diver-
gent implementations my, my, and m3 are covered by the shape of specification C;, which means
that their correctness with respect to C; is provable. In contrast, the shape of specification C; is
specifically tailored to implementation m,, which means that only implementation m, complies
to Cp. Comparing both contracts, we can say that contract C; is weaker than contract C; (i.e., it sat-
isfies more divergent implementations), and, conversely, C; is stronger than contract C; (i.e., it sat-
isfies less divergent implementations). If the goal implementation is m;,, then specification C; is
typically desired; it reflects the expected behavior more precisely and prevents software quality is-
sues as described in the beginning of this chapter.

Following the notation of the previous chapter, we again denote by ¢ = {¢}m{y} a method con-
tract, where ¢ and 1p are the precondition and postcondition, respectively, and m is an abbreviation
for a method signature. For the sake of presentation, we denote by C the universe of all method con-
tracts (i.e., ¢ € C)and by M the universe of all method signatures (i.e., m € M). Furthermore, we in-
troduce set Z,, that represents a countable set of all implementations with observably different be-
havior for a given method signature m € M in some programming model. That is, any two imple-
mentations [y, I, € Z,, differ syntactically and in behavior, but are both valid for method signature
m. Satisfaction between implementation and contract follows again the typical notion for dynamic
logic (see Section 2.3). That is, for method contract ¢, we write = ¢ — [I]¢ to express that execut-
ing implementation I satisfies postcondition ¢ in the post-state when precondition ¢ holds prior
to execution. We then give a notion for completeness of contracts with the following definition.

Definition 5.1: Completeness of Contracts

Let c = {¢p}m{y} be a method contract. We say that contract ¢ is complete if all implemen-
tations that satisfy ¢ are behaviorally equivalent (i.e., [{I € Z,,| |= ¢ — [I]Jp}| = 1). Other-
wise, we say that contract ¢ is incomplete (i.e., [{[ € Z,, | = ¢ — [I]p}| > 2).
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We assume that most non-trivial contracts in practice are incomplete, as otherwise specifi-
cation effort would be too high and cost-ineffective. Measuring the exact degree of complete-
ness, however, is generally either infeasible due to scalability issues or even undecidable to the
underlying problem of program equivalence. Intuitively, the incompleteness of a method con-
tract {¢p}m{y} corresponds to the cardinality of the set of valid method implementations (i.e.,
{I € Z,y| = ¢ — [I]y}). Unfortunately, this set can become too large to compute if it is com-
putable at all. An easier subproblem to address is to identify which of two method contracts
is more complete (i.e., stronger) than the other.

Definition 5.2: Relative Contract Strength

Let ¢ = {¢}m{y} and ¢’ = {¢'}m{y’'} be two method contracts for the same method sig-
nature m. If ¢ is satisfied by a strict subset of observably different behaviors compared to ¢’

{IeZnl E¢— My} C{I€Ln| E¢' = [y}, (51)

then we say that contract c is stronger (i.e., more complete) than contract ¢’. Conversely, we
say that contract ¢’ is weaker (i.e., less complete) than contract c.

Relative strength between contracts is easier to compute, as it can be reduced to the problem
of behavioral subtyping [Liskov et al. 1994]. That is, a contract {¢p}m{¢} is stronger than a con-
tract {¢'}m{y'}, iff both conditions ¢ = ¢’ and ¢ = ¢ hold. As mentioned above, we will
apply a mutation analysis to heuristically compute a representative sample of set {I € Z,,| |
¢ — [I]¢}, where both definitions are needed. Before that, we present a classification scheme
for incomplete contracts in the next subsection.

5.2.2. A Classification of Incomplete Contracts

The motivating example in the previous section highlighted that incomplete contracts are often-
times caused by underspecified postconditions. However, there exist other causes for incomplete-
ness, such as unnecessarily strong preconditions. Moreover, modern specification languages, such
as JML [Leavens et al. 2006] or ACSL [Baudin et al. 2008], are richer in syntax and allow to express
properties besides precondition and postcondition in their contracts. Consequently, one may think
of additional categories that confine the causes for an incomplete contract more precisely. In Fig-
ure 5.2, we present a coarse-grained taxonomy of causes for incomplete contracts. The taxonomy
comprises four key causes, namely (A) Unnecessarily strong precondition, (B) too weak postcondition, (C)
underspecified exceptional behavior, and (D) framing condition, which we discuss in the following.

(A) Unnecessarily Strong Precondition. Although reports show that unnecessarily strong precon-
ditions are rare in practice [A. F. Milanez et al. 2013; A. Milanez et al. 2017], they constitute causes
for incomplete specifications by being too restrictive. Such preconditions lead to weaker contracts
than necessary, as they require less input to be supported. From a caller’s perspective, Meyer [1992]
argues that strong preconditions for invoked methods are preferred, as they explicitly limit the
number of scenarios in which a method is safe to be called and, therefore, better support develop-
ers. At the same time, it can be argued that too strong preconditions unnecessarily limit applica-



5.2. A TAXONOMY FOR INCOMPLETE SPECIFICATIONS 123

Incomplete
contract
[ ' I
@ Too strong Too weak
precondition postcondition
[
[ I 1 [ 1
@ Too narrow Specified Too wide Underspecified
value domain unused fields value domain field modification
Underspecified @ Framing
exceptional behavior condition
I
[ [ l o [ 1
Unspecified Too strong Too weak Overapproximation Declared
@ P @precondition signals of modified fields s impure

Figure 5.2.: Taxonomy of causes for incomplete software contracts for object-oriented programming lan-
guages (adopted from [Kniippel et al. 2021a]).

bility of contract abstractions, which then may require method inlining instead for successful auto-
mated verification. Furthermore, such preconditions may confuse developers due to their unjus-
tified restrictiveness, which impairs software quality in general. In particular, too strong precon-

ditions stem either from too narrow value domains of accessed arguments and fields , or from

fields that are restricted to specific values, but not accessed at all . In both cases, adequate anal-
yses can be valuable to developers to identify and be aware of theses instances.

(B) Too Weak Postcondition. Preconditions make assumptions about the state prior to method ex-
ecution. In contrast, postconditions give guarantees about the state after method execution. That
is, postconditions have a stronger relation with the method’s implementation (i.e., observable behav-
ior), as they are asserted during verification, whereas preconditions merely specify value ranges of
used fields and arguments. Indeed, in the context of design by contract and deductive verification,
contract {¢}m{} is equivalent to contract {true}m{¢ = ¢}, where the precondition is incorpo-
rated into the postcondition. Therefore, we hypothesize that underspecification of postconditions
is the main cause for incomplete contracts. Similar to stronger-than-necessary preconditions, if’
callers rely on the specification of a contract, the contract must specify all details of its behavior
necessary for the caller. Otherwise, applicability is again reduced. Furthermore, as motivated in the
beginning of this chapter, underspecified behavior can easily mask critical bugs and provide a false
sense of correctness. Analogous to unnecessarily strong preconditions, too weak postconditions
stem from either too wide value domains for modified fields , or from particular field modifi-

cations that are not specified or at least underspecified . Within the latter category, we also in-
clude that specific properties are not specified sufficiently. For instance, consider a sorting method
that gets as input an integer array and returns as output an integer array with elements sorted in
ascending order. Specifications of such methods should typically specify at least two properties: (1)
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the output array must be sorted in ascending order and (2) the output array must be a permutation
of the input array. If the latter property is missing, field modifications are underspecified.

(C) Underspecified Execptional Behavior. Additionally to specifying observable behavior of methods
under normal execution, contracts may also specify instances, in which exceptions are raised. These
cases are specified similar to normal specification cases; a precondition states when the respective
exception is raised, the postcondition that must hold in the post-state is specified following the
keyword signals, and the keyword signals_only is used to specify the type of exception that is thrown.
If exceptions are raised but their instances are not adequately specified, it can be argued that the
overall contract is incomplete. In particular, causes are similar to the previous two paragraphs:

either the raised exception is not specified at all @, the precondition is stronger than necessary

@, or the postcondition following the keyword signals is weaker than possible @

(D) Imprecise Framing Conditions. In Listing 5.1, we used the keyword assignable to establish a
framing condition [Hatcliff et al. 2012; Ahrendt et al. 2016], which is a set-theoretic notion for list-
ing all fields that are allowed to be modified by the respective method. Framing conditions con-
stitute helpful annotations for verifiers, as they provide information to which degree a state may
change and are therefore often indispensable for automatic verification when method calls are
abstracted with their contracts. In the context of deductive verification with KeY, omitting the
assignable clause is identical to assignable \everything, which is added implicitly and means that
any field modification is allowed. In contrast, assignable \nothing is used to explicitly forbid any
field modifications. As a special case, JML also allows to mark methods as pure [Leavens et al. 20006;
Helm et al. 2018] with the pure modifier, which means that such methods are side-eftect free and
either terminate or raise an exception.” In JML and K&Y, pure methods are allowed to be queried
in contracts, which increases their applicability in contract-based software projects overall. Based
on these considerations, two causes with respect to framing result in incomplete contracts. First,
the assignable clause may list fields that indeed remain unchanged during any method execution

. This may again unnecessarily complicate automatic verification of callers. Second, methods

that may be considered as pure are implicitly marked as impure . As explained above, this re-
duces their applicability, either in other pure methods or in contracts themselves.

In the framework and conducted study that we present in the following, we primarily fo-
cus on the first two categories, namely unnecessarily strong preconditions (&) and too weak postcon-
ditons (B). We argue that both categories constitute the prime targets for a mutation analysis.
First, results from these two categories can probably be applied to exceptional specification cases,
which are similar in design. Second, for framing conditions, we suspect that data-flow analy-
ses have higher precision and potentially scale better [Helm et al. 2018; Yu et al. 2020]. In the
next section, we present a mutation-based framework to analyze completeness of method con-
tracts based on the considerations of this section.

2In KEY, the pure modifier is shorthand for the combination assignable \nothing and diverges false, where the diverges
clause is used for specifying either partial (true) or total correctness (false) [Ahrendt et al. 2016].
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Figure 5.3.: Schematic workflow of our mutation analysis for contract-based software (adopted from [Kniip-
pel et al. 2021a).

5.3. Mutation Analysis for Software Contracts

In the previous section, we mentioned that automatically calculating the exact subset of observ-
ably different behaviors all satisfying the same method contract is, in general, practically infeasible.
We therefore follow the methodology of mutation testing [Papadakis et al. 2019; Jia et al. 2010; Of=
futt et al. 2001] with the goal to calculate a representative sample of this subset. In particular, we aim
at mutating a given method implementation or method contract to generate observably different
behaviors with the hope that this allows developers to evaluate the precision of their method con-
tracts. First, we give an overview of our mutation analysis framework for contract-based software in
Section 5.3.1. Next, we present the chosen mutation operators in Section 5.3.2 and discuss three in-
teresting software metrics for developers resulting from our mutation analysis in Section 5.3.3. Fi-
nally, we discuss limitations of our approach in Section 5.3.4.

5.3.1. Overview of the Mutation Analysis

We illustrate the schematic workflow of a mutation analysis in Figure 5.3, which takes as input a
specified method and a set of predefined mutation operators, and outputs the mutation score as a
measurement for the strength of the method’s contract. Besides input and output, the workflow
consists of three consecutive phases, namely the mutation phase @, the filtering phase @, and the
evaluation phase (3). We briefly discuss each of the three phases in the following.

In the mutation phase @, the mutator accesses a set of pre- and well-defined mutation operators and
applies each of them (or a reasonable subset) to the source method. The goal of mutation operators
is to systematically make syntactic changes to the source program in order to create mutants that
still constitute compilable programs. For instance, consider an operator that aims at replacing
arithmetic operations systematically. An expression a + b in the source program could then be
changed to any expression given by the set {a — b, a/b,a%b, ... } in one of the mutants. Moreover,
one mutation operator generally leads to numerous mutants. First, each identified instance in
the source program (e.g,, each arithmetic expression) becomes subject to modification and leads
to a new and syntactically unique mutant. Second, the granularity of an operator (i.e., the kind of
changes the operator makes) is up to the developers. That is, an operator for replacing arithmetic
operations may choose between numerous replacements instead of creating a unique operator for



each particular replacement. We discuss the mutation operators used in our framework and their
granularity in Section 5.3.2. Formally, we give the following definition for a mutation operator.

Definition 5.3: Mutation Operator

Let ¢ = {¢p}m{y} be a method contract and I € 7, a method implementation for m. A
mutation operator is a function

opm : C x Ty — 26T (¢, 1) — {(c;, ) }:

that takes a pair of a method contract and method implementation (c, I) as input and pro-
duces a (possibly empty) set of new pairs {(c1, I1), ..., (¢u, In) } called mutants as output. We
denote by O,, the set of mutation operators for method signature m.

A particularity of our definition is that mutation operators are not limited to the implementa-
tion, but may also mutate method contracts. We postpone the discussion on the usefulness of mu-
tating method contracts to Section 5.3.2 and mostly consider source-code mutation in this subsec-
tion. Then, applying each mutation operator in O,, to the source program results in a set of mu-
tants, for which we give the following formal definition.

Definition 5.4: Set of Mutants

Let c = {¢p}m{y} be a method contract and I € Z,, a method implementation for m. The set
of mutants is defined as

M,y = {opm(e, I) [opm € O} \ {(c, 1)}

A prominent problem with mutation analyses is that of equivalent mutants [Griin et al. 2009,
which must be removed during the filtering phase @. Equivalent mutants are mutants that
may differ in syntax, but behave semantically equal. For instance, consider a return state-
ment return i; which is semantically equivalent to the return statement return i++;. Al-
though a mutation operator may add arithmetic operations to variables, the increment opera-
tor in the latter code snippet is without effect.

In particular, there are two kinds of equivalent mutants that can distort the final mutation score
of an analysis. First, mutants that are equivalent to the source program will naturally survive and
count towards the mutation score, but not lead to new insights. Second, generated mutants that
behave semantically equal will also skew the mutation score, either to the better or the worse de-
pending on their survival. However, due to the connection to the problem of program equiva-
lence, identifying equivalent mutants is one of the hardest problems in mutation analysis to ad-
dress [Griin et al. 2009]. In this thesis, we consider their identification as an orthogonal problem and
therefore rather point to the rich corpus of research that deals with equivalent mutants [Griin et al.
2009; Madeyski et al. 2013; Papadakis et al. 2015; Kintis et al. 2017]. In our empirical study, we iden-
tified equivalent mutants by a manual inspection of all mutants. For convenience, filtering equiva-
lent mutants is already part of Definition 5.4. First, mutation operators are defined over the set of
observably different implementations Z,,, which means that equivalent mutants map to the same
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implementation. Second, if a mutant is equivalent to the pair consisting of the source contract and
source implementation, it is removed from the set of mutants.

In the evaluation phase (3), we try to verify each mutant automatically, where each mutant is either
successfully verified (representing an alive mutant) or killed in the process. In practice, the outcome
of the evaluation phase per mutant is indeed threefold. First, verification of the mutant is successful.
Then, the respective mutant stays alive and constitutes another valid implementation that likewise
complies to the method contract. Second, the mutant cannot be verified. That is, the verifier is un-
able to find a proof'either through timeout or because the algorithmic search does not know how to
progress. In this case, the mutant is killed and counted towards the number of eliminated mutants.
Third, the mutant is not compilable. The reason is that some mutation operators may produce syn-
tactically incorrect code, which we may report on, but otherwise do not consider any further. Again,
we omitted a notion for syntactically incorrect implementations in Definition 5.3 and Definition 5.4.

Finally, a mutation score based on the number of killed and alive mutants is calculated, which ide-
ally is a sufficient approximation of a contract’s strength. Calculating the mutation score follows
the standard literature [Offutt et al. 2001]. That is, the mutation score is defined as the quotient be-
tween the number of killed mutants and the number of non-equivalent mutants. How close the
mutation score is to the true strength of a contract {¢ }m{¢} mostly depends on the mutation op-
erators themselves and their capability to approximate the set of observable different behaviors Z,,,.
Formally, we define the mutation score as follows.

Definition 5.5: Mutation Score

Let c = {¢}m{y} be a method contract and I € Z,, the method implementation for m. The
mutation score is defined as

[{(e I') € M) [¢ 7= 93]

MutationScore(c, I) =
|M(C,I)|

Next, we discuss the mutation operators that we apply in our mutation analysis.

5.3.2. Mutation Operators

The mutation operators we selected for our mutation analysis are standard operators obtained from
the literature, which we divide into source-code operators [Ma et al. 20006] for imperative languages
(e.g., JAVA or C++) and contract-level operators [Hou et al. 2007] for contract-based specification lan-
guages with explicit preconditions and postconditions (e.g., JML or ACSL). In Table 5.1, we give a
list of source-code and contract-level mutation operators that are available in our framework. We
discuss both kinds of mutation operators in the following.

Source-Code Mutation Operators

The top 16 mutation operators presented in Table 5.1 are applied directly to the implementation
and partitioned into seven different categories:
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Category Operator | Description

AOR Replaces arithmetic operators
Arithmetic AOI Adds a unary operator to any variable

AOD Removes a unary operator
Relational ROR Replaces relational operators

COR Replaces binary condition operators
Conditional COl Negates conditional expressions

COD Removes negation from conditional expressions
Shifting SOR Replaces shift operators

LOR Replaces bitwise operators
Logical LOI Adds bitwise complement to any variable

LOD Removes bitwise complement from a variable
Assignment ASRS Replaces assignment operators

SDL Deletes a statement

) VDL Deletes all occurrences of a referenced variable

Deletion

CDL Deletes a constant

ODL Deletes an arbitrary operator from an expression

PW Weakens precondition
Contract y
PS Strengthens postcondition

Table 5.1.: List of available source-code and contract-level mutation operators (adopted from [Kniippel et al.

20213)).

Arithmetic: 'The arithmetic category focuses on arithmetic operators, suchas {+, ++, -, ——, *, /, %},
and consists of a mutation operator for exchanging arithmetic operators (AOR), adding a unary
operator, such as arithmetic negation (i.e,, —) or the decrement operator (i.e., —-), to a variable
(AOI), and removing unary operators (AOD). Example for AOR:

a+b—{a—b,a/b, axb,...}

Relational: 'The relational category focuses on relational operators, such as {>,>=, <, <=,==, I =},
and only consists of a mutation operator for exchanging relational operators (ROR). Example for
ROR:

a>b—{a<b,a<=b,a>=b,a==b,...}

Conditional: 'The conditional category focuses on conditional operators, such as {!, &&, ||},
and, similar to the arithmetic category, consists of mutation operators for exchanging condi-
tional operators (COR), adding the unary negation to formulas (COIl), and removing it from for-
mulas (COD). Additionally, COR may also choose to replace a binary subexpression with ei-
ther true or false. Example for COR:

a&&b— {al|b, true, false,...}
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Shifting: The shifting category is dedicated to shifting operators, such as ${ <<, >>}, and only con-
sists of a mutation operator for exchanging shifting operators (SOR). Example for SOR:

a<<b— {a>>b}

Logical: The logical category focuses on bitwise operators, such as {&, |, *, ~}, and, again, consists
of mutation operators for exchanging bitwise operators (LOR), adding the bitwise complement (i.e.,
~) to expressions (LOI), and removing it from expressions (LOD). Example for LOR:

a&b— {a|b,a"b,...}

Assignment: The assignment category is dedicated to short-cut assignment operators, such as
{+=,-=,...}, and consists only of a mutation operator for exchanging them (ASRS). Example for
ASRS:

a+=b+— {a-=b, a*=b,...}

Deletion: The deletion category focuses on either deleting complete statements or on remov-
ing parts of statements. The category consists of mutation operators for deleting complete state-
ments (SDL), deleting variables and references (VDL), deleting constants from expressions (CDL),
and deleting operators (ODL). Example for SDL:

at=b— 0O

Contract-Level Mutation Operators

Besides means for mutating the implementation, we also provide mutation operators for mutating
contracts. In Table 5.1, we list two contract-level mutation operators, namely PW for weakening pre-
conditions and PS for strengthening postconditions. We argue that both operators can be valuable
for developers to identify better contracts. First, as our starting position is a verified method im-
plementation, strengthening the postcondition through slight syntactic changes may identify cor-
ner cases that eventually help to improve the specification. Moreover, a surviving mutant already
represents a direct example of a stronger contract that can be inspected manually. Second, weak-
ening preconditions allows developers to inspect whether the original preconditions can be im-
proved to increase applicability and software quality.

Both mutation operators PW and PS are inspired by Hou et al. [2007], who investigated mutation of
interface specifications for black-box testing. As mutation of specifications is rather rare in practice,
both operators come with an interesting research question that is worth to investigate: given the
mutation rules for specifications proposed by Hou et al. [2007], do they complement source-code mutation or
provide valuable insights for contract-based projects? We address this question in our empirical study in
Section 5.4. Before, we describe the mutation rules for both operators in more detail.

To apply contract-level mutation operators in our projects, we assume that contracts are normal-
ized. Normalized contracts have only one precondition and one postcondition, which must both be
in conjunctive normal form. That is, a precondition ¢ is normalized iff it has the form ¢ = Al ¢;,
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Precondition Weakening (PW)

Postcondition Strengthening (PS)

Original Mutant Original Mutant
== >=, <= >= >, ==

> >=, = <= <, ==

< <=, I!= = >, <
P>=Q P>=Q-1 P>Q P>0Q+1
P<=Q P<=Q+1 P<Q P<Q -1
&& | | &&
forall exists exists forall

Table 5.2.: List of contract mutation rules as proposed by Hou et al. [2007].

where each ¢; is a subformula of the form ¢; = V/iL ;. [; ; represent atomic expressions over vari-
ables, fields, and quantifiers (i.e., forall and exists).

In Table 5.2, we list the exact mutation rules for both contract-level operators as proposed by
Hou et al. [2007]. All illustrated rules are applied to all atomic expressions /;; for either weak-
ening the precondition (i.e., PW) or strengthening the postcondition (i.e., PS). The provided
mutation rules only apply small and inexpensive syntactic changes to contracts that are known
to result in stronger contracts. However, these syntactic changes must be applied carefully, as
both operators may also lead to the counterpart of equivalent mutants for contract-level muta-
tions. That is, some resulting mutants may exhibit a weakened instead of a strengthened con-
tract compared to the original one, which is trivially satisfied. An optimization to rule out equiv-
alent mutants is that only non-negated atomic expressions of postconditions are mutated. We
illustrate this optimization with the following example.

Example 5.1. Consider the postcondition p =a > b = \result == a, where the value of variable a is returned
if it is greater than or equal to the value of variable b . Normalizing i leads to Pyorm =!(a > b) V \result == a.
Applying mutation operator PS on Py,opm results in the mutated postcondition )., =X a > b) V \result == a.
It follows that—~(a > b) =a < 5= a < b = —(a > b). Thatis, applying PS on negated atomic expressions
weakens postconditions, which leads to mutants that are trivially satisfied. Typically, such expressions result
from either implications in _formulas or from range conditions used in quantifier expressions, and must be
considered during mutation. In particular, —=(a > b) is equivalent to a < b, for which no mutation rule exists
for operator PS in Table 5.2.

5.3.3. Three Software Metrics for Contract Incompleteness

As mentioned in the beginning of this chapter, there exists a strong correspondence between
software testing and formal verification of contract-based software. In both disciplines, mu-
tation analysis has the goal to improve either test cases or contracts. We can argue that mu-
tating contracts seems to be the dual to mutating test cases, which implies the question:
what insights do we gain by mutating test cases?

Contract-level mutation aims at strengthening specifications, as weaker specifications per defi-
nition cover less properties to verify and are consequently trivially satisfied. In particular, mutat-
ing the precondition means to require that more inputs are supported by the corresponding im-
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plementation. Alive mutants reveal that more inputs are valid for the same implementation, which
is an important analysis result for developers. Analogously, mutating the postcondition decreases
the number of accepting states after method execution. An alive mutant reveals that the imple-
mentation delivers more behavior than is covered by the corresponding contract. Again, it is im-
portant for developers to recognize this mismatch between contract and implementation. In par-
ticular, there is a clear separation between source-code mutation and contract-level mutation. The
former focuses rather on closing the gap between implementation and specification, whereas the
latter directly focuses on slightly improving the specification.

Based on these considerations, we argue that it is worth to provide three distinct metrics as
outcome of a mutation analysis as opposed to a combined mutation score. The three metrics
result from (1) mutating the source code, which is a metric for the contract’s strength (see muta-
tion score in Definition 5.5), (2) only mutating the precondition, which corresponds to the loose-
ness of the assumed state prior to execution, and (3) only mutating the postcondition, which
measures the degree of underspecification of the postcondition. The three metrics are computed
as follows (derived from computing the general mutation score; see Definition 5.5) for a pair of
method contract ¢ and a method implementation I.

m Metric 1 — Contract’s strength (Source-code mutation):

{(" ) e M [¢ = 'Y Ae =}
{(c", ') € Mg |e = '}

Scorecs(c, I) =

m Metric 2 — Looseness of precondition (Precondition mutation):

_ H{(, 1) e PW(c, I) |¢" [~ [1]y'}]
Scorerp(c,I) = PW(e )|

m Metric 3 - Underspecification of postcondition (Postcondition mutation):

_ K D) e PS(e, I) [¢" = [T]y'}]
Scoreyp(c,I) = PS(e, 1))

5.3.4. Soundness and Completeness

We briefly discuss limitations of our mutation analysis for contract-based software that we pre-
sented in this section so far.

It is important to note that weak specifications are primarily caused by weaker-than-necessary
postconditions. In contrast, preconditions are not enforced and simply assumed before verifica-
tion takes place. That is, the program verification checks whether the postconditon holds after ex-
ecution when the precondition held before. If the precondition is violated, contract compliance is
trivially satisfied. However, such methods are still callable at run-time with any input arguments,
therefore leading to unpredictable behavior. Alive mutants resulting from operator PW can there-
fore not be directly considered as improved or stronger contracts. We argue that these instances must
be inspected by developers, who must assess manually whether unnecessarily strong preconditions
are formulated with intention or should be refactored.
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Regarding completeness of our operators, we acknowledge that the scope of both contract-level
mutation operators PW and PS is limited to only small syntactic changes. The drawback is that only
small improvements can be identified, whereas we assume that the majority of weak postcondi-
tions stems from the absence of complete properties. Our hope is that our study provides a base-
line for further improvements in this line of research, which is why we only concentrated on mu-
tation operators proposed by other researcher. In the future, it is possible to develop more power-
ful operators based on contract inference [Ernst et al. 2007; Polikarpova et al. 2009; Wei et al. 2011]
and compare their effectiveness with our results.

5.4. Evaluation

So far, we emphasized the correspondence between test cases and software contracts, and pro-
posed to use a mutation analysis to heuristically evaluate completeness of specifications. In Sec-
tion 5.3.3, we formulated three software metrics (i.e., contract strength, looseness of precondition, under-
specification of postcondition) resulting from a mutation analysis, which may provide valuable insights
to developers working with contract-based software.

A number of questions arise that we address in this section. Do weak specifications occur in prac-
tice? How well can our proposed mutation analysis identify weak specifications? Are there muta-
tion operators that are more effective than others? Are the contract-level mutation operators use-
ful at all? We aim to answer these questions by an empirical study. First, we describe our prototyp-
ical open-source implementation in Section 5.4.1. Next, we introduce the research questions and
methodology of this evaluation in Section 5.4.2. In Section 6.6.2, we present and discuss our results.
Finally, in Section 6.6.3, we discuss potential threats undermining the validity of our study.

5.4.1. Prototypical Implementation

Within this chapter, we study whether a mutation analysis provides insights to improve spec-
ifications. To the best of our knowledge, sufficient tool support for applying a mutation anal-
ysis as described in Section 5.3 for JML-based software projects does not exist, which is why
we developed a prototype for our experimental evaluation. In particular, such tool support
must (1) incorporate a mutation framework for Java/JML programs and (2) employ an evalua-
tor, such as a deductive program verifier or model checker for JML programs, to verify confor-
mance between specification and implementation.

For mutating Java/JML programs, we chose the open-source mutation framework uJava
[Ma et al. 20006], which already provides all source-code mutation operators described in Ta-
ble 5.1. Additionally, we extended uJava with the two contract-level mutation operators PW
and PS. For evaluating JavA/JML mutants, we employ the deductive program verifier KEY-
2.6.3 [Ahrendt et al. 2016], which is able to verify many specified method implementations auto-
matically. Figure 5.4, gives an overview of the architecture.

First, the implementation allows end-users to configure which mutation operators are applied
to which input programs via dedicated configuration files @. We illustrate such a configuration file
in Listing 5.2. Additionally, we provide more fine-grained versions of source-code mutation opera-
tors in our implementation. For instance, operator AOR is further refined to operators AORB, deal-
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Figure 5.4.: Architecture of the prototypical implementation of our mutation analysis framework (adopted
from [Kniippel et al. 2021a]).

"MuJava_Home": "path/to/muJdava",
"Source": "study/BankAccount /Account. java",
"Method": "int_getAccountNumber ()",
"MethodSignature": "public int getAccountNumber ()",
"ProjectPath": "study/BankAccount",
"Operators": [
"AORB", "AORS", "AOIU", "AOIS", "AODU", "AODS", "ROR",
"COR"™,"COD","COI","SOR", "LOR","LOI","LOD", "ASRS",
"SDL","VDL","CDL","ODL", "PW", "PS"

Listing 5.2: Json-request for mutating a method from the BankAccount case study.

ing with binary arithmetic operations (e.g,, a+b), and AORS, dealing with unary arithmetic opera-
tions (e.g,, a—-). In line with the workflow described in Section 53.1, the Java/JML mutator starts
with normalizing the requested method contracts in a preprocessing step @. Afterwards, yJava is
employed to generate the mutants based on the initial configuration. As explained in Section 5.3.3,
we do not combine source-code and contract-level mutations in our mutation score, but treat them
differently. Next, we employ KEY-2.6.3 to check validity of all generated mutants (3) and generate a
final report (3) with respect to the three metrics proposed in Section 5.3.3.

Our prototypical tool support is available online® and enables users to add new mutation opera-
tors, either to mutate the source code or to mutate the specification. While identifying equivalent
mutants is crucial for the results we obtain in our study, the current development stage of our pro-
totype provides no means for identifying equivalent mutants automatically. We therefore resort to
manual inspection and leave automated support for identifying equivalent mutants for future work.

