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Abstract

Majorana bound states (MBSs) offer a promising route to fault-tolerant
quantum computation, because of their non-