5.4.2. Methodology and Evaluated Projects

Based on our prototypical tool support for performing a mutation analysis on JAvA/JML projects,
it is now possible to discuss the questions raised above. For this, we collected a total of ten
open-source JML projects that we use as experimental subjects in our evaluation. In Table 53,

3Available at https://github.com/TUBS-ISF/MutationAnalysisForDBC-FormaliSE21.
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Project Classes Methods Where?

Dnivra 1 3 JMLOK2 [A. Milanez et al. 2014]
ShorreWaitAlgorithm 1 7

Paycard 2 6

BankAccount 7 19

BankAccountV2 2 6 SPL2GO"
PaycardSPL 2 5

ExampleFromChaptery 2 7 KEY [Ahrendt et al. 2016]
ExampleFromChapter16 2 3

OpenJML 8 20 OpenJMLDemo’
DutchFlagAlgorithm 1 1 Kourie et al. [2012]
Total 28 77

Table 5.3.: Evaluated open-source JML projects (adopted from [Kniippel et al. 2021a).

we summarize all experimental subjects used in our evaluation, including the number of
classes, number of specified and evaluated methods, and origin. In particular, we aim at dis-
cussing the following four research questions.

RQ-1: To what extent do incomplete specifications occur in our projects?

RQ-2: To what extent is a mutation analysis able to measure completeness of contracts in JML programs?
RQ-3: Which source-code mutation operators are more effective than others?

RQ-4: What insights do the contract-level mutation operators provide in our subjects?

We hypothesize that the majority of incomplete specifications arises from either missing
field modifications or more complex unspecified properties, which we are unable to iden-
tify with the mutation rules of our contract-level mutation operators (see Section 53.2). At the
same time, completeness of contracts is one of the most important metrics, as it addresses the
gap between specification and implementation, whereas the contact-level mutation only aims
at slightly improving specifications. Consequently, research questions RQ-1 — RQ-3 are dis-
cussed by only applying source-code level mutations (i.e., investigating metric Scorecg for a con-
tract’s strength). In particular, the average mutation score per project P, where Mp is the set
of all mutants of project P, is calculated as

Y. Scoresc(c,I)
(c1))eMp

[Mp|

P _
Scorege =

The impact of contract-level mutation is addressed separately in RQ-4.

To answer RQ-1 and RQ-2, we apply our mutation analysis to each specified method in our ex-
perimental subjects. All investigated methods with a perfect mutation score (i.e., Scorecs = 1) are
inspected manually to identify overlooked incomplete specifications (i.e., false negatives). This way,

*nhttp://spl2go.cs.ovgu.de
Shttps://github.com/OpendML/OpenJIMLDemo
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Project Methods Mutants Alive Mutants Score’ (2) Analysis /
Ground Truth
Dnivra 3 25 0 1.00 0/0
ShorreWaitAlgorithm 7 48 0 1.00 0/0
Paycard 6 132 5 0.96 1/2
BankAccount 19 135 59 0.56 4/6
BankAccountV2 6 261 24 0.79 4/6
PaycardSPL 5 113 6 0.96 1/2
ExampleFromChaptery 7 105 6 0.96 2/2
ExampleFromChapter16 3 152 1 0.99 1/1
OpenJML 20 315 59 0.81 7/8
DutchFlagAlgorithm 1 181 2 0.99 1/1
Total 77 1,467 162 - 21/28

Table 5.4.: Results of our mutation analysis per project (adopted from [Kniippel et al. 2021a]).

we are able to establish the ground truth, which we use as comparison in RQ-2. For RQ-3, we eval-
uate which mutation operators are most effective and which mutation operators are least effective
for our subjects. This enables us to decide whether certain ineffective but costly operators can be
ignored. Finally, for RQ-4, we evaluate whether contract-level mutation as proposed by Hou et al.
[2007] provides valuable insights for our experimental subjects.

5.4.3. Results and Insights

We applied our mutation analysis as described in Section 5.3 to each specified method per project
to generate the maximum number of possible mutants. That is, we did not limit the number of’
generated mutants to some maximum value and also did not consider a time-out for generating
mutants, as overall execution time was bearable for our study. Syntactical mutants were excluded
from our calculation. Equivalent mutants were filtered relying on a manual inspection. Although
this bears the risk of overlooked equivalent mutants, we are confident that such rare instances will
not distort the overall conclusions we draw from our evaluation.

In Table 5.4, we illustrate each project, the number of evaluated methods, the number of gen-
erated mutants and the number of alive mutants, the average mutation score per project, and the
number of weak contracts identified by our mutation analysis in contrast to the ground truth. The
average mutation score per project may give a feel for the overall quality of contracts per project.
In Appendix A, we present all mutation scores for each analyzed method. In the following, we
discuss all four research questions raised above.

RQ-1: Incomplete Specifications in Subjects

With this research question, we investigate to what extent incomplete specifications occur in our
experimental subjects. Table 5.4 shows that 28 methods, out of a total of 77 methods, are identi-
fied as incomplete. Only two of the ten projects, namely Dnivra and ShorreWaitAlgorithm, did not
contain any noticeable incomplete contracts. Besides project DutchFlagAlgorithm, which contains
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1 [...]

2 /*@
3 requires bArray != null;
4 requires offset >= 0;

5 requires offset < 32766; //prevents overflowing

6 requires 0 <= offset && offset < bArray.length - 1;
7 requires bArray.length >= 2;

8 ensures bArray[offset] == hour,

9 ensures bArray[offset+1] == minute;

10 assignable bArray[offset], bArray[offset+1];

u */

12 public short getTime (byte [] bArray, short offset) ({
13 short aux = offset;

14 bArray[aux++] = hour;

15 bArray[aux++] = minute;

16 return (short) (offset + (short) 2);

17}

18 [...]

Listing 5.3: Underspecified method from class OpenJML.Time.

only a single method, BankAccountV2 contains the biggest portion of incomplete method contracts
(100%), followed by OpenJML and PaycardSPL (both 40%).

Most incomplete specifications we identified stem from underspecification of the postcondition.
To give an example, we illustrate the method Time.getTime from the Open)ML project in List-
ing 5.3. Although the method returns a value in Line 16, the result itself is not specified in the
method’s contract. Consequently, each mutant modifying Line 16 in any way will still comply to
the method contract and counted towards the number of alive mutants.

Discussion. The manual analysis of our experimental subjects illustrates that incomplete method
contracts occur frequently in even smaller open-source JML projects. We assume that larger
projects suffer even more from incomplete specifications. Method contracts in such projects are
often not checked formally, but rather used to document the intended behavior of method ex-
plicitly. A reason for this can be limited tool support. We can therefore hypothesize that, once
method contract and implementation conform to each other, developers are even more hesitant
to improve contracts than to check them formally in the first place. This emphasizes that new
techniques and automated tool support are needed to give developers better insights into their
contract-based projects. In summary, we identified that roughly a third of all analyzed meth-
ods (36%) could be considered as incompletely specified.

RQ-2: Effectiveness of Proposed Mutation Analysis

With this research question, we evaluate the effectiveness of our proposed mutation analysis. In
Table 5.4, we present (1) the number of incomplete specifications identified by the mutation anal-
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1/ %@
2 (@ normal_behavior
3 @ requires A.length > 0 && (\forall int i; i>=0 &&

4 i<A.length; A[i] == || A[i] == || A[i] == 2);
5 (@ ensures (\forall int gq; g >= 1 && g < \result.length;

6 \result [g-1]<=\result/[q]);

7 @*/

8 public static int[] DutchFlag( int[] A ) {
9 int wo = 0, wt = 0, bb = A.length;

10 /*@ loop_invariant [...] @*/

1 while (wt != bb) {

12 if (Alwt] == 0) {

13 int t = A[wt];

14 Alwt] = Alwb];

15 Alwb] = t;

16 wt = wt + 1;

17 wb = wb + 1;

18 } else if (A[wt] == 1) {
19 wt = wt + 1;

20 } else if (A[wt] == 2) {
21 int t = A[wt];

2 A[lwt] = A[bb % 1]; //original version: bb - 1
23 Albb - 1] = t;

24 bb = bb - 1;

25 }

26 }

27 return A;

28}

Listing 5.4: Alive mutant of the dutch national flag algorithm as presented by Kourie et al. [2012].

ysis and (2) the average mutation score per project. In line with our ground truth, all generated
mutants for the ten methods of projects Dnivra and ShorreWaitAlgorithm were killed, leading to a
mutation score of 100% for both projects. The majority of other projects have an average score
of over 9o%, namely Paycard, BankAccountV2, PaycardSPL, ExampleFromChapter7, and ExampleFrom-
Chapter16. The two projects with the highest number of methods, BankAccount and OpenJML, also
have the lowest averaged mutation scores. In particular, a manual inspection of BankAccount re-
vealed that most methods were only vaguely specified, resulting in a high number of alive mu-
tants (59) and a relatively low mutation score (59%).

A particularly interesting instance is project DurchFlagAlgorithm, which is an algorithmic and
specified solution to the dutch national flag problem [Dijkstra 1976] given by Kourie et al. [2012]. We
show an alive mutant of its implementation in Listing 5.4. The challenge of the dutch national
flag problem is to sort an integer input array, whose values are restricted to 0,1, and 2 (numbers
correspond to the colors red, white, and blue of the Dutch flag). While Kourie et al. [2012] men-
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Figure 5.5.: Percentage of identified incomplete specifications compared to the ground truth (adopted from
[Kniippel et al. 2021a).

tioned that the permutation property is an integral aspect of specifications for sorting algorithms,
the illustrated method contract in Listing 5.4 does only specify that elements in the output array
are in ascending order. Two alive mutants caught this missing property, which is why the mu-
tation score of DurchFlagAlgorithm is not 100%. Listing 5.4 shows one of these mutants, where
mutation operator AORB replaced the binary subtraction with the modulo operator. For instance
this mutant turns the input array (1,0,2,2,1,1,2] into output array [0,0,1,1,1,2,2],
which is a clear violation of the permutation property. However, numerous inputs to this mu-
tant will still respect the permutation property, which emphasizes the evaluation of mutants
with formal verification where every input is checked.

Overall, our mutation analysis was able to identify the majority of incomplete specifications (75%).
In Figure 5.5, we present the percentage of identified incomplete specifications per project (i.e., re-
call). We identified that the lower values (e.g., project Paycard and PaycardSPL) were often due to a
low number of true incomplete specifications combined with few generated mutants (i.e., an indica-
tor for a method’s complexity). Projects with considerably larger code bases resulted in many more
generated mutants (i.e., BankAccount and OpenJML) and also a higher recall (e.g., 88% for OpenJML).

Discussion. Most projects had a relatively high mutation score of over go%. The reason is that
these projects contained none (Dnivra and ShorreWaitAlgorithm) or only few true incomplete spec-
ifications (Paycard, PaycardSPL, ExampleFromChapter7, ExampleFromChapter16, and DutchFlagAlgo-
rithm), and oftentimes identified weak specifications were strong enough to eliminate most gen-
erated mutants. However, our results show that a mutation analysis can provide valuable insights
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Figure 5.6.: Effectiveness of source-code mutation operators (adopted from [Kniippel et al. 2021a]).

for developers. First, analyzing project BankAccount resulted in the lowest averaged mutation score.
Based on a manual assessment, project BankAccount can indeed be considered as the most vaguely
specified project of our experimental subjects. Second, the largest and most complex subject is
OpenJML, where our analysis managed to identify seven out of eight weak specifications (88%). Ad-
ditionally, the averaged mutation score of 81% seems to be an adequate reflection of the average
incompleteness of all contained method contracts. Finally, although the DurchFlagAlgorithm has a
mutation score of 99%, our results show that even a small number of alive mutants can provide in-
sights to incomplete specifications. This indicates that missing properties can be identified with a
mutation analysis, but will likely result in high mutation scores. Means for automatically analyz-
ing alive mutants seems to be a reasonable continuation of this line of work.

Although we acknowledge that our evaluation is limited in size and complexity, we hypothesize
that mutation analyses for contract-based projects are most effective for larger and more complex
projects. That is, the more mutants are generated, the higher the chance to identify divergent im-
plementations that still comply to the specification.

RQ-3: Effectiveness of Mutation Operators

With this research question, we investigate to what extent certain source code mutation operators
are more effective than others. In Figure 5.6, we illustrate each source-code mutation operator and
the total number of generated mutants, which we further divided into killed and alive mutants.
In contrast to Table 5.4, we included equivalent mutants as well. The only mutation operator that
produced zero mutants is LOD. The reason is that the bitwise complement was not part in any of
our experimental subjects. Six other operators produced only few mutants, namely AODS, AODU,
AORS, ASRS, COD, and COR. From the six operators, only AODS produced mutants that could be
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verified. Most incomplete specifications were identified by operator SDL (i.e., 47 alive mutants),
followed by operator AOIS (i.e., 30 alive mutants).

Discussion. Our results indicate that mutation operators leading to alive mutants can be effec-
tive for identifying weak specifications regardless of the number of mutants they generate. For ex-
ample, operator AODS produced only five mutants, but was the only operator that identified the
underspecification of transactionCounter from project Paycard illustrated in Section 5.1. In
contrast, mutation operator AOIS produced a total of 634 mutants, of whom 604 were killed (95%).
Even worse, not a single mutant that survived led to a unique discovery, such with operator AODS
above. That is, all 30 alive mutants were equivalent to another mutant produced by another oper-
ator. Based on our subjects, operator AOIS could be removed.

We conclude that an optimized set for our experimental subjects contains the following muta-
tion operators: AODS, AOIU, AORB, ODL, ROR, and SDL. In particular, this set results in 1191 mu-
tants (i.e., 49% less mutants generated), while identifying the exact same weak specifications as be-
fore. An interesting follow-up question is whether the optimized set leads to a more accurate mu-
tation score. We are confident that the results obtained in this evaluation give rise for larger eval-
uations in the future to address such questions.

RQ-4: Contact-Level Mutation Operators

In this research question, we evaluate whether the contract-level mutation operators PW and PS
lead to valuable insights. In Figure 5.7, we depict the total number of generated and nonequivalent
mutants per project and divided these mutants further into (1) killed mutants, (2) identified mutants
with unnecessarily strong preconditions (i.e., produced by PW), and (3) identified mutants with too strong
postconditions (i.e., produced by PS). In projects ShorreWaitAlgorithm and PaycardSPL, none of the
generated mutants could be verified. Moreover, only a single mutant generated by operator PS in
project Paycard could be verified. This is in line with our assumption that operator PS will lead
to very few alive mutants, as the operator is constructed in a way to only catch slight deviations
in specifications. In contrast, numerous unnecessarily strong preconditions were identified across
the majority of projects with the help of operator PW. In particular, 31 mutants based on 16 method
could be verified with a strengthened version of their preconditions.

Discussion. These results indicate that contract-level mutation operator PW supports developers
in identifying preconditions that are not enforced on the implementation level. Although it can be
argued that one goal of design by contract is to reduce defensive programming (i.e., handling of pro-
hibited inputs at implementation level), violated preconditions do not prohibit that such methods
are called at runtime with unexpected inputs. Consequently, identification of these occasions can be
beneficial for developers. It can also be argued that operator PW complements the source-code mu-
tation operators, which are only able to identify too weak postconditions. Operator PS did not have
much impact in our evaluation, which is in line with our hypothesis that incomplete specifications
are often due to missing properties. These are hard to identify with operator PS and easier to identify
with source-code mutation. A future direction is, however, to develop more sophisticated contract-
level mutation operators, whereas results and insights of our evaluation may serve as a baseline.
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Figure 5.7.: Number of contract-level mutants per project partitioned into killed and alive mutants resulting
from operators PW and PS (adopted from [Kniippel et al. 2021a]).

5.4.4. Threats to Validity

Results of our evaluation are confronted with several threats to validity that we discuss in the follow-

ing.

Internal Validity. To establish the ground truth of incomplete specifications in our experimental
subjects, we resorted to a manual inspection prone to human error. The limited number of projects
(i-e., ten projects), methods (i.e., 77 method contracts) and their complexity allowed us to identify in-
complete contracts in a reasonable amount of time. Furthermore, we manually strengthened and
verified the identified instances, which increases our confidence in the truthfulness of our assess-
ment. However, there is still the chance that we missed incomplete specifications. Again, the sub-
jects we chose for this study were limited in size and complexity, which allowed us to perform a
manual assessment in the first place. Furthermore, results of our mutation analysis came to sim-
ilar conclusions. That is, every single incomplete contract identified by the mutation analysis was
also identified by our manual assessment. For equivalent mutants, we additionally performed san-
ity checks in the form of test cases, where we randomly generated inputs and compared result-
ing outputs. Although there is still a chance that we missed cases, we argue that this would only
marginally impact the conclusions we drew in this evaluation.

Another threat is selection bias with respect to the projects and method contracts we analyzed. In
particular, the combined number of method contracts over all projects is much higher than the
number of method contracts we analyzed (i.e., 77). The reason is that numerous methods could
not be parsed successfully with KEY and were therefore excluded. We restrained from adapting
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contracts that could not be parsed in order to not introduce any additional bias in our study. We
acknowledge that large-scale evaluations are necessary to continue this line of research, but are also
confident that this initial study constitutes a stepping stone towards that vision.

External Validity. Our evaluation is targeted towards a small number of JML projects, which puts
generalizability of this approach and our results into question. Again, this study constitutes a nec-
essary stepping stone towards a practical solution for assessing incompleteness of contracts. First,
there exist limited efforts in the research community to apply mutation analyses to contract-based
software. To the best of our knowledge, there did not exist an available baseline before to compare
against. Second, our experimental subjects cover typical implementations from single algorithms
and smaller examples to design patterns, which can be found in most object-oriented languages.
We are therefore confident that our results can be transferred to similar programming and specifi-
cation languages. Third, our starting position are already verified implementations. Only few open-
source projects exist in the literature that are reasonable in complexity and automatically verifiable
with KeY. Therefore, many other projects had to be excluded. Finally, only the limited number of
projects allowed us to perform the manual assessment needed for establishing the ground truth.

In our study, we did not focus on scalability of our mutation analysis and did not report any
performance metrics. The reason is that our setup is only of prototypical nature. We additionally
needed manual effort in parts of our evaluation. Moreover, the limited number of generated mu-
tants could be verified reasonably fast, but verification effort in general may depend on many fac-
tors (e.g., employed verifier, configurations, or complexity of implementations). As we rather fo-
cused on the effectiveness of 'a mutation analysis for contract-based software and not so much on
the evaluation strategy, we acknowledge that performance may play a crucial role for developers
and should be addressed in large-scale evaluations in the future.

5.5. Related Work

There exists a rich corpus of impactful research focusing on mutation testing (i.e., mutation anal-
ysis for software testing) [Mathur 2013; DeMillo et al. 1978; Budd et al. 1980; Mathur et al. 1994;
Offutt et al. 1996; Daran et al. 1996; Andrews et al. 2005; Just et al. 2014]. In the following, we dis-
cuss related work close to the topic of this chapter, namely mutation analysis for software con-
tracts, mutation analysis analysis in the broader context of formal verification, and measure-
ment of incomplete specifications in general.

Mutation Analysis for Software Contracts

As far as we know, Le Traon et al. [2006] were the first who successfully applied a mutation analy-
sis to software contracts to evaluate their completeness, which they termed contract efficiency. They
targeted behavioral specifications in Eiffel, where they mutated implementations to create faulty
versions of their programs under analysis. Moreover, they report on two additional software qual-
ity measures that can be of interest for developers working with software contracts. First, vigilance
is a metric that measures the ability of a program to identify faulty implementations at runtime.
Since contracts aim at specifying safe behaviors, they can serve as test oracles and be evaluated at
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runtime. Vigilance can therefore be used to further investigate contract completeness. Second, di-
agnosability measures the effort needed to locate defects. The work of this chapter differs in sev-
eral aspects. First, we apply deductive verification to verifiy mutants instead of generating test cases
that are executed at runtime. Test case generation has the problem that only a sample of inputs
is tested, whereas formal verification aims at checking all input. It is certainly interesting to eval-
uate several more evaluation strategies for mutants, such as test case generation and model check-
ing, in terms of performance and effectiveness in the future. Second, we conducted an empirical
study on the effectiveness of mutation analysis for software contacts and contribute the first base-
line for JML projects, whereas the work by Le Traon et al. [20006] targeted Eiffel specifications and
merely applied a simplified mutation analysis to have some notion of contract completeness to
compare against. Finally, we focus primarily on improving the strength of software contracts and
not on identifying defects in implementations.

Du Bousquet et al. [2010] also highlighted that mutation analyses and the resulting mutation
score may be used to increase trust in software contracts. They base their work on JML and the WryY
platform, but only outlined the idea and did neither present a full solution nor an empirical evalu-
ation. In particular, they illustrated their idea on a contrived toy example concerned with comput-
ing the maximum number between two integers, but did not define the mutation analysis in detail.
The work of this chapter is a direct continuation of their theoretical considerations and reports on
a full solution for mutation analysis of JML projects, including the introduction of contract-level
mutations and an extensive evaluation. Similar to our goal, Groce et al. [2018] aim at investigating
to what extent verification results reflect the developers intention. They combine mutation testing
with model checking for C code, and use dedicated assertion macros as specification language.

While standard source-code mutation operators for JAva were applied to mutate the implemen-
tations [Ma et al. 2000], contract-level mutation operators were adopted from Hou et al. [2007].
Their goal was to mutate interface specifications of black-box components to measure test ade-
quacy of their black-box test suite. They proposed mutation rules for weakening preconditions
and strengthening postconditions, as explained in Section 5.3.2. In our white-box setting, we eval-
uated whether the proposed mutation rules are effective to analyze a contract’s strength. Our re-
sults let us hypothesize that strengthening postconditions following the proposed mutation rules
is less fruitful than mutating the source code, whereas weakening the precondition gives raise to
a new quality measure. Similarly, Ball et al. [2008] address coverage of system implementations by
mutating specifications in combination with formal verification, which they label as vacuous anal-
ysis. In contrast to our approach, they do not follow the design-by-contract paradigm, but analyze
temporal logic and automata in combination with model checking.

Mutation Analysis in Formal Verification

Besides analyzing completeness of program specifications, mutation analysis was recently ap-
plied in the context of proof assistants dealing with higher-order logic. Celik et al. [2019] pro-
pose the tool chain MCoq, which performs a mutation analysis on CoqQ source files. They coined
the term mutation proving, which aims at mutating functions and data types specified in CoQ’s
functional programming language GALLINA. Similar to identifying incomplete contracts, alive
mutants constitute vaguely specified definitions that are consequently less applicable and ex-
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hibit lower programming quality overall. Laibinis et al. [2021] adopt mutation testing for evalu-
ating adequacy of verification rules in the context railway signaling data. They argue that a large
number of mathematical conjectures must be formulated, which puts validity and complete-
ness of these conjectures into question. Their experiences and discussion emphasize that syn-
thesizing mutants is both practical and promising, but also comes with the limitation that re-
sults greatly depend on the set of analyzed subjects.

Furthermore, mutation analysis is also applied to evaluate effectiveness of formal verification
tools. Rao et al. [2017] proposed a novel process inspired by mutation testing to evaluate formal ver-
ification tools in the automotive and aerospace domains. In particular, they introduced known de-
fects into Simulink specifications and evaluated to what extent developers are able to identify them.

Specification Completeness in General

As far as we know, only little research has been published regarding coverage metrics in the con-
text of formal verification. Polikarpova et al. [2013] discuss the role of strong specification in the
programming language EIFFEL and C#, and propose a methodology that supports the writing of’
stronger specifications for developers. In their extensive empirical evaluation, they highlighted
that strengthening specifications led to the discovery of numerous bugs in their tested subjects,
where specification were used as test oracles. This is in line with our motivation, where stronger
specifications correspond to lower defects overall.

Chockler et al. [2003] adopted coverage metrics from simulation-based verification (i.e., syn-
tactic and semantic coverage metrics), and re-formulated them in the context of model check-
ing. Their version of mutation coverage corresponds with the challenge addressed in this chap-
ter. Other relevant and discussed coverage metrics include assertion coverage (i.e., does my exe-
cution satisfy the assertion?) and code coverage (i.e., which branches and statements are executed?). Al-
though their considerations are only of theoretical nature and target finite-state machines as
underlying implementation language, evaluating the proposed coverage metrics in the context
of contract-based projects or adopting model-checking for additional information are two in-
teresting continuations of this line of research.

Alternatively to mutation analysis, Ghassabani et al. [2017] proposes to calculate coverage metrics
based on inductive validity cores [Ghassabani et al. 2016]. Inductive validity cores constitute minimal
sets about logical properties that establish a proof for particular verification problems. They argue
that this approach is more cost-effective than mutation analysis, as inductive validity cores are ef-
ficient to compute, and employ in their work again model checking. Although Ghassabani et al.
[2017] only report on initial results, it is interesting to compare the results we obtained in our eval-
uation to technique that are unrelated to a mutation analysis.

5.6. Chapter Summary

We addressed the challenge of measuring contract completeness by combining mutation analysis
with deductive verification, whereas we focused primarily on JavA/JML programs. Nonetheless, we
are confident that the results we obtained are transferable to similar behavioral specification lan-
guages that follow the design-by-contract methodology. Besides 16 source-code mutation opera-
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tors, we also incorporated two contract-level mutation operators and evaluated their usefulness.
Our evaluation was conducted on ten open-source JML projects comprising a total of 77 analyzed
methods. To the best of our knowledge, we provide the first prototypical open-source tool support
that combines mutation analysis with contract-based software, which we base on uJava and KEY.

Although our evaluation was limited in size and complexity, we gained several insights that may
shape the future of'this line of research. First, incomplete software contracts occur frequently. This
emphasizes the importance of an adequacy measurement for contract completeness, as uncovered
parts of the implementation may very well mask minor bugs or even safety-critical defects. Second,
the more complex method contract and implementation are, the more effective a mutation analysis
seems to be, as more mutants are generated. In particular, incomplete contracts that were not iden-
tified by our analysis were mostly caused by too few generated mutants. Third, mutation rules for
mutating the postcondition were rather ineffective, while mutation rules for mutating the precon-
dition gave rise to a new metric that can support developers. Finally, the mutation score can give
a good approximation for specification coverage of some projects (e.g., OpenJML), but a high mu-
tation score may not always be corresponding to a very strong contract (e.g., DutchFlagAlgorithm).
That is, every alive mutant can lead to important discoveries.

In the future, it will be necessary to reproduce this study on a larger and more complex corpus
of experimental subjects, and also to generalize this approach to other programming and specifi-
cation languages. Moreover, more sophisticated contract-level mutation operators based on (effi-
cient) synthesis algorithms could further improve mutation of postconditions. Conversely, we may
also consider other application areas than typical software engineering practices, such as evaluating
the quality of synthesized contracts, or reporting the mutation score as an adequacy measurement
for contract strength when open-source JML projects are used as benchmarks in other evaluations.

Measuring contract completeness is one important challenge for developers working with
contract-based software. A different challenge also important in industrial settings is automation
and performance with respect to formal verification of software contracts. We discuss this chal-
lenge tailored to configurable automatic program verifiers in the next chapter.






6. Guipo: Guiding Developers
in Configuring Deductive
Program Verifiers

This chapter shares material with the ITP18 paper “Understanding Parameters of Deductive Verification:
An Empirical Investigation of KeY” [Kniippel et al. 2018c] and the FormaliSE’21 paper “GUIDO: Automated
Guidance for the Configuration of Deductive Program Verifiers” [Kniippel et al. 2021b].

In the previous chapter, we discussed how a mutation analysis applied to contract-based software
can support developers in their verification projects. Besides quantifying incompleteness of spec-
ifications, there are many other challenges at the intersection of software engineering and formal
verification which hinder a successful adoption in industry. Two of the main arguments against
such an adoption are insufficiency of automation (or lack thereof) and inadequate feedback in case
of failed verification attempts. Even automated theorem provers fail frequently due to a multi-
tude of reasons, which are typically difficult to understand for non-expert users. In this chapter,
we address a subproblem in this context that we identified, namely parameterization of configurable
program verifiers. Essentially, many automated formal verification tools allow users to adjust pa-
rameters that control different parts of the automatic proof search, while default configurations
are oftentimes not optimal [Kniippel et al. 2018¢].

While most prominent model checkers are configurable and provide many different tech-
niques and heuristics to automate the configuration process (see CBMC [Kroening et al. 2014],
CPACHECKER [Beyer et al. 2011], VERIABS [Darke et al. 2018], and PeSCo [Richter et al. 2019]), auto-
matic configuration for theorem provers in general and deductive program verifiers in particular,
such as KeY [Ahrendt et al. 2016] or FRAMA-C [Cuoq et al. 2012], has gained only little attention in
the research community so far. They require users to adjust parameters for their automatic proof’
search in case the default configuration is insufficient. However, finding a good configuration of-
ten requires significant expert knowledge of the underlying proof theory and the verification tool
itself to understand the effect certain parameters may have [Kniippel et al. 2018c].

For the purpose of this chapter, we describe the adequacy of configurations in two dimensions.
Primarily, a configuration should suffice to let the internal verification procedure check correctness
of a program automatically, which we refer to as verifiability.! For instance, following the design-by-
contract paradigm [Meyer 1992], verifiability signifies whether a method conforms to its contract.
However, if verification fails even though the input program is correct, practitioners often tend to

In the context of deductive verification, which focuses on finding proofs, provability is a synonymous term. We use the
more general term verifiability to also include other verification disciplines with less focus on proofs, such as model
checking.
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refactor their implementation or specification, rather than tweaking the configuration [Runge et al.
2019b]. The second dimension is verification effort, which is a quantified measure of the verifier’s
performance for a given task (e.g., execution time, memory consumption, or proof size).

Although verifiability is often the primary focus, there is an inevitable demand in practice to
reduce the verification effort [Gleirscher et al. 2018]. Considering continuous integration, soft-
ware systems evolve frequently, as new and modified source code is committed often. That
means, verification tools need to reason continuously [O'Hearn 2018] about the correctness of’
software. Verifying a program once is therefore almost negligible compared to the many verifi-
cation tasks performed when incorporating verification tools into continuous integration pro-
cesses. In these cases, saving even a small percentage of verification effort may accumulate quickly
over time, which makes formal verification more affordable.

In this chapter, we discuss how to automate the configuration selection process for configurable
program verifiers in general, whereas our focus is on deductive verification and the program verifier
KEY. In particular, we propose GuIDo, a holistic framework and tooling based on statistical hypothesis
testing. That is, Guipo allows domain experts (e.g., tool builders) to channel their knowledge and
experience by formalizing hypotheses about the assumed effects on verifiability and verification
effort of various configuration options. This knowledge is then accessible by normal users (e.g.,
developers) to identify adequate configurations automatically. We argue that incorporating explicit
domain knowledge into this process overcomes many limitations that general-purpose tools for
performance prediction of configurable software [Siegmund et al. 2012; Wu et al. 2015; Ha et al.
2019; Guo et al. 2018] have in this specific context. First, they are highly configurable themselves,
which only shifts the problem of parameter optimization. Second, they are mainly regression-based
and need to learn the influence of configuration options on their own. This requires significantly
more training data, which is still challenging to obtain in the context of formal verification. We
are confident that Guipo can be valuable to (1) inexperienced practitioners for an easier entry to
automated program verification, (2) experienced practitioners for improving productivity in their
verification projects, and even (3) researchers and tool builders for evaluating verification techniques
and the effects of newly introduced configuration options.

In Section 6.1, we outline the challenges of configurable program verifiers using KeY as example.
Next, we present a high-level overview of Guipo in Section 6.2 and explain the core technical aspects
of Guipo in Section 6.3. In Section 6.4, we elaborate on Guipo’s open-source implementation, and
in Section 6.5, we discuss the application of Guipo to KeY-2.7.0. We evaluate Guipo empirically
in Section 6.6. While our main focus is on deductive verification, where we thoroughly investigate
KEY-2.7.0, we also apply Guipo in the model checking domain to CPACHECKER-1.8 [Beyer et al.
2011] to evaluate generalizability of our approach. Finally, we discuss related work on configuration
prediction and configurable program verifiers in Section 6.7.

6.1. Problem Statement

Formal verification complements software testing by identifying the last remaining defects that
are otherwise difficult to find. In particular for contract-based software and deductive verification,
practitioners are confronted with numerous potential causes if automatic verification fails, where
the exact cause is oftentimes tedious to identify [Kniippel et al. 2018a; Kniippel et al. 2018c]. For
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Figure 6.1.: Number of applicable configurations in logarithmic scale for the program verifier
KEY [Ahrendt et al. 2016] from version 1.0.0 to version 2.7.0 (adopted from [Kniippel et al. 2021b]).

instance, three common reasons for failed proof attempts are defective implementations, insuffi-
cient specifications, or insufficient tool support (e.g., when the automatic proof search is not pow-
erful enough). Inexperienced practitioners may not directly identify the exact cause, as feedback in
case of failure for theorem proving is mostly vague (see Section 2.1.2). A related challenge addressed
in this chapter focuses on configurable program verifiers. Essentially, parameterization of the under-
lying proof'search algorithm of such program verifiers can have a great effect on their automation
and performance, and default settings are many times insufficient as well [Kniippel et al. 2018¢].
One goal for practitioners is therefore to identify the right configuration for a particular verifica-
tion problem that optimizes verifiability and verification effort.

The number of configuration options of various verification tools may also increase over time
with each new release due to the nature of software evolution. At the same time, each additional
configuration option also makes the overall configuration space larger, even leading to a combi-
natorial explosion in the number of applicable configurations. End-users and even experts may
struggle to understand the influence certain parameters have, and applying all of them becomes
impractical due to large configuration spaces. As an example, we depict the number of applica-
ble configurations for the program verifier KEY from version 1.0.0 up to version 2.7.0 in Figure 6.1.
Whereas version 1.0.0 started with eleven configuration options spread over four control parame-
ters, version 2.7.0 consists of 56 configuration options spread over 30 control parameters, leading
to more than 495 billion applicable configurations.?

We distinguish between two types of parameters. First, qualitative parameters affect certain prop-
erties subject to verification by asking the question: what is verified? For instance, KEY provides
the option to ignore integer overflows during verification instead of considering JAvA semantics,
which allows successful verification of some essentially defective JavA programs. The second type
describes parameters that directly influence the proof search algorithm (i.e., algorithmic config-
uration) with respect to success rate or performance (i.e., how is it verified?). For instance, KEY

2In the remainder of this chapter, we will use the term parameter to mean the dedicated change to a part of the proof
search algorithm offered by the user interface (e.g., method call treatment) and configuration option to refer to a specific
value of a parameter (e.g,, contracting or inlining).
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1 /*@ public normal_behavior Computing Modulo
2 @ requires T > 0;

3 @ ensures \result < T;

4 ex/

s public /*@ pure @*/ int modT (int input, int T) {

6 return input % T;

7}

8 /*@ public normal_behavior Class ArrayList
9 @ requires e != null;

10 @ ensures contains(e);

1 @ ensures collectionSize == \old(collectionSize) + 1;

i) @ ensures \result;

13 @ assignable elements;

14 @*/

15 boolean add(/*@ nullable @*/ Object e) {
16

17}

Listing 6.1: Two methods specified with contracts in JML (adopted from [Kniippel et al. 2018c]).

provides a parameter to replace method calls with their respective contract instead of inlining
the implementation. In many cases, proof obligations based on contracts are easier to discharge,
which will lead to an improvement in performance.

While qualitative parameters must be identified by end-users before starting the verification pro-
cess, non-expert users typically resort to the default configuration for the underlying proof'search
algorithm. If verification fails (e.g,, if the verifier runs into timeout) or performance digresses from
expectations, tweaking the control parameters is typically the last considered resolution. The rea-
son is that the influence of configuration options is oftentimes not well understood, as most mod-
ern verifiers are rather driven by research than by industry, where both areas differ in budget, time,
and focus. Although we assume that the default configuration is a good starting point, we show in
Example 6.1 that the default configuration is sometimes insufficient.

Example 6.1. In Listing 6.1, we illustrate two examples in JML, where the default configuration is either
insufficient or results in higher verification effort than necessary. The top method modT (int input, int
T) consists of two input arguments (i.e., dividend i nput and divisor T) and computes the remainder between
them based on the modulo operation. The postcondition only states that the remainder is always less than
the divisor. In KEY-2.6.1, this method was not automatically verifiable due to the default configuration. In
particular, KeY’s parameter Arithmetic treatment must be set to one of three configuration options, namely
Basic, DefOps, or Model Search. The default option Basic is insufficient for evaluating the modulo operator,
whereas option DefOps suffices.’

3Due to some notion of syntactical equivalence, changing the postcondition to \result == input % T would also suffice
to verify method modT (int input, int T).However, although incomplete, the software contract as-is still con-
forms to the implementation.
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The second method is part of class ArrayList of the Collection-API, which we specified and explained in more
detail in previous work [Kniippel et al. 2018a]. We illustrate an excerpt of the software contract for method
add (Object e). Although the illustrated software contract is relatively simple, the size of the resulting
proof fromKEY s automatic proof search can be reduced by over 6o% (i.e., from 33,748 proof steps to 13,328 proof
steps) when parameter Quantifier treatment is set to No Splits instead of No Splits with Progs.

The example indicates that identifying the right configuration can be difficult, but seems neces-
sary to increase successful application of verification tools. In the next section, we give an overview
of our contribution, Guipo, which aims at automatically deriving adequate configurations for pro-
gram verifiers while considering the impact on verifiability and verification effort.

6.2. Overview of Guipo

Before we lay out the technical contributions of our approach in the next section, we first de-
fine what we mean by configurable verification system in Section 6.2.1. Next, we motivate the defi-
nition of explicit domain knowledge in form of hypotheses in Section 6.2.2 and present a high-
level overview of GuipoO in Section 6.2.3.

6.2.1. Configurable Verification Systems

The field of application for Guipo are configurable deductive verification systems that let a user ad-
just the automatic verification process. For the sake of presentation, we only focus on binary config-
uration options (i.e., 1 if'a configuration option is selected and 0 otherwise). We denote by Os the set
of all possible configuration options of a particular verification system S. As not all combinations of’
options are valid (i.e., configuration options may be alternative to each other), there exist constraints
among them. We implicitly encode such constraints by defining the set ofall valid configurations of’
S as Cs. In practice, the space of configurations is symbolically represented by a propositional for-
mula in conjunctive normal from, and can be analyzed using satisfiability (SAT) solvers [Ahmed et al.
2017; Mendonca et al. 2009]. Then, a particular configuration ¢ € Cs is modeled by a function
¢ : Os — {0,1} that maps each configuration option 0 € Os to either selected (1) or deselected (o).

A frequently applied constraint among a set of configuration options is mutual exclusion, which
means that exactly one of these options has to be selected. Hence, we assume that configuration op-
tions are grouped, and all configuration options in the same group are mutually exclusive. To use
common terminology, we refer to these groups as parameters, which means that a parameter can
be set to a specific configuration option. For instance, when we want to verify a program, there
may exist one parameter consisting of two configuration options to control how integers are han-
dled: (a) either as purely mathematical objects with infinite domains or (b) with the semantics of
the used programming language. A parameter represents the abstract intention (e.g., how integers
are handled), whereas the contained configuration options represent the actual setting. We denote
by Ps C 29 \ {@} the set of parameters for a given verification system S and require that all pa-
rameters in Pg are pair-wise disjoint, such that any configuration option is only element of exactly
one parameter (i.e., Vp1,p2 € Ps Ap1 # p2 @ p1Np2 = Q).
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Example 6.2. The program verifier KEY [Ahrendt et al. 2016] provides parameter One Step Simplification,
which may allow the automatic proof search to reduce multiple proof steps into a single one. Formally, we define
parameter One Step Simplification as poss = {03°%,09%%} with two configuration options: either Disabled
(03%% = 1 A\ 02%° = 0) or Enabled (0§ = 0 A 02°° = 1). Both configuration options are mutually exclusive,

such that exactly one of them has to be selected (i.e., for every configuration c € Cs, c(03%%) # c(02°%) holds).

6.2.2. Statistical Hypothesis Testing

The research goal of this chapter is to build a practical framework that supports developers in de-
riving adequate configurations for program verifiers automatically. Although this goal is related to
the field of performance prediction for configurable software [Siegmund et al. 2015), we argue that
state-of-the-art tools based on regression analysis in that area [Siegmund et al. 2012; Ha et al. 2019;
Guo et al. 2018] are too general to be applicable in the context of deductive verification. First, we
assume that the verification effort (e.g., execution time) for program verifiers is not normally dis-
tributed, which is a fair assumption for configurable software in general. Second, most of these
tools work in a black-box manner (i.e., measuring execution time of the compiled version), whereas
verifiability and verification effort greatly depend on the structure of implementation and specifi-
cation. Third, collecting enough data to make predictions is difficult in the context of formal ver-
ification due to low adoption rates and general scalability problems. These tools, however, need a
large corpus of data to minimize the prediction error.

To address these problems of general-purpose tools, we propose (1) to apply a white-box anal-
ysis and (2) to incorporate domain knowledge about the influence of parameters in form of sta-
tistical hypotheses. The benefit of formalizing hypotheses is threefold. First, instead of let-
ting a prediction algorithm identify such hypotheses on its own by analyzing lots of data (i.e.,
as performed in regression analyses), encoding knowledge about the influence of parameters
should require less data and be more precise. Second, such a formal foundation of encoding do-
main knowledge generalizes to other formal verification tools and even to other disciplines (e.g,
compilers with its optimization parameters). Third, statistical hypotheses can be tested, which
means that false domain knowledge is identifiable. In Example 6.3, we illustrate how hypothe-
ses about configuration options can be expressed.

Example 6.3. We revisit Example 6.2, where we formalized parameter One Step Simplification. Corresponding
hypotheses focusing on either verifiability or verification effort can take the following form.

» Hypothesis (Verifiability): If a specification case is verifiable with option 0253, it is also verifiable with
option 03°® (i.e., 03°° is at least as effective).

m Hypothesis (Verification effort): If the verification task’s implementation contains loops, the verification
effort with option 03°° is at least as large as with option 03%° (i.e., 02%° is at least as efficient for loop-
containing programs).

Whereas the first hypothesis on verifiability ignores language constructs, the second hypothesis on verification
effort only applies in the presence of loops.

Ideally, the right configuration maximizes verifiability while it also minimizes verification ef-
fort. However, in previous work, we found evidence that both criteria are on opposite sites of a
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Figure 6.2.: Schematic workflow of Gurpo’s offline training phase and online configuration search to com-
pute adequate configurations automatically. By scoring options of the verification system on for-
mulated hypotheses and the benchmark dataset, Guipo determines a sequence of ranked config-
urations for a given verification task. End-users can optimize for either verifiability or verifica-
tion effort (adopted from [Kniippel et al. 2021b)).

continuum for some configuration options [Kniippel et al. 2018¢] (i.e., a configuration option typ-
ically only improves one of the two criteria at the same time).

6.2.3. Guipo Workflow

Based on the set of user-defined hypotheses, our idea is to develop a holistic framework
that paves the way for an automatic search for configurations with reasonable trade-off, which
we call Guipo. The goal of Guipo is to support practitioners in formulating hypotheses,
data collection, and configuration prediction.

In Figure 6.2, we present a high-level overview of Guipo, which is divided into an offline training
phase and an online phase for the configuration prediction. The focal point of the offline training
phase is to learn a cost model of the verification system’s parameter space that can then be used in
the online phase. Although costly, this phase has to be performed only once for each particular re-
lease of interest. The offline phase starts with formalization of the domain knowledge @. That is,
a user defines hypotheses about the influence of configuration options with respect to verifiabil-
ity and verification effort as described above. Ideally, hypotheses are directly formulated by domain
experts, but may also be explored by reading tool tips, the documentation, or publications [Kniip-
pel et al. 2018¢]. Next, a benchmark dataset is established by verifying numerous training tasks with a
representative sample of configurations and gathering information about each verification attempt
(e.g., success, verification effort, or syntactical structure of the tasks) @. Finally, all hypotheses are
tested with respect to the benchmark dataset (3). Accepted hypotheses are used to compute weighted
cost graphs that formally reflect the influence of certain configuration options.
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The online configuration search is applied to each input verification task, for which a fitting con-
figuration must be identified. Again, the input verification task is analyzed to gather information
about its syntactical structure (). Next, Guipo uses the weighted cost graphs to score each config-
uration option individually with respect to the input task’s characteristics and a user’s focus (i.e.,
verifiability or verification effort). Based on this scoring, a linear program (i.e., constraint optimiza-
tion problem) is formulated and solved to determine the optimal configuration (5). If the verifica-
tion attempt fails with the optimal configuration, a continuation mechanism is applied to compute
a different but also promising configuration. A continuation mechanism helps to address overfit-
ting, where the benchmark dataset does not reliably reflect characteristics of the new input task.
Additionally, a user-defined timeout caps the maximum time that Guipo spends on the configu-
ration search and verification of the input task. Finally, either Guipo identifies a useful configura-
tion or provides a list of tried configurations for manual inspection (6.

The benefits of a framework such as Guipo are manifold. First, many verification tools already
exist that could benefit right now and lower the entry barrier for practitioners (i.e., both, experts and
non-experts). Second, in times of continuous integration and reasoning, Guipo alleviates unneces-
sary labor, as fitting configurations are found automatically instead of finding them manually. For
instance, if a good configuration for a specific part of the software is found, chances are that this
configuration is also a good fit for future verification. Third, particularly for deductive verifiers that
generate proofs, a goal is not only to successfully verify a program, but also to find smaller proofs (i.e.,
to be resource-beneficial in case of distribution [Necula 1997] or proof replay [Beckert et al. 2004;
Bubel et al. 2016]). After a successful verification attempt, GuIDO can try more promising configu-
rations to optimize proofs. Fourth, in case of dependable software systems, it often becomes nec-
essary to manually switch configurations during a verification task (e.g., when the automated proof
search stops and does not know how to proceed), which is hardly addressed by any modern config-
urable verification tool. Fifth, each software project is different, which emphasizes the benefits of
a learning-based approach that is able to adapt to a diverse set of verification tools.

6.3. A Data-Driven Framework for Automatic Configuration

In this section, we introduce the core technical contributions of Guipo, which are divided into the
offline training phase and the online configuration search. In Section 6.3.1, we first focus on the
offline training phase by explaining how the benchmark dataset is acquired and how user-defined
hypotheses are tested against it. Next, in Section 6.3.2, we discuss how costs of individual options are
computed and how the online configuration search is formulated as a linear optimization problem.

6.3.1. Offline Training: Data Set Acquisition and Hypothesis Testing
Verification Procedure and Benchmark Dataset

Guipo aims at being agnostic to the underlying verification system, which is why we introduce
some abstract terminology to formalize its core techniques as general as needed. For a defined ver-
ification system S, we use the abstract term verification task to refer to programs (or parts thereof)
that are subject to verification. For deductive verification, these are typically specification cases
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of methods (see Section 2.1.2). We denote by 7 the universe of all verification tasks of interest.
Furthermore, we assume that verifying a verification task will produce a verification result from a
universe R of such verification results, which we specify further below. First, we define an ab-
stract version of a verification procedure as follows.

Definition 6.1: Verification Procedure

Let T € 7T be a verification task and ¢ € Cs be a configuration for verification system S. A
verification procedure has the following signature:

V:TXCs—>R.

Applying R = V(T,c) on a verification task T € 7 with configuration ¢ € Cs will produce a
verification result R € R, which consists of three parts: (1) whether the input verification task was
verified, (2) the real-valued verification effort, and (3) a set of identified language constructs of the
input verification task. As described in the previous section, Guipo identifies syntactical language
constructs of the input verification task (e.g,, loops, branching, or parts of a specification), which are
used as features to guide the configuration search. Set £ denotes all identifiable language constructs,
where L C L represents a subset of source code and specification constructs identified by a static
lightweight analysis. Formally, we define the structure of a verification result as follows.

Definition 6.2: Verification Result
A verification result R € R is a tuple (7ver, "ess, L), where:

m ryer € {0,1} states whether the program could be verified successfully (i.e., 1) or not
(ie., 0),

m rorr € Ris the measured verification effort (e.g., execution time, proof'size, or memory
consumption),

m and L C £ is the subset of identified source code and specification constructs.

Incorporating the identification of relevant language constructs aims at improving the quality
of the automated configuration search, as the structure of'a program has a great influence on the
verification result. The set of relevant language constructs £ is typically provided by an expert and
depends on the verification domain (e.g., employed program verifier and programming language.
Typical constructs appear as boolean flags (e.g., occurrences of loops or branches), but may also be
parameterized (e.g., more than n lines of code). In Table 6.1, we show prominent language constructs.
For instance, if the analyzed program contains a while-loop, then loop € L.

To establish a benchmark dataset of verification results, Gurpo needs a set of benchmark verifica-
tion tasks Tye = {T1,..., Tn} and a set of valid prover configurations C C Cs. For deductive verifi-
cation [Ahrendt et al. 2016], we consider a verification task to be exactly one of (possibly) numer-
ous specification cases of an object’s method (e.g., as promoted by using software contracts [Meyer
1992]). Evaluating tasks in Tpe with every configuration in Cg is typically infeasible when the con-
figuration space Cs is too large. We apply a common solution to this problem, namely t-wise sam-
pling [Johansen et al. 2012; Varshosaz et al. 2018; Garvin et al. 2011], which ensures that all possi-
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Construct Description
quantifiers Uses quantification (i.e., V or 3)
£ implications Uses implication (i.e., = or <)
§ frame Assumes unmodifiable locations
% precondition Precondition different from t rue
& postcondition Postcondition different from true
los (n) More than #n lines of spec.
branching Contains i f-statements
loops Contains loops
3 arrays | Uses arra%ys
S recursive Is recursive
8 arguments Gets arguments as input
S returnvValue Has a return value
“ callDepth (n) Call depth is greater than n
sloc (n) More than n lines of code
methodCalls Calls other methods

Table 6.1.: Set of language constructs £ identified by a source code and specification analysis.

ble combinations of t configuration options are covered at least once if the set of valid configura-
tions Cg allows it. Even for small values of t, such as 2 or 3, t-wise sampling is known to produce a
good trade-off between small and representative subsets of all valid configurations [Johansen et al.
2012]. We define the benchmark dataset as follows.

Definition 6.3: Benchmark Dataset

Let V be a verification procedure for verification system S, The C 7 a set of benchmark
verification tasks, and Cg a sampled set of configurations. The benchmark dataset Dg € 2R

is defined as
Dg = {V(T,C) GR‘TGTbe/\CEC}. (61)

Based on Definition 6.3, the benchmark dataset is established by verifying each training verifica-
tion task T € Ty with each sample configuration ¢ € C, and then storing the verification result in
Ds.

Statistical Hypothesis Testing

As explained in the previous section, GUIDO is built on the idea of explicitly integrating formal-
ized domain knowledge to improve the configuration search. That is, experts formulate assumptions
about whether specific configuration options have a significantly greater influence than others for
a given class of verification tasks. However, even experts may unintentionally introduce false or ir-
relevant assumptions and consequently compromise Guipo’s effectiveness. To prevent the intro-
duction of'ill-posed domain knowledge, Guipo ignores irrelevant hypotheses by applying standard
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Criterion Condition Applied Test Reference
Verification Effort p = {o1,02} 1-S.amp1e'Wilcoxon test [Wohlin et al. 2012]
lp| >2 Paired Wilcoxon test

McNemar test + inspection via
Verifiability P [McNemar 1947]

contingency tables

Table 6.2.: Applied significance tests for a hypothesis Hyey/ees = (01,02, L) over a parameter p € Ps.

hypothesis testing to objectively validate all formulated assumptions beforehand. Formally, we de-
note by Hg the set of hypotheses defined by experts and define a hypothesis as follows.

Definition 6.4: Hypothesis

Let 01,020 € Og be two configuration options of the same parameter, and let L C £ be a
(possibly empty) set of language constructs. A hypothesis Hyey/err € Hs With Hyerjerr =
(01,02) X L represents the assumption that choosing option 01 over option 0, performs better
with respect to the verification criterion (i.e., either verifiability ver or verification effort eff)
and the identified language constructs in L.

\ 7

For example, specific options may be more relevant in the occurrence of loops, branches, or a
combination thereof, and not so relevant otherwise. Although particular options may have syner-
gistic effects (e.g, selecting two options of different parameters outperform a third option), finding
such interactions is typically non-trivial [Calder et al. 2003] and might even unnecessarily compli-
cate the formulation of hypotheses. For the sake of simplicity, we assume that Guipo currently only
allows to formulate hypotheses that compare two configuration options of the same parameter.

As commonly practiced in statistics, we apply standard tests from the domain of frequentist
statistics [Neyman 1977] (i.e., null hypothesis statistical testing) to validate our hypotheses. As a re-
sult, we compute the p-value for each tested hypothesis. Assuming that the hypothesis stating the
opposite (i.e., null hypothesis) is correct, the p-value represents the probability that new observa-
tions will lead to results that are as extreme as the results we already observed. A smaller p-value
signifies stronger evidence in favor of our actual hypothesis.*

For hypotheses about verifiability, we chose a McNemar test including an inspection of the sig-
nificance via contingency tables [McNemar 1947]. For hypotheses about the verification effort, we
chose a non-parametric Wilcoxon test [Wohlin et al. 2012]. The reason against the most frequently
applied t-test [Wohlin et al. 2012] is that we cannot assume a normal distribution when measur-
ing the verification effort. Although the t-test is said to be robust against deviation from a normal
distribution with large sample sizes [Zimmerman 1998], using a non-parametric test is more rea-
sonable in our case, as (1) we do not make assumptions about the size of our sample and (2) a too
drastic deviation from the normal distribution is possible.

In Table 6.2, we list the applied significance tests for a given verification criterion and a condition
on the compared configuration options. In particular, hypotheses are only reasonable for param-

It is important to note that the p-value mainly signifies presence of statistical significance, but is typically not an
adequate measure of magnitude to quantify the significance. It is therefore good practice to also report on the effect
size [Cohen 2013] of a hypothesis as a measure to quantify the significance.
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eters that comprise at least two alternative configuration options. For instance, checkboxes, which
only allow to select or deselect a configuration option, are encoded as parameters with exactly two
configuration options, namely true and false. For hypotheses about verification effort, where the
respective parameter consists of exactly two configuration options, we apply a 1-sample Wilcoxon
test instead of a paired Wilcoxon test. For hypotheses about verifiability, we always apply the Mc-
Nemar test. To prevent the increasing probability of Type-I errors (i.e., accepting invalid hypothe-
ses) in our tests, we apply the Bonferroni correction [Shaffer 1995] instead of a fixed significance level
of a. Such a correction lowers the significance level depending on the number of experiments that
are performed to mitigate the influence of biased data.

Cost Graph Construction

To decide which configuration options of a parameter should be prioritized, we design a cost
graph per parameter in Pg that reflects our prior established domain knowledge (i.e., the ac-
cepted hypotheses). We give the following definition.

Definition 6.5: Cost Graph

A cost graph G, for parameter p € Ps is a weighted and directed multi-edge graph (V, E, w),
where:

m V is a set of vertices and each v € V represents exactly one configuration option in p,
m E is a set of directed edges,

m w: E — Ris a function associating each edge in E with a cost.

Intuitively, a cost graph illustrates which configuration options are more likely to improve or
deteriorate the verification result with respect to the verification criterion. Each edge is associ-
ated with a particular hypothesis and the edge’s weight represents the measure of magnitude of’
this hypothesis. To quantify the significance of a hypothesis, we use Pearson’s correlation coeffi-
cient as effect size [Benesty et al. 2009], where a value of 0.1 indicates a small effect, 0.3 indicates a
medium effect, and o.5 indicates a large effect. To explain our idea, consider the visualized exam-
ple of'a cost graph in Figure 6.3 of a parameter with three vertices comprising three mutually exclu-
sive configuration options 01, 02, and 03. Here, we accepted three hypotheses. The upper two edges
and their corresponding hypotheses state that selecting configuration option o, instead of 0; and
03 reduces the verification effort. The third hypothesis states that, in the presence of loops, select-
ing configuration option 0, deteriorates verifiability compared to selecting option o03. All hypothe-
ses are represented in the cost graph by connecting the configuration options with three weighted
and directed edges. Cost graphs are practically easy to compute, but also provide an intuitive un-
derstanding of the dependencies between options.

The meaning of edges in a cost graph is formally described as follows. Let 01,0, € Og be two
configuration options of the same parameter p € Ps. Moreover, let H = (01,02, L) be an accepted
hypothesis with L € L. Then there exists an e € E such that e = (01,07) and w(e) = r if and
only if Pr(Ds|H) < . Again, r is Pearson’s correlation coefficient resulting from testing (i.e.,
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) w3 := 13 if Pr(Ds | Hegs(02,03,0)) < a
w1 :=n if PT(DS | Heff(02,01,®)) <

wy =1y if Pr(Ds | Hyer (03,02, {1oop})) < a

Figure 6.3.: Exemplified cost graph representing three accepted hypotheses. A directed edge indicates the ac-
ceptance of a user-defined hypothesis (i.e., considering the corresponding p-value resulting from
function Pr(+)) and is weighted by Pearson’s correlation coefficient ; [Benesty et al. 2009] with
i € {1,2,3} (ie., using effect size as measure for significance).

rejecting) the null hypothesis H based on benchmark dataset Ds, a is the significance level (e.g.,
a = 5% as commonly practiced in statistics [McKillup 2011]), and Pr(-) denotes the measured p-
value based on the chosen test and our benchmark dataset.

The p-value represents the probability that dataset Ds reflects the opposite of what we ini-
tially stated with hypothesis H (i.e., null hypothesis is denoted by H). After a hypothesis is
accepted, we use the effect size as a measure for its significance. The higher the effect size,
the higher is the impact of the configuration option associated with H, which allows us to
use the effect size as an adequate metric.

6.3.2. Online Configuration Search as an Optimization Problem
Cost Computation of Individual Configuration Options

In the offline phase, Guipo uses all user-defined hypotheses to establish the benchmark dataset
and to construct a cost graph for each parameter of interest. In the online configuration search,
Guipo aims now at using the cost graphs to optimize the configuration for an input verification
task. Formally, this means that the established cost graphs G, = (V, E, w;) per parameter p € Ps
together with the set of language and specification constructs Lt for an input task T are used to
score each individual configuration option with essentially two score functions Oyer /e : Os — R,
one for verifiability and one for verification effort. To only take hypotheses into account that are
formulated over a subset of the computed language constructs, we define 17, : E — {0,1} as a
function yielding 1 if Ly of the associated hypothesis of the input edge is a subset of LT and o
otherwise. The score functions are defined in the following way.

Vo € Os : 9ver/eff(0) = _[ ZE ]ILT(E)CU(E)] + [ ZE ﬂLT(e)w(e)] (62‘)
/\eie(o’,o) /\eie(o,o’)

The idea is that starting from a cost value of o for a configuration option (e.g., no hypotheses are
associated with that option), outgoing edges increase the score whereas incoming edges decrease
the score. In particular, we compute two different scores for each existing configuration option
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Algorithm 6.1: COMPUTESCOREyer/e££(0, Gp, LT), where 0 € Os is a configuration option of
parameter p € Ps, G, = (V}, Ej, wp) is the cost graph for parameter p, and Ly is the set of
identified language constructs for verification task T.
1 Let H, = (01,02, L,) be the hypothesis associated with edge e € E.
Keep only relevant edges in E:

a. check for verification criterion:
e € E ifand only if H, is associated with verification criterion ver or eff, respectively.

b. check for language constructs:
e € Eifand onlyif L, C Lr.

2: Compute Oyer/err(0) according to Equation 6.2 and return result.

depending on the verification criterion (i.e., one for verifiability and one for verification effort). In
Algorithm 6.1, we summarize our computation of costs for individual options.

Example 6.4. Consider again Figure 6.3. To compute the cost function O.¢¢ focusing on verification effort, we

first remove all edges associated with a hypothesis regarding verifiability (i.e., the directed edge (03,02)). The
score for each option 01,02, and 03 then results in Oe£s(01) = —w1, Oes(02) = W1 + w3, and Oegs(03) =
—ws. Analogously, computing Oyer yields Oyer(01) = 0, Oyer(02) = —11, w2, and Oyer(03) = 1p,wo.
Regarding Figure 6.3, 11, = 1 ifand only if the analyzed program contains loops and O otherwise. The weights
w1, wa, and w3 represent the effect size in [0.1, 0.5] for the particular hypothesis.

Global Cost Optimization

After each configuration option 0 € Os has been scored, Guipo formulates an optimization prob-
lem and solves it by employing a linear programming solver [Dantzig 1998]. The main objective
is to find the configuration candidate that maximizes the individual scores per configuration op-
tion based on our verification criterion. Essentially, our verification criterion is twofold; on the one
hand, we try to increase verifiability, whereas on the other hand, we try to reduce verification ef-
fort. To span a continuum between these two, we introduce parameter -y to control our verification
focus and require that ¢y € [0,1] with the following meaning: a setting of v = 1.0 focuses com-
pletely on verifiability, whereas a setting of v = 0.0 focuses completely on verification effort. A set-
ting in between represents a mixed and weighted approach.

Solving the optimization problem to find an optimal configuration is realized by formulating a
linear constrained-optimization problem, which can be solved with linear programming. Besides
the objective that is subject to maximization, the configuration space has to be encoded (see the
set of valid configurations Cs described in Section 6.2). The encoding may look different for dif-
ferent verification systems, which we indicate by the placeholder function encodedConfSpace(-).
For instance, all considered control parameters in KEY have this property that their configuration
options are mutually exclusive (i.e., for every p € Ps with p = {o1,...,0,} it holds that c(0;) = 1
if'and only if Vi;c(0r) = 0). The resulting formalization of the linear optimization problem with
the highest rated configuration as a solution looks then as follows.
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¢* = arg max Y *0uer(0) + (1 — ) * Oegs(0)
ceC YoeOsg
Ne(0)=1
subject to encodedConfSpace(c,p) Vce C,p € Ps
c(o) € {0,1} Vee C,0€ Og

Considering again the typical scenario for a verification system where no constraints between
configuration options of different parameter exist (i.e., exactly one configuration option of each
parameter has to be selected), a definition of the encoding as a linear constraint looks as follows.

encodedConfSpace(c,p) :=Vece C,p e Ps: () c(0)) =1 (63)
0€p

If the currently optimal configuration is insufficient for proving the input task automatically,
and a user-defined timeout 7 is not reached, Guipo applies a continuation mechanism M to com-
pute another configuration for re-trying the verification attempt. In particular, the following three
continuation mechanisms are currently supported by Guipo.

Mpenaity (Apply penalty). With this mechanism, each active option of the current configuration
is penalized by adding a constant k to its score. Afterwards, the constraint optimization problem is
solved again. For instance, a score may be worsened by a penalty of k = —0.05. A good k, however,
depends on the normalization of the scoring function. This penalty helps to overcome overfitting, as
our dataset may not reflect necessary information to handle every program optimally. Options with
a good score that would otherwise prevail will eventually be scored lower in case of repeated failure.

Mpext (Next in rank). With this mechanism, the configuration with the next highest score is cho-
sen. This is particularly useful, if the parameter v is currently in favor of the verification effort (i.e.,
1 — v > 7), as the next best configuration will likely increase verifiability. Technically, a constraint
is added to the optimization problem that removes the current configuration as a possible solution.

Magjust (Adjust weights). With this mechanism, weight <y is changed in favor of verifiability by a
fixed constant k (i.e., Yxew := Yowp + k). For instance, k = 0.1 would shift the focus in favor of prov-
ability by 10% each iteration. Similar to mechanism Myext, the chances of a successful verification
increase.

We postpone a discussion of the usefulness of each of these mechanisms to Section 6.6, where
we will evaluate whether one of these mechanisms is superior compared to the other two with
respect to verifiability and verification effort.

6.3.3. Summary of Main Algorithm

So far, we gave an informal overview of Guipo in Section 6.2 and described Guipo’s tech-
nical core aspects in Section 6.3. Whereas the offline phase has to be performed only once
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Algorithm 6.2: GuipoS(Hs, Ds, T, v, , T), where Hs is the set of statistical hypotheses, Ds is
the benchmark dataset, T is a verification task, v € [0,1] is a real coefficient, « € [0, 1] is the
significance level, and T represents the timeout.

1: Offline (see Section 6.3.1): If'the set of hypotheses Hsg is not yet evaluated, test each statistical
hypothesis in Hg with significance « on collected observations in Ds. We then denote
H* C Hg as the set of accepted hypotheses.

2: Based on H*, construct a cost graph G, for each option group p € Ps that ranks the contained
options with respect to the verification criterion.

3: Online (see Section 6.3.2): Analyze the input task T for language constructs L C L.

4 Score each option o € p by applying a scoring function with respect to Lt
Over/esf(0) = COMPUTESCORE(0, Gy, LT).

5: While verification fails with configuration ¢ and timeout 7 is not yet reached:

a. Solve constrained linear optimization problem for the optimal configuration while
respecting the configuration space

c* = soveCOP(6, )

b. In case of failure, use a continuation mechanism M to compute the next configuration.

6: Use the current optimal configuration for verification. In case of failure, report applied
configurations for inspection.

for a particular release of a verification system, the online phase is applied individually to
every input verification task based on the constructed cost graphs. In Algorithm 6.2, we
summarize the main algorithm of Guipo.

Only few parameters need to be tuned for Guipo. First, ¢ € [0,1] is able to shift the focus of
the configuration search from only considering verification effort (y = 0.0) to only considering
verifiability (y = 1.0). We assume that a linear trade-off for the program verifier KEY exists be-
tween the two criteria. In Section 6.6, we will evaluate (1) whether this assumption holds and (2) if
it holds, which value of 7y represents a reasonable trade-off between both criteria. Second, signifi-
cance level @ must be adjusted in the offline phase. Although Guipo applies an additional correc-
tion to the significance level, a user-defined value around o.05 is expected to produce reasonable
results. Third, some of the continuation mechanisms depend on some constant k, which must be
defined by end-users and potentially need to be adapted to the benchmark dataset and verification
task for optimal results. Guipo comes with default settings for the presented continuation mech-
anisms, which provide adequate results based on our experience and the verification tasks we con-
sidered throughout this chapter. Finally, T represents the maximum time that Guipo spends on
the configuration search, and may therefore vary greatly for different verification systems and even
the input verification task. This includes the verification effort itself and the configuration search
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through solving the linear optimization problem. We assume that end-users have at least a rough
intuition on the time needed to verify specific verification tasks.

6.4. Open-Source Implementation

We implemented GuUIDO in JAvA to quantitatively evaluate our technique. To model the configura-
tion space of KEY-2.7.0, we exploit the configuration utilities of the open-source tool FEATUREIDE
3.5.3 [Meinicke et al. 2016; Meinicke et al. 2017], an extensible framework for the development of
software product lines [Pohl et al. 2005; Czarnecki et al. 2000]. FEATUREIDE allows us to model the
configuration space as a feature diagram [K. C. Kang et al. 1990], a graphical and easy-to-understand
modeling language, and already supports t-wise sampling.

The key component for establishing the benchmark dataset in the offline phase is the auto-
mated VerificationServer. As verification in itself is very costly and the number of veri-
fication attempts can be very large, the VerificationServer is based on a client-server archi-
tecture. The server manages a queue of verification attempts and distributes them to a num-
ber of started clients. This allows to compute results in parallel. Moreover, each verification at-
tempt needs to be performed independently to not falsify the results, since a verification system
could store information about previous verification tasks. To mitigate a falsification of the result,
each client (1) performs one verification attempt in a virtual machine, (2) starts a new independent
client afterwards, and (3) eventually terminates itself.

Besides a client-server architecture for automatically establishing the benchmark dataset in the of-
fline phase, Guipo’s implementation is accompanied with language support for formulating the hy-
potheses in the form of an EcL1pSE plug-in. In Listing 6.2, we exemplify an excerpt of such language
support for organizing hypotheses. This example defines a hypothesis for parameter proofSplitting,

Import: "others.hypothesis"
Dataset: "data.txt"
System: KeY-2.7.0

Hypothesis H3 on Parameter proofSplitting {

Description: "proofSplitting.delayed might be slower!";
Definition: {proofSplitting.off: true} is more efficient than {
proofSplitting.delayed: true};
Constructs: [LC.NO_IF];
}
// ... other hypotheses

Listing 6.2: Excerpt of domain-specific language for organizing hypotheses.

which states that off decrease verification effort compared to delayed in the absence of branching,

With respect to the benchmark dataset, hypotheses and all experimental data are translated to
R’ and automatically evaluated to determine the set of accepted hypotheses. For solving the lin-

Shttps://www.r-project.orqg/


https://www.r-project.org/

164

Statistic Value Statistic Value
Configuration options 56 Fixed configuration options 15
Parameters 30 Significance level « 0.05
Defined hypotheses 72 Accepted Hypotheses 12-16
Total configurations 663,552 Verification tasks 94
Sample size (f = 3) 2,235 Total verification attempts 210,090

Table 6.3.: Statistics on the Application to KEY

ear optimization problem, which is formulated and solved in the online phase, we employ SCP-
Solver, a JavA-based solver for linear programs.®

The online phase is implemented by three main components, namely the CodeAnalyzer,
ScoreGenerator, and ConfigurationGenerator (see Figure 6.2 and detailed description
in Section 6.3). GUIDO receives the accepted hypotheses, optional parameters (i.e., weight o and
constants for timeout and adjustment), and verification tasks as input, and computes promising
configurations for each verification task or provides feedback to the user for manual inspection.
In component ConfigurationGenerator, the linear optimization problem is formalized and
solved. To transfer GuIpo to other verification tools, only some adaptions are needed.

While we demonstrated Guipo’s application primarily in the context of deductive verification
and the program verifier KeY (see Section 6.5), the current implementation also integrates the con-
figurable model checker CPACHECKER-1.8 [Beyer et al. 2011]. We provide an open-access repository
of Guipo including hypotheses and benchmark data sets for KeY-2.7.0 and CPACHECKER-1.8. /

6.5. lllustrative Application on Deductive Program verification
with KeY

We applied Guipo to the deductive program verifier KEY-2.7.0 [Ahrendt et al. 2016]. KEY-2.7.0 com-
prises a total of 30 parameters, where each parameter is associated with two to four configuration
options. Checkboxes constitute binary parameters consisting of two configuration options, namely
true and false. In KEY, there exist no further constraints between configuration options from
different parameters, which is why the encoded configuration space is equal to Equation 6.3 (see
Section 6.3.2). We summarize the most important statistics of applying Guipo to KeY in Table 6.3,
which we explain in more detail in the following.

Typically, numerous configuration options not only tune the verification algorithm itself, but also
may change what is verified (e.g., absence of overflows, when integers are treated with the semantics
of the programming language). Consequently, a number of options can be fixed in the beginning
to already reduce the configuration space. As we only apply KEY to Java programs, we fixed options
that would either prohibit a successful verification of such programs or would falsify the result.
For instance, we always applied the Java semantics for integer values instead of treating integers as
mathematical objects with infinite domains. In total, we fixed 15 configuration options, such that

bhttp://scpsolver.org/
"https://github.com/AlexanderKnueppel/Guido
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663,552 different configurations remain. To further reduce the configuration space, we used three-
wise sampling (i.e., t = 3) employing the ICPL sampling algorithm Johansen et al. 2012, which is
state-of-the-art for large configuration spaces [Varshosaz et al. 2018]. As a result, 2,235 configurations
remain. Consequently, we performed a total of 210,090 verification attempts (i.e., each configuration
sample is applied to each verification task) to compute the benchmark dataset.

For deductive verification, our metric for verification effort is twofold: either (1) execution time
of the verifier, or (2) the size (i.e., number of steps) of generated proofs. Finding configurations that
lead to a reduced proof size may help in two ways. First, they are resource-beneficial in case of
distribution, such as with proof-carrying code [Necula 1997]. Second, as proofs can be replayed in
re-verification attempts (e.g., when applied in continuous integration), smaller proofs are replayed
faster and, thus, accumulate to less verification time [Beckert et al. 2004; Hihnle et al. 2013].

To capture our domain knowledge, we have formulated 72 hypotheses about verifiability and ver-
ification effort, and investigated each hypothesis as one independent experiment. As there is a high
chance that execution time and number of proof steps correlate under ideal conditions, we evalu-
ated the same 72 hypotheses regardless of the applied metric for effort. In each of our hypotheses,
we only test the effect of two mutually exclusive options, as we are not aware of any interactions be-
tween options in KeY. As we perform 72 different experiments on the same benchmark dataset, we
apply the Bonferroni correction (see hypothesis testing in Section 6.3.1). We set our initial significance
level to the commonly practiced 5%. However, it is noteworthy that for the context of formal verifi-
cation, a higher significance level may be more promising, as more hypotheses can be accepted and
therefore more information on the influence of some options is available. Applying the correction
yields @ = 0.05/72 ~ 0.0007. All null hypotheses with a p-value lower than this significance level «
were rejected, meaning the alternative hypotheses were accepted. As further elaborated in our eval-
uation (see Section 6.6), we accepted 12-16 hypotheses, depending on the benchmark verification
tasks and the applied metric for verification effort we considered during the hypotheses testing.

6.6. Evaluation

With Guipo, we aim at automatically generating configurations for configurable program verifiers
that lead to an acceptable trade-off between verification effort and verifiability. Meeting this goal de-
pends on GUIDO’s practicality and capabilities as presented in Section 6.3 to improve the automatic
verification process. Based on our tool support presented in the previous section (see Section 6.4),
we empirically evaluate Guipo by addressing the following five research questions.

RQ-1: What impact has parameter -y on verifiability and verification effort?

RQ-2: Which continuation mechanism performs best after a failed verification attempt?

RQ-3: How does Guipo compare to KEY's default configuration or a trial-and-error strateqy?
RQ-4: To what extent can GUIDO reduce the proof size of verification subjects systematically?

RQ-5: For model checking, how does GUIDO compare to the default configuration of CPACHECKER-1.8?
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Project Classes Methods Tasks Where?
OpenJDK 3 15 23 [Kniippel et al. 2018a]
KEY Examples 12 24 25 [Ahrendt et al. 2016]
BankAccount-FH-JML 3 11 11 [Thiim et al. 2019]
OpenJMLDemo® 10 35 35 [Cok 2011]

Table 6.4.: Corpus of JML projects and their characteristics used for evaluating Guipo on KeY-2.7.0.

The first four research questions focus primarily on deductive verification employing the pro-
gram verifier KEY-2.7.0 as described in Section 6.5. The fifth question addresses a different applica-
tion scenario, namely model checking, and is evaluated on CPACHECKER-1.8. For all measurements,
we used an Intel Core i7-7700K @ 4.20 GHz processor with 32 GB of RAM and Windows 10 on 64Dbit.

We elaborate on our methodology and introduce the experimental subjects in Section 6.6.1. Next,
in Section 6.6.2, we present and discuss our results. Finally, in Section 6.6.3, we discuss poten-
tial threats undermining the validity of our study.

6.6.1. Methodology and Evaluated Projects

As mentioned before, RQ-1-RQ-4 are directly targeted towards deductive verification in general
and KEeY-2.7.0 in particular. We evaluate Guipo on a corpus of 94 verification tasks (i.e., specification
cases) provided in JML from widely known projects. While 94 experimental subjects do not con-
stitute a large number of programs, specifying programs that can be verified automatically poses
an immense challenge in the first place [Baumann et al. 2012; Rozier 2016; Kniippel et al. 2018a].
Therefore, this initial evaluation of Guipo is conducted on only a small number of experimen-
tal subjects, which, nonetheless, will allow us to address the research questions raised above. Ta-
ble 6.4 illustrates the most important characteristics of these experimental subjects, including the
projects themselves and number of classes, methods, and resulting verification tasks. The bench-
mark dataset is generated on the aforementioned 94 specification cases with a sampled set of 2,235
configurations, yielding 210,090 data entries in total (cf. Section 6.5).

Setup. For each experiment, we performed a ten-fold cross validation. That is, we partitioned the
904 verification tasks into 9o% benchmark verification tasks (i.e., 84 or 85 tasks) and 10% test input
(i-e., nine or ten tasks) over the course of ten rounds, such that all benchmark verification tasks
served as test input once. This means that we had to re-evaluate the hypotheses for each set of
training verification tasks. For RQ-1-RQ3, we accepted the same 16 hypotheses in eight of the ten
rounds with a slight variance in the p-values. In two rounds, only 13 and 14 hypotheses were accepted,
respectively. We use a timeout of five minutes for each individual verification attempt to keep the
experiments reasonable in time. We found that five minutes are enough to successfully verify the
majority of our verification tasks. To mitigate computation bias influencing execution time, we
conducted all respective experiments 10 times and picked the median. For RQ-4, we use the proof’
size as the performance metric for the verification effort instead of the execution time. Changing

8https://github.com/OpenJML/OpenJMLDemo
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the metric has a direct influence on the hypotheses about verification effort. Consequently, we only
accepted the same 15 hypotheses in nine rounds and 12 hypotheses in one round.

To evaluate generalizability of our results, we designed an experiment (RQ-5), in which we ap-
plied Guipo to CPACHECKER-1.8 [Beyer et al. 2011], a configurable model checker developed in Java
for verifying C programs. In our configuration space, we encoded 18 parameters with a total of 41
configuration options. For this study, we decided to only compare against the default analysis of’
CPACHECKER (e.g,, assertion checking and termination), and to use the total time spent in millisec-
onds as a representative for the verification effort. We chose a total of 30 benchmarks with varying
characteristics (i.e., loops, arrays, small, and large), which we randomly divided into a single training
set (23 benchmarks) and a test set (seven benchmarks).” Our established data set comprises approx-
imately 86,440 data entries (i.e., 3,758 sampled configurations applied to each of the 23 benchmarks).
We formulated 14 hypotheses based on the online documentation and scientific publications, of
which we could accept 11. More information on the hypotheses can be found in Appendix B.

Baseline. For research question RQ-1, we set weight <y to eleven uniformly distributed values be-
tween 0.0 and 1.0 (i.e., with step size 0.1) and measure the effect on verification effort and verifia-
bility. If a higher value of <y leads to significantly more successful proof attempts, but a lower value
leads to significantly less execution time for the proven cases, we may conclude that a trade-oft be-
tween verifiability and effort exists. Answering this question is necessary to justify our lineariza-
tion between both verifiability and verification effort, and our continuation in case of failure. For
research question RQ-2, we compare GUIDO to the default configuration of KeY and a trial-and-error
strateqy (i.e., randomly picking a configuration from the configuration space) to compute the next
configuration in case the default one is insufficient. This may mimic the behavior of an inexperi-
enced user, who starts with the default settings and changes them in a trial-and-error fashion af-
ter unsuccessful verification attempts. We assume that the default configuration is already a good
configuration in terms of provability for easier verification problems, but may not be the fastest
configuration and also not sufficient for more complex problems. For RQ-3, we evaluate whether
one continuation mechanism with respect to KEY and our experimental subjects is superior (i.e.,
more effective or more efficient) to another mechanism. For RQ-4, we evaluate GUIDO’s potential
to reduce the size of a proof measured in proof steps with respect to KEY’s own proof format and
compare the result to the aforementioned try-and-error strategy starting from the default config-
uration. For RQ-5, we compare Guipo with the default configuration of CPACHECKER on seven
benchmarks that vary in language constructs and size. Although we expect that the default config-
uration is an adequate candidate for these benchmarks, we evaluate whether Guipo may signifi-
cantly reduce the verification effort for a subset of them.

6.6.2. Results and Insights

In the following, we discuss all five research questions raised above.

https://github.com/sosy-lab/sv-benchmarks
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Figure 6.4.: Percentage of verified tasks and compared efficiency for different values of 7y € [0, 1].

RQ-1: Influence of Parameter 7y on Verifiability and Verification Effort

With this research question, we use GUIDO to investigate whether a trade-off between verifiabil-
ity and verification effort is observable in our experimental subjects with respect to different con-
figurations. In Figure 6.4, we visualize how changing the focus between verifiability and verifica-
tion effort (i.e., adjusting weight -y) impacts the verification result. We verified each of the 94 sub-
jects a total of eleven times using GuUIDO, starting with v = 0.0 (complete focus on verification ef-
fort). Each iteration, we increased <y by a step size of 0.1 and repeated the experiments. As a result,
we obtain two trend lines that we explain in the following.

First, the trend line colored in red @ illustrates the total percentage of successfully verified tasks
with each value of v € [0, 1] and step size o.1. For instance, v = 0.5 results in roughly 46.8% suc-
cessfully verified tasks (i.e., 44 verification tasks). A value of 7y = 0.0 leads to the minimum num-
ber of verified tasks in the given time span (24%), whereas a value of v = 1.0 leads to the maximum
number of verified tasks (67%). Second, the trend line colored in cyan @) illustrates the percentage
of the tasks that (1) were successfully verified and (2) needed the least amount of execution time for
any 7. That is, the percentage indicates to what extent a particular vy led to a configuration that was
able to complete a proof and computed a proof the fastest compared to all other values for . For
instance, setting v = 0.5 means that 33% of the verification tasks were successfully verified and the
configurations computed by Guipo for these tasks and v = 0.5 also minimized verification effort.

Discussion. In summary, complete focus on verifiability (i.e., 7 = 1.0) lets Gurpo produce config-
urations that allow to verify a total 63 out of 94 tasks automatically (i.e., 67%), whereas with com-
plete focus on verification effort (i.e., v = 0.0), only 23 tasks (i.e., 24%) were verified successfully.
However, applying v = 0.0, Guipo was able to minimize the execution time for 21 tasks (i.e., 33% of’
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Mechanism No. Successful Tasks Success Rate [%] < Time [ms]

Mpenaity 60 63.83% 4,726
Magjust 63 67.02% 3,094
Mpext 54 57.43% 5,122

Table 6.5.: Statistics on successfully verified tasks for each continuation mechanism.

the 63 successful verification attempts). This experiment raises our confidence that a linear trade-
off between verifiability and verification effort exists. That is, optimizing both verifiability and ver-
ification effort at the same time is for many verification tasks impossible. These insights allow us
to tune the configuration search further and to minimize the number of iterations for Guipo. Al-
though minimizing verification effort is important in later stages of the development process, the
primary goal is typically to automatically and successfully verify programs in the first place. Re-
garding our experimental subjects, a good starting point is therefore to uniformly weight the in-
fluence of verifiability and verification effort for the configuration search (i.e., setting 7 = 0.5), as
this increases the success rate compared to a complete focus on verification effort by 21%, but also
generates in 33% of successful attempts a proof while minimizing verification effort.

RQ-2: Comparison of Continuation Mechanisms

With this research question, we evaluate the influence of the three proposed continuation mech-
anisms (see Section 6.3.2). That is, we compare the three different mechanisms, namely Mpenaity,
Magdjust, and Mpext, of GUIDO in terms of verifiability and verification effort. We set y = 0.5, as we
evaluated before that this value provides a good compromise with respect to effectiveness and per-
formance. For Magjust and Mpenaity, we use k = 0.1 and k = —0.05, respectively.

In Table 6.5, we illustrate each mechanism with the total number of successful verification
attempts after ten rounds and the average computation time per successful verification at-
tempt. Magjust is able to verify the most tasks with roughly 67% in the given time frame of 1
minute. Mpenaity and Mpexe close slightly less proofs (i.e., 64% and 57%, respectively). More-
over, Magjust needed the least amount of time on average to close a proof. This is due to the
fact that the adjustment oftentimes needs less iterations compared to the other two strategies,
as the focus on verifiability increases quickly.

In Figure 6.5, we illustrate the produced proof sizes for all verification attempts in a box
plot. As can be seen, Mpenaity and Mpext produce similar results, whereas Magjust produces
slightly larger proofs. This is due to the fact that Magjust (1) verified more tasks in total and
(2) could successfully close more complex proofs.

Discussion. In Figure 6.4, we show that GUIDO’s first attempt with v = 0.5 leads to 44 successfully
verified tasks (46.8%). Therefore, Mpex: is able to verify 10 more tasks, Mpenaity is able to verify
16 more tasks, and Magjust is able to verify 19 more tasks. In particular, this experiment shows
that high values of < lead to configurations that maximize verifiability, which further increases
confidence in our linearization. We conducted a manually performed statistical hypothesis test
to investigate whether a mechanism is superior to the other two mechanisms. However, based
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Figure 6.5.: Percentage of closed proofs for the three different continuation strategies.

on our measurements, we could not accept the hypothesis that there exists one mechanism that
is significantly better (x = 0.05) than the other two mechanisms. Nonetheless, we conclude for
RQ-3 and our experimental subjects that Magjust should be used here as the default mechanism,
as it represents a slightly better trade-off between verifiability and verification effort for v = 0.5
compared to the other two strategies. We acknowledge that other datasets may greatly benefit from
different (and even more sophisticated) strategies, which should be investigated further in future
evaluations. Moreover, we fixed parameter k for Mpena1ty and Magjust to a single value. Other values
may lead to other insights, which we also may investigate in the future.

RQ-3: Effectiveness and Efficiency of Guipo

With this research question, we investigate whether Guipo can outperform the default settings of
KEY-2.7.0. In Figure 6.6, we compare the performance of Guipo by using a trial-and-error strategy
as baseline. Essentially, the trial-and-error is a combination of KEY’s own default configuration'”
and a randomized continuation mechanism. Initially, the trial-and-error strategy starts with the
default configuration. That is, if the very first verification attempt is successful, the result was pro-
duced using KeY’s default configuration. In case of failure, the trial-and-error strategy continues
with flipping a random configuration option to generate a new configuration from the configura-
tion space that is still close to the configuration before.

Configurations in Gurpo and the trial-and-error strategy are generated until either (1) a verifica-
tion task is verified successfully, (2) a timeout of five minutes was reached, or (3) a predefined num-
ber of verification attempts is exceeded (i.e., maximum number of tries). As concluded in RQ-1, we

10The user interface of KEY offers some configuration profiles to choose from. We refer to the default configuration as the
profile with name default, which is also the initial configuration when KEY is started the first time. It is important to
note that default configurations may vary between versions of KEY.
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Figure 6.6.: Performed verification attempts and accumulated effort for Guipo and a trial-and-error strategy
(adopted from Kniippel et al. [2021b]).

set v = 0.5 to weight verification effort and verifiability uniformly. Moreover, we apply Magjust as
continuation mechanism for Guipo, which we concluded in RQ-2 to produce sufficient results for
our experimental subjects. In case of failure, we increase 7y by 0.1, which increases the probability
of successful verification. This also means that Guipo tries a maximum number of six configura-
tions for any verification task. Consequently, to enable a fairer comparison, we limited the num-
ber of tried configurations for the trial-and-error strategy also to six.

Each point in Figure 6.6 represents one verification attempt. On the horizontal axis, we depict the
number of successful verification attempts for both strategies. On the vertical axis, we accumulate
the spent verification effort measured in execution time. Both graphs are shaped like step functions.
Vertically-arranged points in the step function indicate that the respective strategy was insufficient
to verify the particular verification task. Guipo successfully verified 63 verification tasks, whereas
the trial-and-error strategy verified only 61 verified tasks. Considering all 94 verification tasks,
Guipo spent approximately 26 minutes on average to try verifying all of them, whereas the trial-and-
error strategy spent approximately 40 minutes, which is an increase of 63% in verification effort.

Discussion. Based on our verification subjects, this experiment illustrates that Guipo can be
more effective for the deductive program verifier KEY-2.7.0 than our baseline trial-and-error strat-
egy (i-e., GUuiDo verifies an additional two tasks), while also being more efficient (i.e., GUIDO re-
duces verification effort by 35%). However, it also affirms that the default configuration is al-
ready very effective in verifying the majority of verification tasks automatically, which is visual-
ized by all single dots in Figure 6.6 that are not vertically arranged with other dots. An advantage
of Guipo is that costly configuration options that do not increase verifiability are oftentimes ig-
nored, whereas the trial-and-error strategy may pick such configuration options by chance. That
is, even if a verification task is not verifiable, Guipo tends to generate configurations that fail
faster compared to the trial-and-error strategy. This is particularly important, as failed verifica-
tion attempts oftentimes provide little insights on the reason, which could be non-conformance
of specification and implementation, but also due to insufficient parameterization. With Guipo,
the reason of insufficient configurations can be minimized.
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Figure 6.7.: Reduction in proofsize for 14 verification tasks when applying Guipo instead of the try-and-error
strategy. Percentage of saved proof steps is highlighted .

Additionally, the accumulated verification effort for Guipo also included solving the under-
lying optimization problem. Consequently, this experiment shows that for KeY’s configura-
tion space and the number of accepted hypotheses, the overhead of solving the linear opti-
mization problem is of little importance compared to the improvements in verification effort.
To answer RQ-3 with respect to our experimental subjects, Guipo outperforms both the de-
fault strategy and the random continuation.

RQ-4: Effectiveness and Efficiency of Guipo

With RQ-3, we evaluated how effective Guipo is in finding configurations with respect to time as
a measurement for the verification effort. With RQ-4, we compare to what extent Guipo is able
to reduce the size of a proof (i.e., the number of proof steps), which we use in this experiment as
the measurement for the verification effort. To this end, we apply Guipo on all 61 tasks of RQ-
3 that were verified by both Guipo and the trial-and-error strategy, and adjust weight v in fa-
vor of verification effort until a task is not verifiable anymore. In Figure 6.7, we illustrate our
results for all 61 verified tasks. Compared to the trial-and-error strategy, Guipo was able to re-
duce the size of 14 proofs, saving 13% to 59% proof steps (31% on average). For all other tasks,
both strategies found the same minimal proof.

Discussion. When proofs are used in proof-carrying code [Necula 1997], or proof replay [Beck-
ert et al. 2004; Hihnle et al. 2013] is applied frequently (as relevant for continuous integration), the
size of a proof’is an important metric. In this experiment, Guipo outperformed the trial-and-error
strategy by reducing 23% of generated proofs significantly (i.e., up to 59%) and not a single proof
was larger. This result showcases GUIDO’s ability to reduce verification effort in a different dimen-
sion (i.e., proof steps in contrast to execution time). To conclude for RQ-4, this experiment raises
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Figure 6.8.: Compared efficiency for Guipo and the default configuration of CPACHECKER-1.8 on seven
benchmarks.

our confidence that we are able to purposefully reduce the verification effort by incorporating do-
main knowledge in the process. However, as we are limited to our verification subjects, it is nec-
essary to evaluate GUIDO on more complex problems in the future.

RQ-5: Comparison with CPACHECKER

So far, we primarily focused on deductive verification within this line of research. However, we hy-
pothesized that GUiDO’s core concepts can probably be generalized to other types of formal verifica-
tion with configurable program verifiers, such as model checking. With this research question, we
aim at applying Guipo to the model checker CPACHECKER-1.8 to get a first imprecision on GUIDO’s
performance in a different application scenario. In Figure 6.8, we compare GuIpo to the default
configuration of CPACHECKER with respect to the verification eftfort. The effort is depicted on the
vertical axis and measured in seconds representing the total time spent by CPACHECKER analyzing
and solving the verification task. To mitigate computational bias, each box plot comprises a total of
100 runs. For this experiment, oy had not much of an influence, as (1) only two accepted hypotheses
focused on verifiability and (2) all seven benchmarks were verifiable with the vast majority of gen-
erated configurations. We therefore fixed y again to a value of 0.5 and did not apply any continua-
tion mechanism. As a result, Guipo reduced the verification effort for four of the seven programs
significantly: chunk1.1 (p-value < 2.2e-16), mergeSort. i (p-value = 4.403e-15), system-with-
recursion.i (p-value < 2.2e-16), and byte_add_1-2.1i (p-value = 7.367€e-15).
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Discussion. For RQ-5, this experiment raises our confidence that we are able to apply Guipo to
more than one domain of configurable formal verification tools. Although only four of the seven
evaluated verification tasks benefited significantly from applying Guipo, even better results are ex-
pected for a more sophisticated set of hypotheses and a larger dataset, as only 28 benchmark ver-
ification tasks were used to compute the cost model.

We only focused on performance, as the analyzed benchmarks were all simple enough to be veri-
fied with either the default configuration or the configuration generated by Guipo. However, time
is a crucial aspect of model checking, which often suffers from the state space explosion prob-
lem (see Section 2.1.2). We therefore expect that many unsuccessful verification attempts of more
complex benchmarks in the context of model checking stem from timeouts or other limited re-
sources. With Guipo, configurations that minimize verification effort can be identified, which
will likely increase effectiveness as well. Moreover, GUIiDo is agnostic to the concrete measure-
ment used for verification effort. In the context of model checking, memory consumption is an-
other interesting performance metric to optimize.

6.6.3. Threats to Validity

Results of our evaluation are confronted with several threats to validity that we discuss in the follow-
ing.

Internal Validity. In our evaluation, we used a fixed timeout of 5 minutes for Gurpo to find a suit-
able configuration. The verification time needed depends on many factors, such as computing
power and parallel processes. Thus, verifying the same verification task may sometimes fail due to
the timeout. We mitigated this problem by reducing the number of parallel processes to a mini-
mum and performed the experiments 20 times to omit outliers. For RQ-4, we considered the proof
steps of'a proof as a metric for the effort instead of the verification time. Proof steps may only be
considered for verification systems build on proof systems and not a useful metric for every end-
user. However, for KEY in particular, the number of proofs steps is a typical metric for the verifi-
cation effort in the literature [Kniippel et al. 2018c; Bubel et al. 2014; Beckert et al. 2004]. For other
verification systems, we abstract from a concrete measurement in our formalization.

Our implementation of Guipo and our evaluation scripts may have bugs. We performed tests
and extensive code reviews to rule out any serious bug. Moreover, we manually and repeatedly
validated samples of the computed scores and resulting configurations to assure that the imple-
mentation complies to our theoretical framework.

For KeY, we fixed a total number of 15 configuration options, which may diminish the in-
fluence they may have on verifiability and verification effort. However, a certain degree of do-
main knowledge is required by end-users to successfully employ a verification system in the
first place (e.g., selecting options that influence what is verified). To address this threat, we (1)
only fixed options for which a different setting would not be reasonable for Java program ver-
ification, as KEY can also be used as a first-order theorem prover, and (2) fixed configuration
options that are part of the default configuration.

To sample our configuration space, we applied t-wise sampling using the ICPL algorithm
proposed by Johansen et al. [2012]. Although there exist other sampling strategies that could
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have been applied, we applied ICPL, as it is one of the most evaluated algorithms in the litera-
ture [Varshosaz et al. 2018].

Our designed try-and-error strategy used as a baseline in RQ-2 and RQ-3 simply applies KEY’s
default configuration and — in case of failure — continues with a random configuration picked from
the configuration space. It can thus be argued that the comparison with Guipo is not fair, as the
random selection process does not establish a list of ranked configurations. However, to the best
of our knowledge, there does not exist any state-of-the-art approach that can be used as a baseline.
Hence, our initial goal for this new line of research was to demonstrate that Guipo performs better
than the both easiest strategies, namely (1) applying the default configuration and (2) randomly
choosing configurations. We explicitly do not rule out that there might emerge more sophisticated
approaches in the future, which can be used for comparison.

External Validity. The selection of the verification subjects may affect the external validity, as they
may not be representative for all tasks. Therefore, we analyzed a total of 94 verification tasks for KeY,
which is more than the vast majority of related work on deductive verification considers due to the
specification effort. We additionally mitigated this threat by using well-known projects from the lit-
erature that represent a wide variety of typical programming constructs and can mostly be verified
automatically, which was a necessity for our evaluation. We also increased the confidence in our ex-
ternal validity by performing a ten-fold cross validation to alleviate any introduced computation bias
and received surprisingly similar results. Our experiments showed that only 84 benchmark verifi-
cation tasks were sufficient for improving the effectiveness of the configuration search significantly.

Moreover, we focused our evaluation mainly on KeY and deductive verification. Other systems or
verification disciplines may behave differently. We chose KxY, as (1) it is the system and context we
have most experience with, which simplified the task of formulating good hypotheses, and (2) it is
a state-of-the-art program verifier with a large and active community, which may benefit from our
insights. We additionally concentrated on verification effort represented by the proofs size, which is
best demonstrated on deductive verification systems with adequate proof management (i.e., such as
KEY). Furthermore, this is — to the best of our knowledge — the first work that proposes an approach
to systematically automate the configuration process in the context of deductive verification. To
show application to other contexts, we applied Guipo on the model checker CPACHECKER.

6.7. Related Work

In the following, we discuss related work close to the topic of this chapter, namely parameter tuning
in general, configuration sampling, and configurable verification systems.

Performance Prediction and Parameter Tuning

Guipo reimagines the challenge of automatic configuration for software systems in the context
of formal verification. At the same time, general performance prediction of configurable software
is a highly researched area [Siegmund et al. 2015]. Siegmund et al. [2012] introduced SPLCoN-
QUEROR, a state-of-the-art framework using regression-based machine learning to predict the per-
formance of various configurations. In particular, SPLCONQUEROR is used beyond software product
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lines by a many researchers to get insights on the influence of non-functional properties in con-
figurable software [Grebhahn et al. 2014; Guo et al. 2013; Kienzle et al. 2016; Olaechea et al. 2012).
Other frameworks for performance prediction include CART/DECART [Guo et al. 2018], Fouri-
ERLEARNING [Y. Zhang et al. 2015, and DEEPPERF [Ha et al. 2019]. Although our approach comes
with the cost of manually formulating explicit domain knowledge, the aforementioned general-
purpose prediction frameworks fall short in at least three categories. First, as they learn knowl-
edge about the influence of parameters on their own, they presumably need more data than Guipo.
Second, they give no insights on why a particular configuration option is more relevant, as typi-
cal for fully-automated machine learning algorithms. in contrast, Guipo allows to test the plau-
sibility of the user-defined domain knowledge with statistical hypothesis testing. Finally, if verifi-
cation fails, there is no continuation mechanism applied.

Another widely researched area is optimizing the selection of parameters of configurable soft-
ware. Several statistical models [Yigitbasi et al. 2013; Zheng et al. 2007; Nair et al. 2018] and search-
based optimization strategies [Henard et al. 2015, Wu et al. 2015] have been considered for the
parameter tuning of configurable software. Moreover, optimization algorithms (e.g., Bayesian
optimization [Jamshidi et al. 2016], hill climbing [Xi et al. 2004], or multi-objective optimiza-
tion [Filieri et al. 2015)) to find optimal configurations using only a small number of samples have
been studied. Although Guipo yields already promising results, we acknowledge that a combi-
nation with other statistical models may lead to even better performance in the configuration
search and should be investigated in future work.

Configuration Sampling

To sample the configuration space, we applied three-wise sampling using ICPL. A better sample
could reduce effort in the offline phase, if the sample is smaller. A more representative sample could
more precisely identify the relevant hypotheses improving results of the online phase. There exist
other sampling strategies that can be applied, such as INCLING [Al-Hajjaji et al. 2016], CHVATAL [Jo-
hansen et al. 2011], or CASA [Garvin et al. 2011]. Kaltenecker et al. [2019] proposed distance-based
sampling as a useful sampling strategy with lower error rates for large sample sizes. Most of these
sampling techniques use only the model of the configuration space as input [Varshosaz et al. 2018].
However, our empirical evidence suggests that a three-wise sampling using ICPL already yields a
representative subset of configurations for the hypothesis testing. Moreover, the majority of re-
lated work only applies pair-wise sampling, which is oftentimes considered to be sufficient for
the respective technique [Varshosaz et al. 2018].

Configurable Verification Systems

Today, a plethora of configurable verification systems exists. For deductive verification, KEY is a
program verifier for JAvA programs and was applied successfully to reveal serious defects in de-
ployed code [De Gouw et al. 2015, Mostowski 2005, Mostowski 2007; Ahrendt et al. 2012]. For in-
stance, De Gouw et al. [2015] investigated the correctness of OpenJDK’s TimSort with KeY and dis-
covered an exploitable bug in its implementation. Noteworthy, they had to manually change con-
figurations even during the search for proofs, which is difficult as it requires to find meaningful
interruption points in a proof'search. This is an indicator that complex algorithms require experts
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(up-to now). However, the majority of verification tasks can be automated with Guipo. There exist
other configurable deductive program verifiers, such as FRAMA-C [Cuoq et al. 2012] and SpEci [Bar-
nett et al. 2011]. In the future, we aim at combining these program verifiers with Guipo as well. In
a previous study [Kniippel et al. 2018¢c], we even suspected that there is a trade-off between verifia-
bility and verification effort for KeY, which we affirmed in RQ-1. The long-term goal of these tools
aligns with Guipo, which is to decrease interaction and increase automation in verification.

Another formal verification discipline that deals with huge configuration spaces is model check-
ing. For instance, prominent and configurable model checkers include SPIN [Holzmann 1997]
and Java Pathfinder [Havelund et al. 2000]. Moreover, we evaluated CPACHECKER [Beyer et al.
2011] in our final experiments. Our typical experience with model checkers is that most of
the time experts are consulted to optimally configure them, whereas our goal with Guipo
is to make verification tools more applicable to practitioners by shipping them with a for-
malized version of such expert knowledge.

6.8. Chapter Summary

In line with the previous chapter, our on-going vision is to mainstream deductive verification by sup-
porting developers with adoption in their software engineering practices. To increase automation,
we focused on configurable program verifiers and discussed how domain knowledge can improve
the underlying proof'search. As solution, we presented GuIDO, a tool-agnostic framework that sys-
tematically derives adequate configurations based on statistical hypothesis testing.

We implemented GuIDpo as a stand-alone open-source tool that can be combined with config-
urable verification tools targeting imperative programs. Experts need to formalize hypotheses us-
ing Guipo’s domain-specific language once. End-users can then apply Guipo fully automatically.

Our evaluation on KeY-2.7.0 and a suite of 94 verification tasks demonstrated that incorporating
domain knowledge leads to better results than KeY’s default behavior. Even on a small number of’
training attempts, Guipo was able to outperform the default configuration with a random contin-
uation as baseline with respect to verifiability and verification effort.

We believe that our work in this chapter and Guipo in particular can support three perspec-
tives in the context of formal verification. Practitioners are interested in automation and perfor-
mance, which is the primary goal of GuIpo. Researchers are also interested in automation and per-
formance, but additionally focus on data collection, measurements in general, and comparisons
against established benchmarks. For instance, many evaluations reporting on improved perfor-
mances in deductive verification do not report on the applied parameter settings, which impedes
reproducibility. Finally, tool builders are confronted with numerous questions to improve their tools,
such as: do specific configuration options work as intended? What is the best default configuration? Are
there unknown interactions between configuration options or are there unexplainable performance issues? All
these questions are at the focal point of Guipo.

Based on this chapter, we gained three additional insights. First, understanding the influence
of specific parameters is challenging for non-expert users, which we conclude from the fact that
many hypotheses we defined could not be accepted. Second, the one-time-effort of formulating
the domain knowledge and establishing the benchmark dataset is justified by a significant im-
provement in effectiveness and performance during the verification process. In particular, recur-
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rent re-verification, as performed in the context of continuous integration, will benefit signifi-
cantly over time. Third, at least for KeY, we identified a trade-off between verifiability and veri-
fication effort, which means that specific parameters will either increase success rate or decrease
effort, but not both simultaneously. As the field of parameter tweaking in the context of formal
verification is currently not well understood, our hope is that Guipo allows researchers and tool
builders to improve this line of research further.



7. Conclusion

The importance of cyber-physical systems has significantly increased over the last decades with
numerous examples in automotive, robotics, aircraft, or medical applications. High demands on
safety requires thorough development processes that ensure functional correctness of such sys-
tems to prevent malfunctioning. However, state-of-the-art languages and tools are highly hetero-
geneous, which complicates system design and quality assurance of new emergent behaviors for
developers. Moreover, if formal verification is applied in the process, model checking is still pre-
ferred due to automation and the generation of counter examples. In contrast, deductive meth-
ods are often regarded as too costly and require more human effort. Still, we argue that certifying
the absence of serious defects with formal proofs in the context of cyber-physical systems is in-
dispensable in the near future. In this thesis, we addressed both concerns and presented our vi-
sion of a maneuver-centric development process. Our goal was to combine model-based design
with deductive verification to (1) derive functional and safe virtual prototypes, (2) maximize reuse of
model artifacts and verification results on all levels, and (3) improve applicability of deductive ver-
ification, even for non-expert users. We summarize our contributions and conclude this thesis in
Section 7.1. In Section 7.2, we discuss potential future work.

7.1. Contribution

In the following, we summarize our contributions and aim at answering the three research ques-
tions raised in Chapter 1.

Research Question RQ1 — Modeling and Verifying Maneuvers. To model and verify the behavior of
maneuvers of cyber-physical systems with high abstraction, we presented our modeling approach
and tool support SKEDITOR. SKEDITOR successfully combines skill-graph modeling with hybrid
programs to specify, model, and verify all parts of a maneuver at design time. The combination
and our theoretical considerations turned out to be fruitful, as both concepts prioritize composi-
tionality in their own way. Skill graphs abstract component-based architectures and allow to be de-
veloped in isolation. Similarly, hybrid programs allow do describe and verify the controller logic
based on the compositional deductive calculus dL. Composition and Decomposition are therefore the
primary established properties of our approach. Our evaluation illustrated that reusing already
developed parts of a maneuver can therefore decrease verification effort significantly and support
practitioners in their development of new maneuvers.

Research Question RQ2 — Architectural Refinement and Simulation. The second question focused on
deriving a functional and virtual prototype by refining skill graphs to software components, which
can eventually be simulated within a computer. Due to our highly abstract modeling approach,
it is necessary to complete parts of the implementation manually. We introduced ArRcHICORC,
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which lifts the correctness-by-construction paradigm to component-based architectures and pro-
vides means for automatic code generation. Our derived guidelines show that — in principle —
correctness-by-construction can be used to complete all remaining parts without introducing new
defects to the implementation. Except for the fact that we have not formally verified correctness
of our code generation process, using correctness-by-construction this way allows us to conclude
that the implementation’s behavior is a valid refinement of the modeled behavior. This means that
violations during simulation are almost certainly due to incomplete requirements and not caused
by defective modeling or faulty implementations. Indeed, in our evaluation, all safety properties
verified at design time also hold during simulation.

Research Question RQ3 — Mainstreaming Deductive Verification. Although broadly stated, the third
question specifically addresses improvements in the context of deductive verification and verifica-
tion tools at implementation level. The two challenges we focused on were (1) assessing complete-
ness of software contracts and (2) studying the parameter space of configurable program verifiers.
For the first challenge, we studied to what extent a mutation analysis can provide insights on in-
complete contracts. Despite the simplicity of this approach, an interesting insight is that manual
inspection of many alive mutants quickly led to the cause of incompleteness. Whereas the muta-
tion score can sometimes be misleading with respect to relative incompleteness, each alive mutant
constitutes a counter argument to a contract’s completeness and can further be analyzed.

For the second challenge, we introduced Guipo and studied the parameter space of KEY 2.7.0
and CPACHECKER 1.8. We propose to combine explicit domain knowledge in the form of statistical
hypotheses to (1) invalidate false assumptions about specific parameters and (2) overcome the lim-
itations of general-purpose prediction tools in the context of deductive verification (e.g., number
of measurements needed). We believe that new emerging program verifiers will still base their al-
gorithms on numerous control parameters, either implicitly and hidden from end-user, or explic-
itly through the user interface. We are confident that Guipo can serve as a benchmark tool for tool
builders, but also support non-expert users in configuring their verification tool of choice.

7.2. Future Work

The presented development process for maneuver-based cyber-physical systems and the integration
of deductive verification as presented in this thesis offers many prospects for future work. We
present some of the most interesting directions in the following.

Modeling and Verifying Non-Functional Properties. Although important properties in the context
of cyber-physical systems, we did not consider non-functional requirements and uncertainty. In
this direction, enabling redundant modeling of functionality and sensors based on uncertainty mea-
surements would increase robustness of real-world application of skill graphs. For instance, we as-
sumed ideal values from our sensors in our verification process, whereas sensor quality depends on
numerous factors, such as employed hardware and weather conditions. Adding means for specify-
ing such assumptions allows developers to add redundant sensors and perception units in case of’
degraded functionality. Consequently, different skill graphs can be applied in different scenarios to
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optimize resource consumption based on external conditions. Another important non-functional
property for optimizing resource consumption is (worst-case) execution time. Adding timing in-
formation to both skills in SKEDITOR and components in ARCHICORC enables assume-guarantee
reasoning for the timing viewpoint. This prevents the development of completely unoptimized vir-
tual prototypes and increases the chances of using such prototypes in real-world operation as-is.

Augmentation of Skill Graphs for more Analyses. The presented skill-graph models can be aug-
mented with additional information to widen the scope of applicable analyses. Whereas our focal
point lied on formal verification only, other static analyses can improve the general development
process for practitioners. For instance, applicability of skill graphs for virtual prototypes depends
on the used simulation models, which we knew conformed to each other in our evaluations. For
instance, our presented skill graphs for the robotic domain are not applicable in the automotive
domain. With enough information, identifying conformance of skill graphs and simulation model
can be automated. Other examples for static analyses include decomposability though slicing (can I
split a skill graph into smaller skill graphs?), embedding (is one skill graph embedded in another skill graph?),

and complexity measurements (is the skill graph minimal or can it be reduced further?).

Synthesis of Skill Graphs. Developing complex skill graphs from scratch can require high human
effort and may need a lot of expertise. The structure of skill graphs, however, may allow to syn-
thesize more complex skill graphs from simpler ones. That is, skills and (partial) skill graphs can
be viewed in isolation and are largely described by their specification. A future goal is to establish
a repository of skills and skill graphs that can be reused and also used as input for synthesis algo-
rithms. Starting with a set of requirements provided by the modeler, missing parts of a skill graph
can then be completed automatically by considering their specification. In case of ambiguity, a
semi-automatic approach may suggest a number of alternatives and guide modelers through the
completion process. Part of this future work is also to identify how a query language for modelers
may look like to derive a skill graph representing the maneuver they have in mind.

Language and Tool Adoption. Integration of additional specification languages, programming lan-
guages, and employed verification tools can be improved. Whereas there exist little competition to
hybrid programs in the area of deductive verification for cyber-physical systems, there exist numer-
ous alternatives for deductive program verifiers on source-code level, such as FRaAMA-C [Cuoq et al.
2012] and SPEC# [Barnett et al. 2011]. It is particularly important to reproduce the empirical evalua-
tions of this thesis on other languages to examine generalization of our gained insights.

Intersection of Software Engineering and Formal Methods. Besides specification completeness and
parameter configuration of formal verifiers, there exist other interesting challenges to address that
will increase the adoption of deductive verification in software engineering processes. For instance,
specified methods of object-oriented programs that are called by another method can be either in-
lined or abstracted with their respective contract during verification. Although contract abstrac-
tion is sometimes unavoidable (e.g, in case of missing implementation), there exist reasons to be-
lieve that inlining can be more cost-effective in specific instances [Kniippel et al. 2018b]. It is there-
fore reasonable to study prediction models for deciding automatically when to inline an imple-
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mentation or when to use its contract. Another important problem in continuous integration is
the evolution of software and the corresponding invalidation of proofs. For a successful adoption
of deductive verification, proofs should not be discarded, but rather be patched in accordance to the
evolved software. This requires sophisticated research on proof reuse, proof repair, and potentially af-
fects even the underlying language of the proof format.

Employing Model Checking and Theorem Proving in Concert. Our primary focus was on theorem
proving and deductive verification to generate proofs that certify the correctness of the intended
behavior. However, theorem proving works best if specification and behavior indeed conform. If
they diverge, practitioners of all levels of expertise can easily become confused with the results
so far. We acknowledge that integrating model checking early on in the process to identify de-
fects in model and implementation enhances the debugging process significantly. For instance,
it is imaginable to employ theorem proving for certification only after no more counterexamples
are producible by an employed model checker.
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A. Results of the Mutation

Analysis

In our evaluation in Section 5.4, we only showed the averaged mutation scores per project. In the
following, we present the obtained results per analyzed method. Equivalent mutants are excluded.
Therefore, valid mutants as considered in the following tables are non-equivalent to the source im-
plementation. Moreover, no mutants are generated for methods that cannot be parsed or otherwise
raise an exception. In these cases, we rate the respective method with a mutation score of 0.00. The
studies and the prototypical tool support are available in our online repository.!

Statistics on Source-Code Mutation

The results of our empirical evaluation of source-code mutation for contract-based software are
shown in Table A1. We illustrate (1) the number of total mutants, and (2) the number of valid

mutants, and (3) the resulting mutation score.

Project Class Method #Mutants #Verified #Score
Dnvira Account int_getBalance() 5 o 1.00
Account void_depositAmount(int) 10 o 1.00
Account void_withdrawAmount(int) 10 o 1.00
SchorrWaiteAlgorithm HeapODbject boolean_hasNext() 25 o 1.00
HeapObject boolean_isMarked() 3 o 1.00
HeapObject HeapObject_getChild(int) 2 o 1.00
HeapObject int_getChildCount() 5 o 1.00
HeapObject int_getIndex() 5 o 1.00
HeapObject void_incIndex() 5 ) 1.00
HeapObject void_setMark(boolean) 3 o 1.00
PayCard LogRecord int_getTransactionID() o o 1.00
LogRecord int_getBalance() 5 o 1.00
LogRecord void_setRecord(int) 31 5 0.83
PayCard PayCard_createJuniorCard) o o 1.00
PayCard boolean_isValid() 20 o 1.00
PayCard boolean_charge(int) 76 o 1.00
BankAccount Account int_checkAndWithdraw(int) o o 0.00
Account int_getAccountNumber() o o 1.00
Account void_addTransaction(Transaction) o o 0.00
ATM boolean_proxyExists(int) 10 o 1.00
ATM OfflineAccountProxy_getProxy(int) 2 o 1.00
ATM void_insertCard(BankCard) o o 0.00
BankCard boolean_cardIsInvalid() 3 o 1.00
BankCard boolean_pinIsCorrect() 27 o 1.00
BankCard int_getAccountNumber() 5 o 1.00
BankCard void_makeCardInvalid() 2 o 1.00
CentralHost BankCard_issueCard(int,int) 4 o 1.0
CentralHost boolean_accountExists(int) 13 1 0.92
CentralHost PermanentAccount_getAccount(int) [ o o
CentralHost void_createAccount(int) 8 8 0.00
Clock clock_getInstance() o o 1.00
OfflineAccountProxy  boolean_newWithdrawalIsPossible(int) 26 18 030

1Available at https://github.com/TUBS—-ISF/MutationAnalysisForDBC-FormaliSE21.
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OfflineAccountProxy  int_accountBalance() 1 1 0.00
PermanentAccount boolean_dailyLimitIsImportant(int) 31 31 0.00
PermanentAccount int_accountBalance() 5 3 0.40
BankAccountV2 Account boolean_undoUpdate(int) 73 1 0.98
Account boolean_update(int) 73 1 0.98
Account int_estimatedInterest(int) 26 3 0.88
Account int_calculateInterest() 27 13 0.51
Transaction boolean_lock(Account,Account) 9 5 0.44
Transaction boolean_transfer(Account,Account,int) 53 1 0.98
PayCardSPL LogRecord int_getBalance() 5 o 1.00
LogRecord int_getTransactionID() 5 o 1.00
LogRecord void_setRecord(int) 32 6 0.81
PayCard PayCard_createJuniorCard() o o 1.0
PayCard boolean_charge__wrappee__Paycard(int) 71 o 1.00
ExamplesFromChapter; ~ ArraySearchWhile boolean_search(int,int) 56 o 1.00
ArraySumForEach int_sum(int) 15 o 1.00
StudentA String_getName() o o 1.00
StudentA void_addCredits(int) 22 6 0.72
StudentA void_changeToMaster() 2 o 1.00
StudentA void_setName(String) o o 1.00
StudentA void_updateCredits(int) 10 ) 1.00
ExamplesFromChapter16 ~ PostInc void_postinc() 7 o 1.00
Sort int_max(int) 8o o 1.00
Sort void_sort() 65 1 0.98
OpenJML Bag void_add(int) 66 35 0.46
BeanCan boolean_pick_random() o o 1.00
BeanCan void_remove(boolean) 8 0 1.00
BeanCan boolean_play_game() 6 o 1.00
CashAmount int_cents() 5 o 1.00
CashAmount int_dollars() 5 o 1.00
CashAmount CashAmount_negate() 8 o 1.00
Customer void_enter() 1 o 1.00
Customer void_leave() 2 o 1.00
Customer void_request() 9 o 1.00
LoopExamples void_setA(int) 1 1 0.00
MaxByElimination int_max(int) 74 o 1.00
TickTockClock int_getHour() 5 1 0.80
TickTockClock int_getMinutes() 5 1 0.80
TickTockClock int_getSeconds() 5 1 0.80
TickTockClock void_tick() 72 4 0.94
Time byte_getHour() 4 o 1.00
Time byte_getMinute() 4 o 1.00
Time short_getTime(byte,short) 37 16 0.56
Time void_setTime(byte,byte) 10 o 1.00
DutchFlagAlgorithm Debug> int_DutchFlag(int) 181 2 0.99

Table A.1.: Mutation scores per method and project for source-code mutation.

Statistics on Contract-Level Mutation

The results of our empirical evaluation of contract-level mutation (i.e., operators PW and PS) for
contract-based software are shown in Table A.2. We illustrate (1) the number of total mutants, and
(2) the number of valid mutants produced by either operator PW or operator PS.

Project Class Method #Mutants #PW  #PS
Dnvira Account int_getBalance() o o o
Account void_depositAmount(int) 2 1 o
Account void_withdrawAmount(int) 4 2 o
SchorrWaiteAlgorithm HeapObject boolean_hasNext() 1 o o
HeapObject boolean_isMarked() o o o
HeapObject HeapObject_getChild(int) 7 o o
o o )

HeapObject int_getChildCount()



HeapObject int_getIndex() o o o
HeapObject void_incIndex() o o o
HeapObject void_setMark(boolean) o o o
PayCard LogRecord int_getTransactionID() o o o
LogRecord int_getBalance() o o o
LogRecord void_setRecord(int) 5 o 1
PayCard PayCard_createJuniorCard() o o o
PayCard boolean_isValid() 2 o o
PayCard boolean_charge(int) 5 o o
BankAccount Account int_checkAndWithdraw(int) 3 o o
Account int_getAccountNumber() o o o
Account void_addTransaction(Transaction) o o o
ATM boolean_proxyExists(int) 3 1 o
ATM OfflineAccountProxy_getProxy(int) 3 o o
ATM void_insertCard(BankCard) 3 3 o
BankCard boolean_cardIsInvalid() o o o
BankCard boolean_pinIsCorrect() o o o
BankCard int_getAccountNumber() o o o
BankCard void_makeCardInvalid() o o o
CentralHost BankCard_issueCard(int,int) o o o
CentralHost boolean_accountExists(int) 3 o 0
CentralHost PermanentAccount_getAccount(int) o o o
CentralHost void_createAccount(int) 3 o o
Clock clock_getInstance() o o o
OfflineAccountProxy  boolean_newWithdrawalIsPossible(int) 2 2 o
OfflineAccountProxy  int_accountBalance() o o o
PermanentAccount boolean_dailyLimitIsImportant(int) o o o
PermanentAccount int_accountBalance() o o [¢]
BankAccountV2 Account boolean_undoUpdate(int) o o o
Account boolean_update(int) o o o
Account int_estimatedInterest(int) 4 1 o
Account int_calculateInterest() 2 o )
Transaction boolean_lock(Account,Account) 1 1 o
Transaction boolean_transfer(Account,Account,int) 1 o o
PayCardSPL LogRecord int_getBalance() o o o
LogRecord int_getTransactionID() o o o
LogRecord void_setRecord(int) 1 o o
PayCard PayCard_createJuniorCard() o o o
PayCard boolean_charge__wrappee__Paycard(int) 9 o o
ExamplesFromChaptery ArraySearchWhile boolean_search(int,int) 3 o o
ArraySumForEach int_sum(int) o o o
StudentA String_getName() o o o
StudentA void_addCredits(int) 1 o o
StudentA void_changeToMaster() 1 1 o
StudentA void_setName(String) o o o
StudentA void_updateCredits(int) 1 o o
ExamplesFromChapteri6  PostInc void_postinc() o o o
Sort int_max(int) 10 1 o
Sort void_sort() 2 o o
OpenJML Bag void_add(int) o o o
BeanCan boolean_pick_random() o o o
BeanCan void_remove(boolean) o o o
BeanCan boolean_play_game() o o o
CashAmount int_cents() o o o
CashAmount int_dollars() o o o
CashAmount CashAmount_negate() o o o
Customer void_enter() 3 1 o
Customer void_leave() 2 2 o
Customer void_request() 2 2 o
LoopExamples void_setA(int) o o o
MaxByElimination int_max(int) 4 o o
TickTockClock int_getHour() 4 o o
TickTockClock int_getMinutes() 4 o o
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TickTockClock int_getSeconds() 4 o o
TickTockClock void_tick() 4 o )
Time byte_getHour() o o o
Time byte_getMinute() o o o
Time short_getTime(byte,short) 8 8 o
Time void_setTime(byte byte) 10 4 o
DutchFlagAlgorithm Debug2 int_DutchFlag(int) 12 2 o

Table A.2.: Mutation scores per method and project for contract-level mutation.



B. Supplemental Material for
Guipo

In Chapter 6, we explained how Guipo incorporates explicit domain knowledge in the form of
statistical hypotheses. In the following, we illustrate the considered parameter space, the hypothe-
ses we formulated, and which hypotheses could be accepted for KEY-2.7.0 and CPACHECKER-1.8.
The formulated domain knowledge and additional data (e.g., benchmark dataset for both KeY and
CPACHECKER, and R-scripts) are available in our online repository.!

B.1. Hypotheses for KeY-2.7.0

In total, we formulated 47 assumptions about verifiability and verification effort. Each assump-
tion targets one parameter of KEY. As parameters of KEY may comprise more than two options,
an assumption is potentially split into more than one hypothesis. The translation of the 47 as-
sumptions therefore results in 72 statistical and testable hypotheses. Each statistical hypothesis
is investigated as one independent experiment.

The hypotheses and resulting experiments are shown in Table B.1. The first column assigns a
unique number to each assumption. The third column defines the statistical hypothesis number
(ie., the experiment). Numbers are assigned in chronological order. The parameter is shown in
the second column and the compared configuration options are shown in the fourth and fifth col-
umn. As we formulated hypotheses about verifiability (P) and verification effort (VE), the regarding
requirement of a hypothesis is shown in column six. The direction of improvement is encoded in
column seven. The dependency <> states that there is no difference between the first second op-
tion, the dependency > states that the first option is likely to either improve verifiability or im-
pair verification effort compared to the second option. The dependency < is used for the oppo-
site. For example, Hypothesis 57 states that option Stop At::Default impairs the verification effort
compared to option Stop At:Unclosable. Finally, the p-value is shown in bold when the hypothe-
sis was accepted with respect to the benchmark dataset in use.

TAvailable at https://github.com/AlexanderKnueppel /Guido.
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& & . . . E | 8|2
g | Parameter 2 First Option Second Option A g K
2 & Bl & A&
2 = g | a
1 Stop At 1 Default Unclosable P < | 0.95
2 Stop At 2 Default Unclosable VE | <> | 049
41 | Stop At 57 Default Unclosable VE | > | os54
3 One Step Simplification 3 Enabled Disabled P <> | 4.0e-3
4 One Step Simplification 4 Enabled Disabled VE | < | <2.2e16
5 Proof Splitting 5 Delayed Free P < | NA
6 Proof Splitting 6 Delayed Free VE | < | 5.0e4
- Off Free P < | <2.2e-16
7 Proof Splitting ; Off Delayed P < | <2.2e-16
- Off Free VE | < | 061
8 Proof Splitting ?o off Delayed VE | < 0.88
9 Loop Treatment 11 Invariant Loop Scope Invariant | P < | N/A
10 | Loop Treatment 12 Invariant Loop Scope Invariant | VE | > | 1
11 | Dependency Contracts without | 13 On off P <> | 0.5
accessible-Clauses
12 | Dependency Contracts without | 14 On Ooff VE | <> | o054
accessible-Clauses
3 Query  Treatment  without | 15 On Restricted P < | N/A
Queries 16 On Off P < | N/A
14 Query  Treatment  without | 17 On Restricted VE | < | NA
Queries 18 On Off VE | < | N/A
1 Off Restricted P < | N/A
15 | Query Treatment 22 Restricted On P | < NfA
16 | Query Treatment 21 Restricted On VE | < | 1
17 | Expand Local Queries 22 On Off VE | > | 2.6e-06
18 | Expand Local Queries 23 On Off P > | N/A
19 | Arithmetic Treatment 24 Basic DefOps P < | <2.2e-16
20 | Arithmetic Treatment 25 DefOps ModelSearch P <> | 0.24
39 | Arithmetic Treatment 54 Basic ModelSearch P < | <2.2e16
. . 8 DefOps ModelSearch VE | > | 6.6e-
42 | Arithmetic Treatment 29 Basilc) ModelSearch VE S 1 4
Arithmetic ~ Treatment with | 71 ModelSearch Basic P < | N/A
K i\detﬁlod Calls without own con- 72 ModelSearch DefOps P < | N/A
Tac
. . 26 None No Splits P < .7€e-
21 Quant?ﬁer Treatment - without 27 None No Splits \Xl;ith Progs | P <> 2.34 !
Quantifiers 28 None Free P < | 8.7e-4
. . 2 None No Splits VE | <> | 8.7e-
22 Quant?ﬁer Treatment  without 32 None No Splits \Xr;ith Progs | VE | < N/7A :
Quantifiers 31 None Free VE | <> | o015
32 None No Splits P < | s.7e-4
23 | Quantifier Treatment 33 No Splits No Splits With Progs | P < | o1y
34 | No Splits With Progs Free P < | o022
35 Free No Splits With Progs | VE | > | 6.4e-08
24 | Quantifier Treatment 36 | No Splits With Progs No Splits VE | > |1
37 No Splits None VE | > | 0.92
25 Class Axiom Rule without Ax- | 38 Free Delayed P < | N/A
ioms 39 Free Ooff P < | N/A
26 Class Axiom Rule without Ax- | 40 Free Delayed VE | < | N/A
ioms 41 Free Ooff VE | < | N/A
27 | Class Axiom Rule 52 | Considered separately
28 | Class Axiom Rule 53 Off Delayed P < | N/A
. 55 Ooff Delayed P < | <2.2e-16
40 | Class Axiom Rule 56 off Free P < < 2.2e-16
83 Class Axiom Rule gf ggzig Fcr;fe XE i 1
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) ) ) 62 off Free P < | N/A
4 C}ass Axiom Rule with Implica- 3 Delayed Free P = | NA
tions 64 Off Delayed P < | N/A
) . . 65 Delayed Free P <> | N/A
45 Clalss Axiom Rule without Impli- [—¢¢ off Delayed P < [ <2.2e16
cations 67 Ooff Free P < | N/A
. . . 68 Delayed Free P <> | N/A
46 (?lass Axiom Rule with Condi- 69 off Delayed P < | <z.2e16
tional Statements 70 of Free P 2 N/A
29 | Strings 42 On Ooff P > | N/A
30 | Strings 43 On off VE | < | N/A
31 | BigInt 44 On Off P > | 089
32 | BigInt 45 On Ooff VE | < | o051
33 | IntegerSimplificationRules 46 Full Minimal P > | g4.2e-8
34 | IntegerSimplificationRules 47 Full Minimal VE | <> | 0.668
35 Sequences 48 On off P > | 3.6e3
36 | Sequences 49 On off VE | <> | o5
37 | MoreSeqRules 50 On Off P > | N/A
38 = MoreSeqRules 51 On off VE < N/A

Table B.1.: Formulated Hypotheses and Experiments

B.2. Hypotheses for CPACHECKER-4.9.0

For CPACHECKER, we formulated a total of ten assumptions, resulting in 14 independent experi-

ences. Table B.2 shows the results (cf. autorefappendix:guido:key for a description of the table’s

columns). Based on our benchmark dataset, we could except eleven hypotheses.

] B
£ 59
& £ , : U B -
g | Parameter B First Option Second Option | & g2
=] o = o 1
2 > o 8—4 o
< T g | A
1 analysis.summaryEdges H true false P > | <2.2e-16
2 analysis.traversal.order H2 dfs bfs VE | < | 005
¥S1S- ’ H3 dfs random_path VE | < | 0.06
3 analysis.useParallelAnalyses Hy true false P < | 3.2e11
4 analysis.useParalle]lAnalyses Hs false true VE | > | <2.2e-16
5 analysis.useParallelAnalyses H6 false true VE | > | o.01
6 cpa.invariants.abstractionState- Hy entering_edges always VE | < | o.02
Factory HS8 always never VE | < | o.02
Hog interesting every VE | < | o.01
. cpa.smg.exportSMGWhen o Sever every VE [ > | oot
Hu never leave VE | > | o.02
8 cpa.smg.memoryErrors Hi2 true false P < | 0.06
cpa.smgunknownOnUndefined | Hi3 false true P < | 0.03
10 | cpa.predicate.handleString- Lit- | Hig true false P < | o.02
eralInitializers

Table B.2.: Formulated Hypotheses and Experiments






Bibliography

Abbasi, R, J. Schiffl, E. Darulova, M. Ulbrich, and W. Ahrendt (2021). “Deductive Verification of
Floating-Point Java Programs in KeY.” In: Proc. of the Intl. Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), pp. 242—2061.

Abrial, J.-R. (2010). Modeling in Event-B: System and Software Engineering. Cambridge University Press.

Abrial, J.-R., M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and L. Voisin (2010). “Rodin: an open
toolset for modelling and reasoning in Event-B”. International Journal on Software Tools for Technol-

oqy Transfer 12.6, pp. 447—4606.

Agda. Agda Development Team. The Agda wiki, 2007-2021. http://wiki.portal.chalmers.se/
agda/pmwiki .php. Accessed: 2021-06-18.

Ahmed, B. S., K. Z. Zamli, W. Afzal, and M. Bures (2017). “Constrained interaction testing: A system-
atic literature study”. IEEE Access 5, pp. 25706—25730.

Ahrendt, W., B. Beckert, R. Bubel, R. Hihnle, P. H. Schmitt, and M. Ulbrich (2016). Deductive software
verification — The KeY book. Vol. 10001. Springer.

Ahrendt, W., W. Mostowski, and G. Paganelli (2012). “Real-time Java API specifications for high cov-
erage test generation”. In: Proc. of the Intl. Workshop on Java Technologies for Real-time and Embedded
Systems (JIRES). ACM, pp. 145-154.

Alur, R. (2011). “Formal verification of hybrid systems”. In: Proc. of the Intl. Conference on Embedded
Software and Systems, pp. 273—278.

Alur, R. (2015). Principles of Cyber-Physical Systems. The MIT Press.

Alur, R, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
and S. Yovine (1995). “The algorithmic analysis of hybrid systems”. Theoretical Computer Science 138.1,

PPp- 3-34-

Alur, R., C. Courcoubetis, T. A. Henzinger, and P.-H. Ho (1992). “Hybrid automata: An algorithmic
approach to the specification and verification of hybrid systems”. In: Hybrid systems. Springer,
PPp. 209—229.

Alur, R, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivani, V. Kumar, I. Lee, P. Mishra, G. Pappas, et al.

(2001). “Hierarchical hybrid modeling of embedded systems”. In: Proc. of the Intl. Workshop on Em-
bedded Software (EMSOFT). Springer, pp. 14-31.

Andrews, J. H.,, L. C. Briand, and Y. Labiche (2005). “Is mutation an appropriate tool for testing
experiments?” In: Proc. of the Intl. Conference on Software Engineering (ICSE), pp. 402—411.


http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php

194 BIBLIOGRAPHY

Angermann, A, M. Beuschel, M. Rau, and U. Wohlfarth (2020). Matlab—simulink—stateflow. De Gruyter
Oldenbourg,

Atkinson, C., P. Bostan, D. Brenner, G. Falcone, M. Gutheil, O. Hummel, M. Juhasz, and D. Stoll
(2008). “Modeling components and component-based systems in Kobra”. In: The Common Compo-
nent Modeling Example. Springer, pp. 54-84-

Back, R.-J. (2009). “Invariant based programming: basic approach and teaching experiences”. Formal
Aspects of Computing 21.3, pp. 227—244.

Back, R.-]., J. Eriksson, and M. Myreen (2007). “Testing and verifying invariant based programs in the
SOCOS environment”. In: Proc. of the Intl. Conference on Tests and Proof (TAP). Springer, pp. 61—78.

Bagschik, G., M. Nolte, S. Ernst, and M. Maurer (2018). “A system’s perspective towards an architec-
ture framework for safe automated vehicles”. In: Proc. of the Intl. Conference on Intelligent Transporta-
tion Systems (ITSC). IEEE, pp. 2438-2445.

Bak, S., S. Bogomolov, and T. T. Johnson (2015). “HYST: a source transformation and translation tool
for hybrid automaton models”. In: Proc. of the Intl. Conference on Hybrid Systems: Computation and
Control (HSCC), pp. 128-133.

Ball, T. and O. Kupferman (2008). “Vacuity in testing”. In: Proc. of the Intl. Conference on Tests and Proof
(TAP). Springer, pp. 4-17.

Banach, R. and M. Poppleton (1998). “Retrenchment: An Engineering Variation on Refinement”. In:
Proc. of the Intl. Conference of B Users. Springer, pp. 129—147.

Baracchi, L., A. Cimatti, G. Garcia, S. Mazzini, S. Puri, and S. Tonetta (2014). “Requirements refine-
ment and component reuse: the FoReVer contract-based approach”. In: Handbook of Research on
Embedded Systems Design. IGI Global, pp. 209—241.

Barnes, J. (2012). SPARK: The Proven Approach to High Integrity Software. Altran Praxis.

Barnett, M., M. Fihndrich, K. R. M. Leino, P. Miiller, W. Schulte, and H. Venter (June 2011). “Specifi-
cation and Verification: The Spec# Experience”. CACM 54 (6), pp. 81-91. DOL: http: //doi.acm.
0rg/10.1145/1953122.1953145.

Barth, T., M. P. McKay, and R. Smith (2020). “Survivability of a Tesla collision into a non-operational
crash attenuator in Mountain View, CA”. Traffic injury prevention, pp. 1-3.

Baudin, P., J.-C. Fillidtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto (2008). “ACSL: Ansi C spec-
ification language”. CEA-LIST, Saclay, France, Tech. Rep. v1 2.

Bauer, S. S., A. David, R. Hennicker, K. G. Larsen, A. Legay, U. Nyman, and A. Wasowski (2012). “Mov-
ing from specifications to contracts in component-based design”. In: Proc. of the Intl. Conference on
Fundamental Approaches to Software Engineering (FASE). Springer, pp. 43—58.

Baumann, C., B. Beckert, H. Blasum, and T. Bormer (2012). “Lessons learned from microkernel ver-
ification: specification is the new bottleneck”. In: Proc. of the Conference on Systems Software Verifica-
tion (SSV), pp. 18-32.


https://doi.org/http://doi.acm.org/10.1145/1953122.1953145
https://doi.org/http://doi.acm.org/10.1145/1953122.1953145

BIBLIOGRAPHY 195

Becker, S., H. Koziolek, and R. Reussner (2009). “The Palladio component model for model-driven
performance prediction”. Journal of Systems and Software 82.1, pp. 3—22.

Beckert, B. and V. Klebanov (2004). “Proof reuse for deductive program verification”. In: Proc. of the
Intl. Conference on Software Engineering and Formal Methods (SEFM). IEEE, pp. 77-86.

Beckert, B. and S. Schlager (2005). “Refinement and Retrenchment for Programming Language Data
Types”. Formal Aspects of Computing 17.4, pp. 423—442.

Belli, E. (2018). “Implementing a Graphical Skill Graph Editor for Monitoring Vehicle Guidance
Systems”. BA thesis. Technical University of Braunschweig.

Benesty, J., J. Chen, Y. Huang, and I. Cohen (2009). “Pearson correlation coefficient”. In: Noise reduc-
tion in speech processing. Springer, pp. 1—4.

Benveniste, A., B. Caillaud, A. Ferrari, L. Mangeruca, R. Passerone, and C. Sofronis (2007). “Multi-
ple Viewpoint Contract-Based Specification and Design”. In: Proc. of the Intl. Symposium on Formal
Methods for Components and Objects (FMCO). Springer, pp. 200-225.

Benveniste, A., B. Caillaud, and R. Passerone (2009). “Multi-Viewpoint State Machines for Rich Com-
ponent Models”. Model-Based Design of Heterogeneous Embedded Systems.

Benveniste, A., B. Caillaud, D. Nickovic, R. Passerone, J.-B. Raclet, P. Reinkemeier, A. Sangiovanni-
Vincentelli, W. Damm, T. A. Henzinger, K. G. Larsen, et al. (2018). “Contracts for system design”.
Foundations and Trends® in Electronic Design Automation.

Benvenuti, L., D. Bresolin, P. Collins, A. Ferrari, L. Geretti, and T. Villa (2014). “Assume—guarantee
verification of nonlinear hybrid systems with Ariadne”. International Journal of Robust and Nonlinear

Control 24.4, pp. 699—724.
Bergmiller, P. J. (2015). Towards functional safety in drive-by-wire vehicles. Springer.

Bernardi, S., U. Gentile, S. Marrone, J. Merseguer, and R. Nardone (2021). “Security modelling and
formal verification of survivability properties: Application to cyber—physical systems”. Journal of
Systems and Software 171, p. 110746.

Bernardi, S. and J. Merseguer (2007). “A UML profile for dependability analysis of real-time embed-
ded systems”. In: Proc. of the Intl. Workshop on Software and Performance (WOSP), pp. 115-124.

Beyer, D. and M. E. Keremoglu (2011). “CPAchecker: A tool for configurable software verification”.
In: Proc. of the Intl. Conference on Computer Aided Verification (CAV). Springer, pp. 184-190.

Biere, A., A. Cimatti, E. Clarke, and Y. Zhu (1999). “Symbolic model checking without BDDs". In:
International conference on tools and algorithms for the construction and analysis of systems. Springer,

Pp- 193—207.
Biere, A., A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu (2003). “Bounded model checking”.

Biggerstaff, T. J. (1994). “The library scaling problem and the limits of concrete component reuse”.
In: Proc. of the Intl. Conference on Software Reuse (ICSR). IEEE, pp. 102-109.



196 BIBLIOGRAPHY

Bledsoe, W. W. (2020). Some thoughts on proof discovery. CRC Press.

Bohrer, B, Y. K. Tan, S. Mitsch, M. O. Myreen, and A. Platzer (2018). “VeriPhy: Verified controller
executables from verified cyber-physical system models”. In: Proc. of the Conference on Programming
Language Design and Implementation (PLDI), pp. 617-630.

Bordis, T., T. Runge, A. Kniippel, T. Thiim, and I. Schaefer (2020). “Variational correctness-by-
construction”. In: Proc. of the International Working Conference on Variability Modelling of Software-
Intensive Systems (VAMOS). Ed. by M. Cordy, M. Acher, D. Beuche, and G. Saake. ACM, 7:1—7:9. DOI:
10.1145/3377024.3377038.URL: https://doi.org/10.1145/3377024.3377038.

Borger, E. (2010). “The abstract state machines method for high-level system design and analysis”.
In: Formal Methods: State of the Art and New Directions. Springer, pp. 79-116.

Brambilla, M., J. Cabot, and M. Wimmer (2017). “Model-driven software engineering in practice”.
Synthesis Lectures on Software Engineering 3.1, pp. 1-207.

Branicky, M. S. (2005). “Introduction to hybrid systems”. In: Handbook of networked and embedded
control systems. Springer, pp. 91-116.

Broy, M., F. Huber, and B. Schitz (1999). “AutoFocus-Ein Werkzeugprototyp zur Entwicklung einge-
betteter Systeme”. Informatik Forschung und Entwicklung 14.3, pp. 121-134.

Bubel, R., F. Damiani, R. Hihnle, E. B. Johnsen, O. Owe, I. Schaefer, and I. C. Yu (2016). “Proof reposi-
tories for compositional verification of evolving software systems”. In: Transactions on Foundations
for Mastering Change I. Springer, pp. 130-156.

Bubel, R, R. Hihnle, and M. Pelevina (2014). “Fully abstract operation contracts”. In: Proc. of the Intl.
Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA). Springer,

Pp. 120-134.
Budd, T. A, R. A. DeMillo, R. J. Lipton, and F. G. Sayward (1980). “Theoretical and empirical studies

on using program mutation to test the functional correctness of programs”. In: Proc. of the Sym-
posium on Principles of Programming Languages (POPL), pp. 220—233.

Buzdalov, D. and A. Khoroshilov (2014). “A discrete-event simulator for early validation of avionics
systems”. In: AProc. of the Workshop on Architecture Centric Virtual Integration (ACVIP), p. 28.

Calder, M., M. Kolberg, E. H. Magill, and S. Reiff-Marganiec (2003). “Feature interaction: a critical
review and considered forecast”. Computer Networks 41.1, pp. 115-141.

Celik, A., K. Palmskog, M. Parovic, E. J. G. Arias, and M. Gligoric (2019). “Mutation analysis for Coq”.
In: Proc. of the Intl. Conference on Automated Software Engineering (ASE). IEEE, pp. 539—551.

Chalin, P, J. R. Kiniry, G. T. Leavens, and E. Poll (2005). “Beyond assertions: Advanced specification
and verification with JML and ESC/Java2”. In: Proc. of the Intl. Symposium on Formal Methods for
Components and Objects (FMCO). Springer, pp. 342—3063.

Chang, C.-L. and R. C.-T. Lee (2014). Symbolic logic and mechanical theorem proving. Academic press.


https://doi.org/10.1145/3377024.3377038
https://doi.org/10.1145/3377024.3377038

BIBLIOGRAPHY 197

Chaochen, Z., W. Ji, and A. P. Ravn (1995). “A formal description of hybrid systems”. In: Proc. of the
Intl. Hybrid Systems Workshop. Springer, pp. 511-530.

Chen, X., E. Abrahim, and S. Sankaranarayanan (2013). “Flow*: An analyzer for non-linear hybrid
systems”. In: Proc. of the Intl. Conference on Computer Aided Verification (CAV). Springer, pp. 258—2063.

Chockler, H., O. Kupferman, and M. Y. Vardi (2003). “Coverage metrics for formal verification”. In:
Proc. of the Advanced Research Working Conference on Correct Hardware Design and Verification Methods.
Springer, pp. 111-125.

Cimatti, A., E. Clarke, F. Giunchiglia, and M. Roveri (1999). “NuSMV: A new symbolic model verifier”.
In: Proc. of the Intl. Conference on Computer Aided Verification (CAV). Springer, pp. 495-499.

Cimatti, A., M. Dorigatti, and S. Tonetta (2013). “OCRA: A tool for checking the refinement of tempo-
ral contracts”. In: Proc. of the Intl. Conference on Automated Software Engineering (ASE). IEEE, pp. 702—

705.

Cimatti, A. and S. Tonetta (2012). “A property-based proof'system for contract-based design”. In: Proc.
of the Euromicro Conference on Software Engineering and Advanced Applications (SEAA). IEEE, pp. 21—28.

Cimatti, A. and S. Tonetta (2015). “Contracts-refinement proof system for component-based embed-
ded systems”. Science of computer programming 97, pp. 333—348.

Clarke, E. M. and E. A. Emerson (1981). “Design and synthesis of synchronization skeletons using
branching time temporal logic”. In: Proc. of the Workshop on Logic of Programs (WLP). Springer,

PP 52—71.

Clarke, E. M., T. A. Henzinger, H. Veith, and R. Bloem (2018). Handbook of model checking. Vol. 10.
Springer.

Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press.

Cok, D. R. (2011). “OpenJML: JML for Java 7 by extending OpenJDK”. In: Proc. of the NASA Formal
Methods Symposium (NFM). Springer, pp. 472—479.

Cok, D. R. (2018). “Java automated deductive verification in practice: lessons from industrial proof-
based projects”. In: Proc. of the Intl. Symposium on Leveraging Applications of Formal Methods, Verifica-
tion and Validation (ISoLA). Springer, pp. 176-193.

Coq. Coq Development Team. The Coq proof assistant, 1989-2021. http: //coqg.inria. fr. Accessed:
2021-06-18.

Cuijpers, P. J. L. and M. A. Reniers (2005). “Hybrid process algebra”. The Journal of Logic and Algebraic
Programming 62.2, pp. 191-245.

Cuoq, P, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski (2012). “Frama-C”. In:
Proc. of the Intl. Conference on Software Engineering and Formal Methods (SEFM). Springer, pp. 233—247.

Czarnecki, K. and U. W. Eisenecker (2000). Generative programming.

Dantzig, G. B. (1998). Linear programming and extensions. Princeton university press.


http://coq.inria.fr

198 BIBLIOGRAPHY

Daran, M. and P. Thévenod-Fosse (1996). “Software error analysis: A real case study involving real
faults and mutations”. ACM SIGSOFT Software Engineering Notes 21.3, pp. 158-171.

Darke, P., S. Prabhu, B. Chimdyalwar, A. Chauhan, S. Kumar, A. Basakchowdhury, R. Venkatesh, A.
Datar, and R. K. Medicherla (2018). “VeriAbs: Verification by abstraction and test generation”. In:
Proc. of the Intl. Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS

). Springer, pp. 457-462.

De Alfaro, L. and T. A. Henzinger (2005). “Interface-based design”. In: Engineering theories of software
intensive systems. Springer, pp. 83-104.

De Gouw, S., F. S. de Boer, R. Bubel, R. Hihnle, J. Rot, and D. Steinhofel (2019). “Verifying OpenJDKs
sort method for generic collections”. Journal of Automated Reasoning 62.1, pp. 93—126.

De Gouw, S., J. Rot, F. S. de Boer, R. Bubel, and R. Hihnle (2015). “OpenJDKs Java.utils.Collec-
tion.sort() is broken: The good, the bad and the worst case”. In: Proc. of the Intl. Conference on Com-
puter Aided Verification (CAV). Springer, pp. 273—289.

De Moura, L. and N. Bjrner (2008). “Z3: An efficient SMT solver”. In: Proc. of the Intl. Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Springer, pp. 337-340.

De Win, B., F. Piessens, W. Joosen, and T. Verhanneman (2002). “On the importance of the
separation-of-concerns principle in secure software engineering”. In: Proc. of the Workshop on the
Application of Engineering Principles to System Security Design. Citeseer, pp. 1-10.

DeMillo, R. A, R. J. Lipton, and F. G. Sayward (1978). “Hints on test data selection: Help for the
practicing programmer”. Computer 11.4, pp. 34—41.

Dijkstra, E. W. (1975). “Guarded commands, nondeterminacy and formal derivation of programs”.
Communications of the ACM 18.8, pp. 453—457.

Dijkstra, E. W. (1972). “Notes on structured programming”. In: Structured Programming. Academic
Press Inc., pp. 1-82.

Dijkstra, E. W. (1976). A discipline of programming. Prentice Hall PTR.

Doyen, L., G. Frehse, G. J. Pappas, and A. Platzer (2018). “Verification of hybrid systems”. In: Handbook
of Model Checking. Springer, pp. 1047-1110.

Drozdov, D., S. Patil, V. Dubinin, and V. Vyatkin (2019). “Towards formal ASM semantics of timed
control systems for industrial CPS”. In: Proc. of the Intl. Conference on Emerging Technologies and
Factory Automation (ETFA). IEEE, pp. 1682-1685.

Du Bousquet, L. and M. Lévy (2010). “Proof process evaluation with mutation analysis”. In: Proc. of
the Intl. Conference on Tests and Proof (TAP). Springer, pp. 55-60.

Duggirala, P. S., S. Mitra, M. Viswanathan, and M. Potok (2015). “C2E2: A verification tool for stateflow
models”. In: Proc. of the Intl. Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). Springer, pp. 68-82.



BIBLIOGRAPHY 199

Elmqvist, H., S. E. Mattsson, and M. Otter (2001). “Object-oriented and hybrid modeling in model-
ica”. Journal Européen des systémes automatisés 35.4, pp. 395-404.

Engel, C., A. Roth, A. Blome, R. Bubel, and S. Greiner (2010). KeY quicktour for JML. URL: https: //
illwww.iti.kit.edu/~projekt/download/quicktour/quicktour—-1.6.pdf.

Ernst, M. D., J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz, and C. Xiao (2007).
“The Daikon system for dynamic detection of likely invariants”. Science of Computer Programming

69.1-3, pp. 35-45-

Feiler, P. H. and D. P. Gluch (2012). Model-based engineering with AADL: an introduction to the SAE
architecture analysis & design language. Addison-Wesley.

Filieri, A., H. Hoffmann, and M. Maggio (2015). “Automated multi-objective control for self-adaptive
software design”. In: Proc. of the Intl. Symposium on the Foundations of Software Engineering (FSE). ACM,

Pp- 13—24.
Floyd, R. W. (1967). “Nondeterministic algorithms”. Journal of the ACM (JACM) 14.4, pp. 636644

Forsberg, K. and H. Mooz (1991). “The relationship of system engineering to the project cycle”. In:
Proc. of the International Symposium (INCOSE). Vol. 1. 1. Wiley Online Library, pp. 57-65.

France, R., A. Evans, K. Lano, and B. Rumpe (1998). “The UML as a formal modeling notation”.
Computer Standards & Interfaces 19.7, pp. 325-334-

Frehse, G., Z. Han, and B. Krogh (2004). “Assume-guarantee reasoning for hybrid I/O-automata by
over-approximation of continuous interaction”. In: Proc. of the Conference on Decision and Control
(CDC). Vol. 1. IEEE, pp. 479—484.

Frehse, G., C. Le Guernic, A. Donz¢, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and
O. Maler (2011). “SpaceEx: Scalable verification of hybrid systems”. In: Proc. of the Intl. Conference on
Computer Aided Verification (CAV). Springer, pp. 379-395.

Friedenthal, S., A. Moore, and R. Steiner (2014). A practical guide to SysML: the systems modeling language.
Morgan Kaufmann.

Fulton, N., S. Mitsch, B. Bohrer, and A. Platzer (2017). “Bellerophon: Tactical theorem proving for
hybrid systems”. In: Proc. of the Intl. Conference on Interactive Theorem Proving (ITP). Springer, pp. 207—
224.

Fulton, N., S. Mitsch, J.-D. Quesel, M. Volp, and A. Platzer (2015). “KeYmaera X: An axiomatic tactical
theorem prover for hybrid systems”. In: Proc. of the Intl. Conference on Automated Deduction (CADE).

Springer, pp. 527-538.
Furia, C. A, C. M. Poskitt, and J. Tschannen (2015). “The AutoProof Verifier: Usability by Non-Experts

and on Standard Code”. In: Proc. of the Intl. Workshop on Formal Integrated Development Environment
(E-IDE). Vol. 187. Open Publishing Association, pp. 42-55.

Garvin, B. J., M. B. Cohen, and M. B. Dwyer (2011). “Evaluating improvements to a meta-heuristic
search for constrained interaction testing”. Empirical Software Engineering 16.1, pp. 61-102.


https://i11www.iti.kit.edu/~projekt/download/quicktour/quicktour-1.6.pdf
https://i11www.iti.kit.edu/~projekt/download/quicktour/quicktour-1.6.pdf

200 BIBLIOGRAPHY

Gentzen, G. (19352). “Untersuchungen iiber das logische Schliessen. I.” Mathematische zeitschrift 35.

Gentzen, G. (1935b). “Untersuchungen iiber das logische Schliessen. II”. Mathematische Zeitschrift 39.1,
PP- 405-431.

Gentzen, G. (1964). “Investigations into logical deduction”. American philosophical quarterly 1.4,
pp- 288-306.

Gerhart, S. L. (1975). “Correctness-preserving program transformations”. In: Proc. of the Symposium
on Principles of Programming Languages (POPL), pp. 54—60.

Ghassabani, E., A. Gacek, and M. W. Whalen (2016). “Efficient generation of inductive validity cores
for safety properties”. In: Proc. of the Intl. Symposium on the Foundations of Software Engineering (FSE),

pp- 314-325.

Ghassabani, E., A. Gacek, M. W. Whalen, M. P. Heimdahl, and L. Wagner (2017). “Proof-based coverage
metrics for formal verification”. In: Proc. of the Intl. Conference on Automated Software Engineering
(ASE). IEEE, pp. 194-199.

Gleirscher, M., S. Foster, and J. Woodcock (2019). “New opportunities for integrated formal meth-
ods”. ACM Computing Surveys (CSUR) 52.6, pp. 1-36.

Gleirscher, M. and D. Marmsoler (2018). “Formal methods: Oversold? Underused? A survey”. Com-
puting Research Repository (CoRR) abs/1812.08815. arXiv: 1812 .08815. URL: http://arxiv.org/
abs/1812.08815.

Goebel, R, R. G. Sanfelice, and A. R. Teel (2012). Hybrid dynamical systems. Princeton University Press.

Gomez, F.J., M. A. Aguilera, S. H. Olsen, and L. Vanfretti (2020). “Software requirements for interop-
erable and standard-based power system modeling tools”. Simulation Modelling Practice and Theory
103, P. 102005.

Gossler, G. and J. Sifakis (2005). “Composition for component-based modeling”. Science of Computer
Programming 55.1-3, pp. 161-183.

Goswami, D., R. Schneider, A. Masrur, M. Lukasiewycz, S. Chakraborty, H. Voit, and A. Annaswamy
(2012). “Challenges in Automotive Cyber-Physical Systems Design”. In: Proc. of the Intl. Conference
on Embedded Computer Systems (SAMOS), pp. 346—354. DOI: 10.1109/SAMOS.2012.6404199.

Grebhahn, A., N. Siegmund, S. Apel, S. Kuckuk, C. Schmitt, and H. Késtler (2014). “Optimizing per-
formance of stencil code with SPL conqueror”. In: Proc. of the Intl. Workshop on High-Performance
Stencil Computations (HiStencils), pp. 7-14.

Grebing, S. and M. Ulbrich (2020). “Usability Recommendations for User Guidance in Deductive
Program Verification”. In: Deductive Software Verification: Future Perspectives. Springer, pp. 261—284.

Groce, A., I. Ahmed, C. Jensen, P. E. McKenney, and J. Holmes (2018). “How verified (or tested) is my
code? Falsification-driven verification and testing”. Automated Software Engineering 25.4, pp. 917—
960.


https://arxiv.org/abs/1812.08815
http://arxiv.org/abs/1812.08815
http://arxiv.org/abs/1812.08815
https://doi.org/10.1109/SAMOS.2012.6404199

BIBLIOGRAPHY 201

Griin, B. J., D. Schuler, and A. Zeller (2009). “The impact of equivalent mutants”. In: Proc. of the Intl.
Conference on Software Testing, Verification, and Validation Workshops (ICST). IEEE, pp. 192-199.

Guo, J., K. Czarnecki, S. Apel, N. Siegmund, and A. Wasowski (2013). “Variability-aware performance
prediction: A statistical learning approach”. In: Proc. of the Intl. Conference on Automated Software
Engineering (ASE). IEEE, pp. 301-311.

Guo, J., D. Yang, N. Siegmund, S. Apel, A. Sarkar, P. Valov, K. Czarnecki, A. Wasowski, and H. Yu (2018).
“Data-efficient performance learning for configurable systems”. Empirical Software Engineering 23.3,
pp- 1826-1867.

Ha, H. and H. Zhang (2019). “DeepPerf: performance prediction for configurable software with deep
sparse neural network”. In: Proc. of the Intl. Conference on Software Engineering (ICSE). IEEE, pp. 1095—
1106.

Haber, A. (2016). MontiArc — Architectural Modeling and Simulation of Interactive Distributed Systems.
Vol. 24. Shaker Verlag GmbH.

Hihnle, R. and M. Huisman (2017). “24 Challenges in Deductive Software Verification.” In: Proc. of
the Intl. Workshop on Automated Reasoning: Challenges, Applications, Directions, Exemplary Achievements
(ARCADE), pp. 37—41.

Hihnle, R. and M. Huisman (2019). “Deductive software verification: from pen-and-paper proofs to
industrial tools”. In: Computing and Software Science. Springer, pp. 345-373-

Hihnle, R, L. Schaefer, and R. Bubel (2013). “Reuse in software verification by abstract method calls”.
In: Proc. of the Intl. Conference on Automated Deduction (CADE). Springer, pp. 300-314.

Al-Hajjaji, M., S. Krieter, T. Thiim, M. Lochau, and G. Saake (2016). “IncLing: efficient product-
line testing using incremental pairwise sampling”. In: Proc. of the Intl. Conference on Generative
Programming: Concepts and Experiences (GPCE). Vol. 52. 3. ACM, pp. 144-155.

Harel, D. (1987). “Statecharts: A visual formalism for complex systems”. Science of Computer Program-
ming 8.3, pp. 231-274.

Harel, D. and M. Politi (1998). Modeling reactive systems with statecharts: the STATEMATE approach.
McGraw-Hill, Inc.

Harris, M. (2016). “Google reports self-driving car mistakes: 272 failures and 13 near misses”. The
Guardian. URL: https://www.theguardian.com/technology/2016/jan/12/google-

self-driving-cars—-mistakes—-data-reports.

Hatcliff, J., G. T. Leavens, K. R. M. Leino, P. Miiller, and M. Parkinson (2012). “Behavioral interface
specification languages”. ACM Computing Surveys (CSUR) 44.3, pp. 1-58.

Havelund, K. and T. Pressburger (2000). “Model checking Java programs using Java Pathfinder”.
International Journal on Software Tools for Technology Transfer 2.4, pp. 366—381.


https://www.theguardian.com/technology/2016/jan/12/google-self-driving-cars-mistakes-data-reports
https://www.theguardian.com/technology/2016/jan/12/google-self-driving-cars-mistakes-data-reports

202 BIBLIOGRAPHY

Helm, D., F. Kiibler, M. Eichberg, M. Reif, and M. Mezini (2018). “A unified lattice model and frame-
work for purity analyses”. In: Proc. of the Intl. Conference on Automated Software Engineering (ASE).
IEEE, pp. 340-350.

Henard, C., M. Papadakis, M. Harman, and Y. Le Traon (2015). “Combining multi-objective search
and constraint solving for configuring large software product lines”. In: Proc. of the Intl. Conference
on Software Engineering (ICSE). IEEE Press, pp. 517-528.

Henzinger, T. A. (2000). “The theory of hybrid automata”. In: Verification of digital and hybrid systems.
Springer, pp. 265-292.

Henzinger, T. A., M. Minea, and V. Prabhu (2001). “Assume-guarantee reasoning for hierarchical
hybrid systems”. In: Proc. of the Intl. Workshop on Hybrid Systems: Computation and Control (HSCC).
Springer, pp. 275-290.

Henzinger, T. A. and J. Sifakis (2007). “The Discipline of Embedded Systems Design”. Computer 40.10,
Pp- 32—40.

Hiep, H.-D. A, J. Bian, F. S. de Boer, and S. de Gouw (2020). “A Tutorial on Verifying LinkedList
Using KeY”. Deductive Software Verification: Future Perspectives, pp. 221-245.

Hilbert, D. and W. Ackermann (1999). Principles of mathematical logic. Vol. 69. American Mathematical
Soc.

Hoare, C. (1972). “Proof of correctness of data representations”. Acta Informatica 1.4, pp. 271—281.

Hoare, C. A. R. (1969). “An axiomatic basis for computer programming”. Communications of the ACM
12.10, pp. 576—580. DOL: https://doi.org/10.1145/363235.363259.

Hoare, C. A. R. (Feb. 1981). “The Emperor’s Old Clothes”. Commun. ACM 24.2, pp. 75-83. DOL: 10 .
1145/358549.358561. URL: https://doi.org/10.1145/358549.358561.

Holzmann, G. J. (1997). “The model checker SPIN”". IEEE Transactions on Software Engineering (TSE)
23.5, Pp- 279—295.
Hou, S.-S., L. Zhang, T. Xie, H. Mei, and J.-S. Sun (2007). “Applying interface-contract mutation in

regression testing of component-based software”. In: Proc. of the Intl. Conference on Software Main-
tenance (ICSM). IEEE, pp. 174-183.

IEC 61508 (2011). IEC: 61508 — Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems. Accessed: 2021-18-06. URL: https: //www.vde-verlag.de/iec-normen/
217177/1iec-61508-1-2010.html.

ISO 21448 (2011). ISO: 21448 — Road vehicles - Safety of the intended functionality. Accessed: 2021-12-07.
URL: https://www.iso.org/standard/70939.html.

ISO 26262 (2011). ISO: 26262 — Road vehicles - Functional safety. Accessed: 2021-18-06. URL: https://
www.lso.org/standard/43464 .html.


https://doi.org/https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/358549.358561
https://doi.org/10.1145/358549.358561
https://doi.org/10.1145/358549.358561
https://www.vde-verlag.de/iec-normen/217177/iec-61508-1-2010.html
https://www.vde-verlag.de/iec-normen/217177/iec-61508-1-2010.html
https://www.iso.org/standard/70939.html
https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html

BIBLIOGRAPHY 203

Jackson, D. (2002). “Alloy: a lightweight object modelling notation”. ACM Transactions on Software
Engineering and Methodology (TOSEM) 11.2, pp. 256—290.

Jamshidi, P. and G. Casale (2016). “An uncertainty-aware approach to optimal configuration of
stream processing systems”. In: Proc. of the Intl. Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS). IEEE, pp. 39—48.

Jang, D., Z. Tatlock, and S. Lerner (2012). “Establishing browser security guarantees through formal
shim verification”. In: Proc. of the Intl. USENIX Security Symposium (USENIX Security), pp. 113—128.

Jeannin, J.-B., K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. Gardner, S. Mitsch, and A. Platzer (2017).
“A formally verified hybrid system for safe advisories in the next-generation airborne collision
avoidance system”. International Journal on Software Tools for Technology Transfer 19.6, pp. 717—741.

Jia, Y. and M. Harman (2010). “An analysis and survey of the development of mutation testing”. IEEE
transactions on Software Engineering 37.5, pp. 649—678.

Johansen, M. F., . Haugen, and F. Fleurey (2011). “Properties of realistic feature models make combi-
natorial testing of product lines feasible”. In: Proc. of the Intl. Conference on Model Driven Engineer-
ing Languages and Systems (MODELS). Springer, pp. 638—052.

Johansen, M. F., . Haugen, and F. Fleurey (2012). “An algorithm for generating t-wise covering arrays
from large feature models”. In: Proc. of the Intl. Systems and Software Product Line Conference (SPLC).
ACM, pp. 46-55.

Johnsen, E. B, R. Hihnle, J. Schifer, R. Schlatte, and M. Steffen (2010). “ABS: A Core Language for
Abstract Behavioral Specification”. In: Proc. of the Intl. Symposium on Formal Methods for Components
and Objects (FMCO). Springer, pp. 142-164.

Jue, W., Y. Song, X. Wu, and W. Dai (2019). “A semi-formal requirement modeling pattern for de-
signing industrial cyber-physical systems”. In: Proc. of the Annual Conference of the IEEE Industrial
Electronics Societ (IES). Vol. 1. IEEE, pp. 2883—2888.

Just, R, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, and G. Fraser (2014). “Are mutants a valid
substitute for real faults in software testing?” In: Proc. of the Intl. Symposium on the Foundations of
Software Engineering (FSE), pp. 654—605.

Kale, M. (2021). “Vollstindige und Korrekte Implementierung von Skill Graphen”. BA thesis. Tech-
nical University of Braunschweig.

Kaltenecker, C., A. Grebhahn, N. Siegmund, J. Guo, and S. Apel (2019). “Distance-based sampling of
software configuration spaces”. In: Proc. of the Intl. Conference on Software Engineering (ICSE). IEEE,

Pp- 1084-1004.

Kamburjan, E., S. Mitsch, and R. Hihnle (2022). “A Hybrid Programming Language for Formal Mod-
eling and Verification of Hybrid Systems”. Leibniz Transactions on Embedded Systems (LITES).



204 BIBLIOGRAPHY

Kang, E., S. Adepu, D. Jackson, and A. P. Mathur (2016). “Model-based security analysis of a water
treatment system”. In: Proc. of the Intl. Workshop on Software Engineering for Smart Cyber-Physical
Systems (SEsCPS). IEEE, pp. 22—28.

Kang, K. C,, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson (1990). Feature-oriented domain
analysis (FODA) feasibility study. Tech. rep. Carnegie-Mellon Univ Pittsburgh Pa Software Engineer-
ing Inst.

Khombh, F.,, B. Adams, T. Dhaliwal, and Y. Zou (2015). “Understanding the Impact of Rapid Releases
on Software Quality”. Empirical Software Engineering 20.2, pp. 336-373.

Kienzle, J., G. Mussbacher, P. Collet, and O. Alam (2016). “Delaying decisions in variable concern hi-
erarchies”. In: Proc. of the Intl. Conference on Generative Programming: Concepts and Experiences (GPCE).
Vol. 52. 3. ACM, pp. 93-103.

Kintis, M., M. Papadakis, Y. Jia, N. Malevris, Y. Le Traon, and M. Harman (2017). “Detecting trivial
mutant equivalences via compiler optimisations”. IEEE Transactions on Software Engineering 44.4,

pp- 308-333.

Klein, G., J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolanski, and G. Heiser (2014).
“Comprehensive formal verification of an OS microkernel”. ACM Transactions on Computer Systems
(TOCS) 32.1, pp. 1-70.

Klein, G., K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, et al. (2009). “seL4: Formal verification of an OS kernel”. In: Proc. of the
Intl. Symposium on Operating Systems Principles (SOSP), pp. 207—220.

Kniippel, A., I. Jatzkowski, M. Nolte, T. Thiim, T. Runge, and I. Schaefer (2020a). “Skill-Based Verifi-
cation of Cyber-Physical Systems”. In: Proc. of the Intl. Conference on Fundamental Approaches to Soft-
ware Engineering (FASE). Ed. by H. Wehrheim and J. Cabot. Vol. 12076. Lecture Notes in Computer
Science. Springer, pp. 203—223. DOI: 10.1007/978-3-030-45234-6\_10. URL: https://
doi.org/10.1007/978-3-030-45234-6%5C_10.

Kniippel, A, T. Runge, and I. Schaefer (2020b). “Scaling Correctness-by-Construction”. In: Proc. of the
Intl. Symposium on Leveraging Applications of Formal Methods, Verification and Validation (ISoLA). Ed.
by T. Margaria and B. Steffen. Vol. 12476. Lecture Notes in Computer Science. Springer, pp. 187
207.DOI: 10.1007/978-3-030-61362-4\_10. URL: https://doi.org/10.1007/978~-
3-030-61362-4%5C_10.

Kniippel, A, L. Schaer, and I. Schaefer (2021a). “How much Specification is Enough? Mutation Anal-
ysis for Software Contracts”. In: Proc. in the Intl. Conference on Formal Methods in Software Engineer-
ing (FormaliSE). Ed. by S. Bliudze, S. Gnesi, N. Plat, and L. Semini. IEEE, pp. 42—53. Do1: 10.1109/
FormaliSE52586.2021.00011. URL: https://doi.org/10.1109/FormaliSE52586.
2021.00011.

Kniippel, A, T. Thiim, C. Pardylla, and I. Schaefer (2018a). “Experience Report on Formally Verifying
Parts of OpenJDK’s API with KeY”. In: Proc. of the Intl. Workshop on Formal Integrated Development


https://doi.org/10.1007/978-3-030-45234-6\_10
https://doi.org/10.1007/978-3-030-45234-6%5C_10
https://doi.org/10.1007/978-3-030-45234-6%5C_10
https://doi.org/10.1007/978-3-030-61362-4\_10
https://doi.org/10.1007/978-3-030-61362-4%5C_10
https://doi.org/10.1007/978-3-030-61362-4%5C_10
https://doi.org/10.1109/FormaliSE52586.2021.00011
https://doi.org/10.1109/FormaliSE52586.2021.00011
https://doi.org/10.1109/FormaliSE52586.2021.00011
https://doi.org/10.1109/FormaliSE52586.2021.00011

BIBLIOGRAPHY 205

Environment (F-IDE). Ed. by P. Masci, R. Monahan, and V. Prevosto. Vol. 284. EPTCS, pp. 53—70. DOIL:
10.4204/EPTCS.284.5. URL: https://doi.org/10.4204/EPTCS.284.5.

Kniippel, A., T. Thiim, C. Pardylla, and I. Schaefer (2018b). “Scalability of Deductive Verification
Depends on Method Call Treatment”. In: Proc. of the Intl. Symposium on Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA). Ed. by T. Margaria and B. Steffen. Vol. 11247.
Lecture Notes in Computer Science. Springer, pp. 159-175. DO1: 10.1007/978-3-030-03427~
6\_15.URL: https://doi.org/10.1007/978-3-030-03427-6%5C_15.

Kniippel, A., T. Thiim, C. I. Pardylla, and I. Schaefer (2018¢). “Understanding Parameters of Deduc-
tive Verification: An Empirical Investigation of KeY”. In: Proc. of the Intl. Conference on Interactive
Theorem Proving (ITP). Ed. by J. Avigad and A. Mahboubi. Vol. 10895. Lecture Notes in Computer
Science. Springer, pp. 342—361. DOL: 10.1007/978-3-319-94821-8\_20. URL: https://
doi.org/10.1007/978-3-319-94821-8%5C_20.

Kniippel, A., T. Thiim, and I. Schaefer (2021b). “GUIDO: Automated Guidance for the Configura-
tion of Deductive Program Verifiers”. In: Proc. in the Intl. Conference on Formal Methods in Soft-
ware Engineering (FormaliSE). Ed. by S. Bliudze, S. Gnesi, N. Plat, and L. Semini. IEEE, pp. 124-129.
DOI: 10.1109/FormaliSE52586.2021.00018. URL: https://doi.org/10.1109/
FormaliSE52586.2021.00018.

Koenig, N. and A. Howard (2004). “Design and use paradigms for Gazebo, an open-source multi-
robot simulator”. In: Proc. of the Intl. Conference on Intelligent Robots and Systems (IROS). Vol. 3. IEEE,
PP- 2149-2154.

Koopman, P. and M. Wagner (2016). “Challenges in autonomous vehicle testing and validation”. SAE
International Journal of Transportation Safety 4.1, pp. 15—24.

Kordon, F, J. Hugues, and X. Renault (2008). “From Model Driven Engineering to Verification
Driven Engineering”. In: Proc. of the Intl. Workshop on Software Technologies for Embedded and Ubiqui-
tous Systems. Ed. by U. Brinkschulte, T. Givargis, and S. Russo. Berlin, Heidelberg: Springer, pp. 381—
393.D01: 10.1007/978-3-540-87785-1_34.

Koubia, A. et al. (2017). Robot Operating System (ROS). Vol. 1. Springer.

Kourie, D. G. and B. W. Watson (2012). The Correctness-by-Construction Approach to Programming.
Springer Science & Business Media.

Kovics, L. and A. Voronkov (2013). “First-order theorem proving and Vampire”. In: Proc. of the Intl.
Conference on Computer Aided Verification (CAV). Springer, pp. 1-35.

Kroening, D. and M. Tautschnig (2014). “CBMC-C bounded model checker”. In: Proc. of the Intl. Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Springer, pp. 389—
391.

Kumar, R., M. O. Myreen, M. Norrish, and S. Owens (2014). “CakeML: a verified implementation of
ML”. ACM SIGPLAN Notices 49.1, pp. 179—191.


https://doi.org/10.4204/EPTCS.284.5
https://doi.org/10.4204/EPTCS.284.5
https://doi.org/10.1007/978-3-030-03427-6\_15
https://doi.org/10.1007/978-3-030-03427-6\_15
https://doi.org/10.1007/978-3-030-03427-6%5C_15
https://doi.org/10.1007/978-3-319-94821-8\_20
https://doi.org/10.1007/978-3-319-94821-8%5C_20
https://doi.org/10.1007/978-3-319-94821-8%5C_20
https://doi.org/10.1109/FormaliSE52586.2021.00018
https://doi.org/10.1109/FormaliSE52586.2021.00018
https://doi.org/10.1109/FormaliSE52586.2021.00018
https://doi.org/10.1007/978-3-540-87785-1_34

206 BIBLIOGRAPHY

Kutluay, E. (2013). Development and demonstration of a validation methodology for vehicle lateral dynamics
simulation models. VDI-Verlag Diisseldorf, Germany.

Laibinis, L., A. Iliasov, and A. Romanovsky (2021). “Mutation Testing for Rule-Based Verification of
Railway Signaling Data”. IEEE Transactions on Reliability 70.2, pp. 676—691.

Lau, K.-K. and C. M. Tran (2012). “X-MAN: An MDE Tool for Component-Based System Develop-
ment”. In: Proc. of the Euromicro Conference on Software Engineering and Advanced Applications (SEAA).
IEEE, pp. 158-165.

Le Guernic, C. (2009). “Reachability analysis of hybrid systems with linear continuous dynamics”.
PhD thesis. Université Joseph-Fourier-Grenoble I.

Le Traon, Y., B. Baudry, and J.-M. Jézéquel (2006). “Design by contract to improve software vigilance”.
IEEE Transactions on Software Engineering 32.8, pp. 571—586.

Leavens, G. T., A. L. Baker, and C. Ruby (2006). “Preliminary design of JML: A behavioral inter-
face specification language for Java”. ACM SIGSOFT Software Engineering Notes 31.3, pp. 1-38. DOIL:
https://doi.org/10.1145/1127878.1127884.

Leavens, G. T. and P. Muller (2007). “Information Hiding and Visibility in Interface Specifications”.
In: Proc. of the Intl. Conference on Software Engineering (ICSE). IEEE, pp. 385-395.

Lee, I, O. Sokolsky, S. Chen, J. Hatcliff; E. Jee, B. Kim, A. King, M. Mullen-Fortino, S. Park, A. Roed-
erer, and K. K. Venkatasubramanian (2012). “Challenges and Research Directions in Medical Cy-
berPhysical Systems”. Proceedings of the IEEE 100.1, pp. 75-90. DOI: 10 . 1109 / JPROC . 2011 .
2165270.

Leino, K. R. M. (1998). “Data groups: Specifying the modification of extended state”. In: Proc. of the Intl.
Conference on Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), pp. 144—

153.

Leroy, X. (2009). “Formal verification of a realistic compiler”. Communications of the ACM 52.7, pp. 107—
115.

Liberzon, D. and A. S. Morse (1999). “Basic problems in stability and design of switched systems”.
IEEE control systems magazine 19.5, pp. 59—70.

Lin, Q., S. Adepu, S. Verwer, and A. Mathur (2018). “TABOR: A graphical model-based approach for
anomaly detection in industrial control systems”. In: Proc. of the Asia Conference on Computer and
Communications Security (ASIACCS), pp. 525-536.

Liskov, B. H. and J. Guttag (1986). Abstraction and specification in program development. Vol. 180. MIT
press Cambridge.

Liskov, B. H. and J. M. Wing (1994). “A behavioral notion of subtyping”. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 16.6, pp. 1811-1841.

Liu, J., J. Lv, Z. Quan, N. Zhan, H. Zhao, C. Zhou, and L. Zou (2010). “A calculus for hybrid CSP”. In:
Proc. of the Asian Symposium on Programming Languages and Systems. Springer, pp. 1-15.


https://doi.org/https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1109/JPROC.2011.2165270
https://doi.org/10.1109/JPROC.2011.2165270

BIBLIOGRAPHY 207

Loos, S. M. and A. Platzer (2016). “Differential refinement logic”. In: Proc. of the Symposium on Logic
in Computer Science (LICS), pp. 505-514-

Loos, S. M., A. Platzer, and L. Nistor (2011). “Adaptive cruise control: Hybrid, distributed, and now
formally verified”. In: Proc. of the International Symposium on Formal Methods (FM). Springer, pp. 42—
50.

Lynch, N., R. Segala, and F. Vaandrager (2003). “Hybrid I/O automata”. Information and Computation
185.1, pp. 105-157.

Ma, Y.-S., J. Offutt, and Y.-R. Kwon (2006). “MuJava: a mutation system for Java”. In: Proc. of the Intl.
Conference on Software Engineering (ICSE), pp. 827-830.

Madeyski, L., W. Orzeszyna, R. Torkar, and M. Jozala (2013). “Overcoming the equivalent mutant
problem: A systematic literature review and a comparative experiment of second order mutation”.
IEEE Transactions on Software Engineering 40.1, pp. 23—42.

Maler, O. and D. Nickovic (2004). “Monitoring temporal properties of continuous signals”. In: Formal
Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems. Springer, pp. 152-166.

Mancini, T., F. Mari, I. Melatti, I. Salvo, E. Tronci, J. K. Gruber, B. Hayes, M. Prodanovic, and L.
Elmegaard (2018). “Parallel statistical model checking for safety verification in smart grids”. In:
Proc. of the Intl. Conference on Communications, Control, and Computing Technologies for Smart Grids
(SmartGridComm). IEEE, pp. 1-6.

Maraninchi, F. and Y. Rémond (1998). “Mode-automata: About modes and states for reactive sys-
tems”. In: Proc. of the European Symposium On Programming (ESOP). Springer, pp. 185-199.

Maraninchi, F. and Y. Rémond (2003). “Mode-automata: a new domain-specific construct for the
development of safe critical systems”. Science of Computer Programming 46.3, pp. 219—254.

Massow, K. and I. Radusch (2018). “A rapid prototyping environment for cooperative advanced driver
assistance systems”. Journal of Advanced Transportation 2018.

Massow, K., F. Thiele, K. Schrab, S. Bunk, I. Tschinibaew, and I. Radusch (2020). “Scenario Definition
for Prototyping Cooperative Advanced Driver Assistance Systems”. In: Proc. of the Intl. Conference
on Intelligent Transportation Systems (ITSC), pp.1-8. Do1: 10.1109/ITSC45102.2020.9294238.

Mathur, A. P. (2013). Foundations of software testing, 2/e. Pearson Education India.

Mathur, A. P. and W. E. Wong (1994). “An empirical comparison of data flow and mutation-based
test adequacy criteria”. Software Testing, Verification and Reliability 4.1, pp. 9-31.

Maurer, M. (2000). “Flexible Automatisierung von Strassenfahrzeugen mit Rechnersehen”. PhD the-
sis. VDI-Verlag.

McKillup, S. (2011). Statistics Explained: An Introductory Guide for Life Scientists. Cambridge University
Press.


https://doi.org/10.1109/ITSC45102.2020.9294238

208 BIBLIOGRAPHY

McNemar, Q. (1947). “Note on the sampling error of the difference between correlated proportions
or percentages”. Psychometrika 12.2, pp. 153-157.

Meinicke, J., T. Thiim, R. Schréter, F. Benduhn, T. Leich, and G. Saake (2017). Mastering software
variability with FeatureIDE. Springer.

Meinicke, J., T. Thiim, R. Schréter, S. Krieter, F. Benduhn, G. Saake, and T. Leich (2016). “FeatureIDE:
taming the preprocessor wilderness”. In: Proc. of the Intl. Conference on Software Engineering Com-
panion (ICSE-Companion). ACM, pp. 629—632.

Mendonca, M., A. Wasowski, and K. Czarnecki (2009). “SAT-based analysis of feature models is easy”.
In: Proc. of the Intl. Systems and Software Product Line Conference (SPLC), pp. 231—240.

Mesarovic, M. D., D. Macko, and Y. Takahara (2000). Theory of hierarchical, multilevel, systems. Elsevier.

Metsild, S., K. Gulzar, V. Vyatkin, L. Grohn, E. Viininen, L. Saikko, and M. Nyholm (2017).
“Simulation-enhanced development of industrial cyber-physical systems using OPC-UA and IEC
61499”. In: Proc. of the Intl. Conference on Industrial Applications of Holonic and Multi-Agent Systems
(HoloMAS). Springer, pp. 125-139.

Meyer, B. (1988). “Eiffel: A language and environment for software engineering”. Journal of Systems
and Software 8.3, pp. 199—240.

M7

Meyer, B. (1992). “Applying 'design by contract™. Computer 25.10, pp. 40-51.

Michniewicz, J. and G. Reinhart (2014). “Cyber-physical Robotics Automated Analysis, Programming
and Configuration of Robot Cells based on Cyber-physical-systems”. Procedia Technology 15. 2nd
International Conference on System-Integrated Intelligence: Challenges for Product and Produc-
tion Engineering, pp. 566—575. DO1: 10.1016/J.protcy.2014.09.017.

Milanez, A., B. Lima, J. Ferreira, and T. Massoni (2017). “Nonconformance between programs and
contracts: a study on C#/code contracts open source systems”. In: Proc. of the ACM Symposium on
Applied Computing (SAC), pp. 1219-1224.

Milanez, A., D. Sousa, T. Massoni, and R. Gheyi (2014). “JMLOK2: A tool for detecting and categoriz-
ing nonconformances”. In: Proc. of the The Brazilian Conference on Software: Practice and Theory (CB-

Soft), pp. 69-76.

Milanez, A. F.,, T. L. Massoni, R. Gheyi, and C. Grande-PB-Brazil (2013). “Categorizing nonconfor-
mances between programs and their specifications”. In: Proc. of the Brazilian Workshop on System-
atic and Automated Software Testing (CBSoft/SAST).

Misson, H. A., F. S. Gongalves, and L. B. Becker (2019). “Applying integrated formal methods on CPS
design”. In: Proc. of the Brazilian Symposium on Computing Systems Engineering (SBESC). IEEE, pp. 1-8.

Mitra, S. (2021). Verifying Cyber-Physical Systems: A Path to Safe Autonomy. MIT Press. 312 pp. URL:

https://mitpress.mit.edu/contributors/sayan-mitra.

Mitsch, S. and A. Platzer (2016). “ModelPlex: Verified runtime validation of verified cyber-physical
system models”. Formal Methods in System Design 49.1, pp. 33-74-


https://doi.org/10.1016/j.protcy.2014.09.017
https://mitpress.mit.edu/contributors/sayan-mitra

BIBLIOGRAPHY 209

Morgan, C. (1994). Programming from Specifications. Prentice Hall,

Mostowski, W. (2005). “Formalisation and verification of Java Card security properties in dynamic
logic”. In: Proc. of the Intl. Conference on Fundamental Approaches to Software Engineering (FASE).

Springer, pp. 357-371.

Mostowski, W. (2007). “Fully verified Java Card API reference implementation”. In: Proc. of the Intl.
Verification Workshop (VERIFY). Vol. 259, pp. 136-151.

Moura, L. de, S. Kong, J. Avigad, F. Van Doorn, and J. von Raumer (2015). “The Lean theorem prover”.
In: Proc. of the Intl. Conference on Automated Deduction (CADE). Springer, pp. 378-388.

Miiller, A., S. Mitsch, W. Retschitzegger, and W. Schwinger (2020). “Towards CPS Verification Engi-
neering”. In: Proc. of the Intl. Conference on Information Integration and Web-Based Applications & Ser-
vices. iiWAS "20. Chiang Mai, Thailand: Association for Computing Machinery, pp. 367-371. DOIL:
10.1145/3428757.3429146.URL: https://doi.org/10.1145/3428757.3429146¢.

Miiller, A., S. Mitsch, W. Retschitzegger, W. Schwinger, and A. Platzer (2018a). “Tactical contract com-
position for hybrid system component verification”. International Journal on Software Tools for Tech-
nology Transfer 20.6, pp. 615-643.

Miiller, A., S. Mitsch, W. Schwinger, and A. Platzer (2018b). “A Component-Based Hybrid Systems
Verification and Implementation Tool in KeYmaera X (Tool Demonstration)”. In: Cyber Physical
Systems. Model-Based Design. Springer, pp. 91—110.

Miiller, P., M. Schwerhoff, and A. J. Summers (2016). “Viper: A verification infrastructure for
permission-based reasoning”. In: Proc. of the Intl. Conference on Verification, Model Checking, and Ab-
stract Interpretation (VMCAI). Springer, pp. 41-62.

Nair, V., T. Menzies, N. Siegmund, and S. Apel (2018). “Faster discovery of faster system configura-
tions with spectral learning”. Proc. of the Intl. Conference on Automated Software Engineering (ASE) 25.2,

pp- 247-277.

Necula, G. C. (1997). “Proof-carrying code”. In: Proc. of the Symposium on Principles of Programming
Languages (POPL). ACM, pp. 106-119.

Neghina, M., C.-B. Zamfirescu, and K. Pierce (2020). “Early-stage analysis of cyber-physical produc-
tion systems through collaborative modelling”. Software and Systems Modeling 19.3, pp. 581-600.

Negri, E., L. Fumagalli, and M. Macchi (2017). “A review of the roles of digital twin in CPS-based
production systems”. Procedia Manufacturing 11, pp. 939-948.

Neyman, J. (1977). “Frequentist probability and frequentist statistics”. Synthese, pp. 97-131.

Nipkow, T., M. Eberl, and M. P. Haslbeck (2020). “Verified Textbook Algorithms”. In: ATVA. Springer,
Pp- 25-53.

Nipkow, T., L. C. Paulson, and M. Wenzel (2002). Isabelle/HOL: a proof assistant for higher-order logic.
Vol. 2283. Springer Science & Business Media.


https://doi.org/10.1145/3428757.3429146
https://doi.org/10.1145/3428757.3429146

210 BIBLIOGRAPHY

Nolte, M., G. Bagschik, I. Jatzkowski, T. Stolte, A. Reschka, and M. Maurer (2017). “Towards a skill-
and ability-based development process for self-aware automated road vehicles”. In: Proc. of the Intl.
Conference on Intelligent Transportation Systems (ITSC). IEEE, pp. 1-6. DOI: https://doi.org/10.
1109/ITSC.2017.8317814.

Nuzzo, P., J. Li, A. L. Sangiovanni-Vincentelli, Y. Xi, and D. Li (2019). “Stochastic assume-guarantee
contracts for cyber-physical system design”. ACM Transactions on Embedded Computing Systems
(TECS) 18.1, pp. 1—26.

Nuzzo, P., M. Lora, Y. A. Feldman, and A. L. Sangiovanni-Vincentelli (2018). “CHASE: Contract-based
requirement engineering for cyber-physical system design”. In: Proc. of the Design, Automation &
Test in Europe Conference (DATE). IEEE, pp. 830-844.

Nuzzo, P., A. L. Sangiovanni-Vincentelli, D. Bresolin, L. Geretti, and T. Villa (2015). “A platform-based
design methodology with contracts and related tools for the design of cyber-physical systems”.
Proceedings of the IEEE 103.11, pp. 2104—2132.

O’Hearn, P. W. (2018). “Continuous reasoning: scaling the impact of formal methods”. In: Proc. of the
Intl. Symposium on Logic in Computer Science (LICS). ACM, pp. 13—25.

Offutt, A. J. and R. H. Untch (2001). “Mutation 2000: Uniting the orthogonal”. Mutation Testing for
the new Century, pp. 34—44-

Offutt, A. J. and J. M. Voas (1996). “Subsumption of condition coverage techniques by mutation
testing”. Department of Information and Software Systems Engineering, George Mason University, Tech.
Rep. ISSE-TR-96-100.

Olaechea, R,, S. Stewart, K. Czarnecki, and D. Rayside (2012). “Modelling and multi-objective opti-
mization of quality attributes in variability-rich software”. In: Proc. of the Intl. Workshop on Nonfunc-
tional System Properties in Domain Specific Modeling Languages (NFPinDSML). ACM, p. 2.

Oliveira, M., A. Cavalcanti, and J. Woodcock (2003). “ArcAngel: a Tactic Language for Refinement”.
Formal Aspects of Computing 15.1, pp. 28—47.

Ozkaya, M. (2017). “Visual Specification and Analysis of Contract-Based Software Architectures”.
Journal of Computer Science and Technology 32.5, pp. 1025-1043.

Ozkaya, M. and C. Kloukinas (2014). “Design-by-Contract for Reusable Components and Realiz-
able Architectures”. In: Proc. of the Intl. Symposium on Component-Based Software Engineering (CBSE),

pp- 129-138.

Pace, D. K. (2004). “Modeling and simulation verification and validation challenges”. Johns Hopkins
APL technical digest 25.2, pp. 163-172.

Pagliari, L., R. Mirandola, and C. Trubiani (2020). “Engineering cyber-physical systems through
performance-based modelling and analysis: A case study experience report”. Journal of Software:
Evolution and Process 32.1, €2179.


https://doi.org/https://doi.org/10.1109/ITSC.2017.8317814
https://doi.org/https://doi.org/10.1109/ITSC.2017.8317814

BIBLIOGRAPHY 211

Papadakis, M., Y. Jia, M. Harman, and Y. Le Traon (2015). “Trivial compiler equivalence: A large scale
empirical study of a simple, fast and effective equivalent mutant detection technique”. In: Proc. of
the Intl. Conference on Software Engineering (ICSE). Vol. 1. IEEE, pp. 936—946.

Papadakis, M., M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M. Harman (2019). “Mutation testing
advances: an analysis and survey”. In: Advances in Computers. Vol. 112. Elsevier, pp. 275-378.

Parnas, D. L. (1972). “On the criteria to be used in decomposing systems into modules”. In: Pioneers
and Their Contributions to Software Engineering. Springer, pp. 479—498.

Pellkofer, M. (2003). “Verhaltensentscheidung fiir autonome Fahrzeuge mit Blickrichtungss-
teuerung”. PhD thesis. Universitit der Bundeswehr Miinchen, Universititsbibliothek.

Pierce, B. C. and C. Benjamin (2002). Types and programming languages. MIT press.

Platzer, A. (2008). “Differential Dynamic Logic for Hybrid Systems”. Journal of Automated Resoning
41.2, pp- 143-189. D01: 10.1007/s10817-008-9103-8. URL: https://doi.org/10.1007/
s10817-008-9103-8.

Platzer, A. (2010). Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics. Springer.
DOI: 10.1007/978-3-642-14509-4. URL: https://doi.org/10.1007/978-3-642-
14509-4.

Platzer, A. (2012). “Logics of Dynamical Systems”. In: Proc. of the Intl. Symposium on Logic in Computer
Science (LICS). IEEE Computer Society, pp. 13—24. DOI: 10.1109/LICS.2012.13. URL: https:
//doi.org/10.1109/LICS.2012.13.

Platzer, A. (2017). “A complete uniform substitution calculus for differential dynamic logic”. Journal
of Automated Resoning 59.2, pp. 219—2065.

Platzer, A. (2018). Logical foundations of cyber-physical systems. Springer.

Pnueli, A. (1977). “The temporal logic of programs”. In: Proc. of the Symposium on Foundations of Com-
puter Science (SFCS). IEEE, pp. 46-57.

Pohl, K., G. Bockle, and F. J. van Der Linden (2005). Software product line engineering: foundations, prin-
ciples and techniques. Springer Science & Business Media.

Poland, K., M. P. McKay, D. Bruce, and E. Becic (2018). “Fatal crash between a car operating with
automated control systems and a tractor-semitrailer truck”. Traffic Injury Prevention 19.sup2, S153—
S156.

Polikarpova, N., I. Ciupa, and B. Meyer (2009). “A comparative study of programmer-written and
automatically inferred contracts”. In: Proc. of the Intl. Symposium on Software Testing and Analysis
(ISSTA), pp. 93-104.

Polikarpova, N., C. A. Furia, Y. Pei, Y. Wei, and B. Meyer (2013). “What good are strong specifications?”
In: Proc. of the Intl. Conference on Software Engineering (ICSE). IEEE, pp. 262—271.


https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1007/978-3-642-14509-4
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1109/LICS.2012.13
https://doi.org/10.1109/LICS.2012.13

212 BIBLIOGRAPHY

Ptolemaeus, C. (2014). System design, modeling, and simulation: using Ptolemy II. Vol. 1. Ptolemy.org
Berkeley.

Queille, J.-P. and J. Sifakis (1982). “Specification and verification of concurrent systems in CESAR”.
In: Proc. of the Intl. Symposium on programming. Springer, pp. 337-351.

Quigley, M, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Y. Ng, et al. (2009). “ROS:
an open-source Robot Operating System”. In: Proc. of the Workshop on Open Source Software. Vol. 3.
3.2. Kobe, Japan, p. .

Rademaker, A., C. Braga, and A. Sztajnberg (2005). “A Rewriting Semantics for a Software Architecture
Description Language”. Electronic Notes in Theoretical Computer Science 130, pp. 345-377.

Rao, A. C,, A. Raouf, G. Dhadyalla, and V. Pasupuleti (2017). “Mutation testing based evaluation of
formal verification tools”. In: Proc. of the Intl. Conference on Dependable Systems and Their Applications
(DSA). IEEE, pp. 1-7.

Rawat, D. B,, J. J. Rodrigues, and I. Stojmenovic (2015). Cyber-Physical Systems: From Theory to Practice.
CRC Press.

Reschka, A. (2017). “Fertigkeiten-und Fihigkeitengraphen als Grundlage des sicheren Betriebs von
automatisierten Fahrzeugen im offentlichen Strassenverkehr in stidtischer Umgebung”. PhD
thesis.

Reschka, A., G. Bagschik, S. Ulbrich, M. Nolte, and M. Maurer (2015). “Ability and skill graphs for
system modeling, online monitoring, and decision support for vehicle guidance systems”. In: Proc.
of the IEEE Intelligent Vehicles Symposium (IV). IEEE, pp. 933-939.

Reussner, R. H., H. W. Schmidt, and I. H. Poernomo (2003). “Reliability Prediction for Component-
Based Software Architectures”. Journal of Systems and Software 66.3, pp. 241—252.

Rice, D. (2019). “The Driverless Car and the Legal System: Hopes and Fears as the Courts, Regulatory
Agencies, Waymo, Tesla, and Uber deal with this Exciting and Terrifying new Technology”. Journal
of Strategic Innovation and Sustainability (JSIS) 14.1, pp. 134-146.

Richter, C. and H. Wehrheim (2019). “Pesco: Predicting sequential combinations of verifiers”. In:
Proc. of the Intl. Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS

). Springer, pp. 229-233.

Ringer, T., N. Yazdani, J. Leo, and D. Grossman (2018). “Adapting proof automation to adapt proofs”.
In: Proc. of the Intl. Conference on Certified Programs and Proofs (CPP), pp. 115-129.

Roy, C. and W. Oberkampf (2010). “A complete framework for verification, validation, and uncer-
tainty quantification in scientific computing”. In: Proc. of the AIAA Aerospace Sciences Meeting In-
cluding the New Horizons Forum and Aerospace Exposition, p. 124.

Rozier, K. Y. (2016). “Specification: The biggest bottleneck in formal methods and autonomy”. In:
Proc. of the Working Conference on Verified Software: Theories, Tools, and Experiments (VSTTE). Springer,
pPp. 8—26.



BIBLIOGRAPHY 213

Ruchkin, I., J. Sunshine, G. Iraci, B. Schmerl], and D. Garlan (2018). “IPL: an integration property
language for multi-model cyber-physical systems”. In: Proc. of the International Symposium on Formal
Methods (FM). Springer, pp. 165-184.

Runge, T., A. Kniippel, T. Thiim, and I. Schaefer (2020). “Lattice-Based Information Flow Control-by-
Construction for Security-by-Design”. In: Proc. in the Intl. Conference on Formal Methods in Software
Engineering (FormaliSE). ACM, pp. 44—54. DOI: 10 .1145/3372020.3391565. URL: https://
doi.org/10.1145/3372020.3391565.

Runge, T., I. Schaefer, L. Cleophas, T. Thiim, D. G. Kourie, and B. W. Watson (2019a). “Tool Support
for Correctness-by-Construction”. In: Proc. of the Intl. Conference on Fundamental Approaches to Soft-
ware Engineering (FASE). Ed. by R. Hihnle and W. M. P. van der Aalst. Vol. 11424. Lecture Notes in
Computer Science. Springer, pp. 25—42.D01: 10.1007/978-3-030-16722-6\_2.URL: https:
//doi.org/10.1007/978-3-030-16722-6%5C_2.

Runge, T., T. Thiim, L. Cleophas, I. Schaefer, and B. W. Watson (2019b). “Comparing correctness-by-
construction with post-hoc verificationa qualitative user study”. In: Proc. of the Intl. Symposium on
Formal Methods — International Workshops (FM Workshops). Springer, pp. 388—405.

Sampigethaya, K. and R. Poovendran (2013). “Aviation CyberPhysical Systems: Foundations for Fu-
ture Aircraft and Air Transport”. Proceedings of the IEEE 101.8, pp. 1834-1855. por: 10 . 1109 /
JPROC.2012.2235131.

Sangiovanni-Vincentelli, A, W. Damm, and R. Passerone (2012). “Taming Dr. Frankenstein:
Contract-Based Design for Cyber-Physical Systems”. European Journal of Control 18.3, pp. 217—238.

Schmidt, D. C. (2006). “Model-driven engineering”. IEEE Computer Society 39.2, p. 25.

Schumann, J. M. (2001). Automated theorem proving in software engineering. Springer Science & Business
Media.

Seceleanu, C., M. Johansson, J. Suryadevara, G. Sapienza, T. Seceleanu, S.-E. Ellevseth, and P. Pet-
tersson (2017). “Analyzing a wind turbine system: From simulation to formal verification”. Science
of Computer Programming 133, pp. 216—242.

Shaffer, J. P. (1995). “Multiple hypothesis testing”. Annual review of psychology 46.1, pp. 561-584.

Shah, S., D. Dey, C. Lovett, and A. Kapoor (2018). “Airsim: High-fidelity visual and physical simulation
for autonomous vehicles”. In: Proc. of the Intl. Conference on Field and service robotics (ICFSR). Springer,

pp- 621-635.

Siedersberger, K.-H. (2004). “Komponenten zur automatischen Fahrzeugfithrung in sehenden
(semi-)autonomen Fahrzeugen”. PhD thesis. BU Miinchen.

Siegmund, N., A. Grebhahn, S. Apel, and C. Kistner (2015). “Performance-influence models for highly
configurable systems”. In: Proc. of the Intl. Symposium on the Foundations of Software Engineering (FSE),

PPp- 284-294.


https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1145/3372020.3391565
https://doi.org/10.1007/978-3-030-16722-6\_2
https://doi.org/10.1007/978-3-030-16722-6%5C_2
https://doi.org/10.1007/978-3-030-16722-6%5C_2
https://doi.org/10.1109/JPROC.2012.2235131
https://doi.org/10.1109/JPROC.2012.2235131

214 BIBLIOGRAPHY

Siegmund, N., M. Rosenmiiller, M. Kuhlemann, C. Kistner, S. Apel, and G. Saake (2012). “SPL Con-
queror: Toward optimization of non-functional properties in software product lines”. Software

Quality Journal 20.3-4, pp. 487-517.
Stolte, T., A. Reschka, G. Bagschik, and M. Maurer (2015). “Towards Automated Driving: Unmanned

Protective Vehicle for Highway Hard Shoulder Road Works”. In: Proc. of the Intl. Conference on In-
telligent Transportation Systems (ITSC). IEEE, pp. 672—677.

Summers, A. J. and P. Miiller (2018). “Automating deductive verification for weak-memory pro-
grams”. In: Proc. of the Intl. Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems (TACAS). Springer, pp. 190—209.

Tabuada, P. (2009). Verification and control of hybrid systems: a symbolic approach. Springer Science &
Business Media. por: 10.1007/978-1-4419-0224-5.

Tan, Y. K. and A. Platzer (2021). “Switched systems as hybrid programs”. IFAC-PapersOnLine 54.5,
PP. 247-252.

Thiim, T., A. Kniippel, S. Kriiger, S. Bolle, and I. Schaefer (2019). “Feature-oriented contract compo-
sition”. Journal of Systems and Software 152, pp. 83-107.

Turing, A. M. (1937). “On computable numbers, with an application to the Entscheidungsproblem”.
Proc. of the London Mathematical Society 2.1, pp. 230—2065.

UML 2 (2017). OMG Unified Modeling Language Specification in Version 2.5.1. http: / /www.omg.org/
spec/UML/2.5.1. Accessed: 2021-10-04.

Van Emden, E. and L. Moonen (2002). “Java quality assurance by detecting code smells”. In: Proc. of
the Working Conference on Reverse Engineering (WCRE). IEEE, pp. 97-106.

Varshosaz, M., M. Al-Hajjaji, T. Thiim, T. Runge, M. R. Mousavi, and I. Schaefer (2018). “A classi-
fication of product sampling for software product lines”. In: Proc. of the Intl. Systems and Software
Product Line Conference (SPLC). Vol. 1. ACM, pp. 1-13.

Wasilewska, A., Wasilewska, and Drougas (2018). Logics for computer science. Springer.

Wei, Y., C. A. Furia, N. Kazmin, and B. Meyer (2011). “Inferring better contracts”. In: Proc. of the Intl.
Conference on Software Engineering (ICSE), pp. 191—200.

Weidenbach, C., D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski (2009). “SPASS Ver-
sion 3.5”. In: Proc. of the Intl. Conference on Automated Deduction (CADE). Springer, pp. 140-145.

Westman, J., M. Nyberg, and M. Térngren (2013). “Structuring safety requirements in ISO 26262
using contract theory”. In: Proc. of the Intl. Conference on Computer Safety, Reliability, and Security
(SAFECOMP). Springer, pp. 166-177.

Winskel, G. (1993). The formal semantics of programming languages: an introduction. MIT press.

Wirth, N. (2001). “Program development by stepwise refinement”. In: Pioneers and Their Contributions
to Software Engineering. Springer, pp. 545-569.


https://doi.org/10.1007/978-1-4419-0224-5
http://www.omg.org/spec/UML/2.5.1
http://www.omg.org/spec/UML/2.5.1

BIBLIOGRAPHY 215

Wohlin, C., P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslén (2012). Experimentation
in software engineering. Springer Science & Business Media.

Wu, F., W. Weimer, M. Harman, Y. Jia, and J. Krinke (2015). “Deep parameter optimisation”. In: Proc.
of the Intl. Genetic and Evolutionary Computation Conference (GECCO). ACM, pp. 1375-1382.

Xi, B., Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang (2004). “A smart hill-climbing algorithm for
application server configuration”. In: Proc. of the Intl. Conference on World Wide Web. ACM, pp. 287—
290.

Yigitbasi, N., T. L. Willke, G. Liao, and D. Epema (2013). “Towards machine learning-based auto-
tuning of mapreduce”. In: Proc. of the Intl. Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems (MASCOTS). IEEE, pp. 11—20.

Yu, R, Y. Zhang, and J. Xuan (2020). “MetPurity: a learning-based tool of pure method identification
for automatic test generation”. In: Proc. of the Intl. Conference on Automated Software Engineering (ASE).
IEEE, pp. 1326-1330.

Zhan, N., S. Wang, and H. Zhao (2013). “Formal modelling, analysis and verification of hybrid sys-
tems”. In: Unifying Theories of Programming and Formal Engineering Methods. Springer, pp. 207-281.

Zhang, L. (2013). “Specifying and modeling automotive cyber physical systems”. In: Proc. of the Intl.
Conference on Computational Science and Engineering (CSE). IEEE, pp. 603-610.

Zhang, L. (2014). “Modeling large scale complex cyber physical control systems based on system of
systems engineering approach”. In: Proc. of the Intl. Conference on Automation and Computing (ICAC).
IEEE, pp. 55-60.

Zhang, Y., ]. Guo, E. Blais, and K. Czarnecki (2015). “Performance prediction of configurable software
systems by Fourier learning (t)". In: Proc. of the Intl. Conference on Automated Software Engineering
(ASE). IEEE, pp. 365-373.

Zheng, W., R. Bianchini, and T. D. Nguyen (2007). “Automatic configuration of internet services”.
ACM SIGOPS Operating Systems Review 41.3, pp. 219—229.

Zimmerman, D. W. (1998). “Invalidation of parametric and nonparametric statistical tests by con-
current violation of two assumptions”. The Journal of experimental education 67.1, pp. 55-68.









Technische Universitit Carolo-Wilhelmina Braunschweig
Institut fiir Softwaretechnik und Fahrzeuginformatik

Miihlenpfordtstr. 23
D-38106 Braunschweig




	Abstract
	Zusammenfassung
	Acknowledgements
	Publications
	Contents
	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	Challenges for Maneuver-Centric Modeling and Verification
	Research Questions
	Approach
	Reader's Guide

	Background
	Software Contracts and Contract-based Verification
	Software Contracts
	Contract-based Verification
	Correctness-by-Construction

	Hybrid Systems Modeling and Verification
	Hybrid Programs
	Differential Dynamic Logic (dL)

	Assume-Guarantee Reasoning

	A Formal Foundation for Skill Graphs
	Elements of Skill-Based Modeling
	Requirements Elicitation
	Running Examples

	Modeling Computation
	A Program Notation for Skills
	Hybrid Mode Automata

	Syntax and Semantics of Skills and Skill Graphs
	Formalization
	Composition of Skill Graphs

	Modular Verification of Skill Graphs
	Transformation to Differential Dynamic Logic (dL)
	Compositional Verification

	Case Study: Vehicle Follow Mode
	Open-Source Tool Support
	Setup
	Results and Insights
	Threats to Validity

	Discussion
	Related Work
	Chapter Summary

	Virtual Prototyping of Skill-Graph Maneuvers
	Overview of the Verification and Validation Pipeline
	The ArchiCorC Component Model
	Interface Definition
	Contract Refinement
	Component Definition and Composition
	Excursion: ArchiCorC Code Generation in Java
	Discussion

	Tool Support for Virtual Validation of Skill Graphs
	Automating ArchiCorC Component Generation
	Example: Interfacing with AirSim

	Evaluation
	Case Studies and Setup
	Results and Insights
	Threats to Validity

	Related Work
	Chapter Summary

	A Study on Mutation Analysis for Software Contracts
	Motivating Example
	A Taxonomy for Incomplete Specifications
	A Definition of Contract Strength
	A Classification of Incomplete Contracts

	Mutation Analysis for Software Contracts
	Overview of the Mutation Analysis
	Mutation Operators
	Three Software Metrics for Contract Incompleteness
	Soundness and Completeness

	Evaluation
	Prototypical Implementation
	Methodology and Evaluated Projects
	Results and Insights
	Threats to Validity

	Related Work
	Chapter Summary

	Guido: Guiding Developers in Configuring Deductive Program Verifiers
	Problem Statement
	Overview of Guido
	Configurable Verification Systems
	Statistical Hypothesis Testing
	Guido Workflow

	A Data-Driven Framework for Automatic Configuration
	Offline Training: Data Set Acquisition and Hypothesis Testing
	Online Configuration Search as an Optimization Problem
	Summary of Main Algorithm

	Open-Source Implementation
	Illustrative Application on Deductive Program verification with KeY
	Evaluation
	Methodology and Evaluated Projects
	Results and Insights
	Threats to Validity

	Related Work
	Chapter Summary

	Conclusion
	Contribution
	Future Work

	Appendix
	Results of the Mutation Analysis
	Supplemental Material for Guido
	Hypotheses for KeY-2.7.0
	Hypotheses for CPAchecker-4.9.0

	Bibliography

	Titelblatt_Diss_Alexander_Kittelmann.pdf
	Abstract
	Zusammenfassung
	Acknowledgements
	Publications
	Contents
	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	Challenges for Maneuver-Centric Modeling and Verification
	Research Questions
	Approach
	Reader's Guide

	Background
	Software Contracts and Contract-based Verification
	Software Contracts
	Contract-based Verification
	Correctness-by-Construction

	Hybrid Systems Modeling and Verification
	Hybrid Programs
	Differential Dynamic Logic (dL)

	Assume-Guarantee Reasoning

	A Formal Foundation for Skill Graphs
	Elements of Skill-Based Modeling
	Requirements Elicitation
	Running Examples

	Modeling Computation
	A Program Notation for Skills
	Hybrid Mode Automata

	Syntax and Semantics of Skills and Skill Graphs
	Formalization
	Composition of Skill Graphs

	Modular Verification of Skill Graphs
	Transformation to Differential Dynamic Logic (dL)
	Compositional Verification

	Case Study: Vehicle Follow Mode
	Open-Source Tool Support
	Setup
	Results and Insights
	Threats to Validity

	Discussion
	Related Work
	Chapter Summary

	Virtual Prototyping of Skill-Graph Maneuvers
	Overview of the Verification and Validation Pipeline
	The ArchiCorC Component Model
	Interface Definition
	Contract Refinement
	Component Definition and Composition
	Excursion: ArchiCorC Code Generation in Java
	Discussion

	Tool Support for Virtual Validation of Skill Graphs
	Automating ArchiCorC Component Generation
	Example: Interfacing with AirSim

	Evaluation
	Case Studies and Setup
	Results and Insights
	Threats to Validity

	Related Work
	Chapter Summary

	A Study on Mutation Analysis for Software Contracts
	Motivating Example
	A Taxonomy for Incomplete Specifications
	A Definition of Contract Strength
	A Classification of Incomplete Contracts

	Mutation Analysis for Software Contracts
	Overview of the Mutation Analysis
	Mutation Operators
	Three Software Metrics for Contract Incompleteness
	Soundness and Completeness

	Evaluation
	Prototypical Implementation
	Methodology and Evaluated Projects
	Results and Insights
	Threats to Validity

	Related Work
	Chapter Summary

	Guido: Guiding Developers in Configuring Deductive Program Verifiers
	Problem Statement
	Overview of Guido
	Configurable Verification Systems
	Statistical Hypothesis Testing
	Guido Workflow

	A Data-Driven Framework for Automatic Configuration
	Offline Training: Data Set Acquisition and Hypothesis Testing
	Online Configuration Search as an Optimization Problem
	Summary of Main Algorithm

	Open-Source Implementation
	Illustrative Application on Deductive Program verification with KeY
	Evaluation
	Methodology and Evaluated Projects
	Results and Insights
	Threats to Validity

	Related Work
	Chapter Summary

	Conclusion
	Contribution
	Future Work

	Appendix
	Results of the Mutation Analysis
	Supplemental Material for Guido
	Hypotheses for KeY-2.7.0
	Hypotheses for CPAchecker-4.9.0

	Bibliography





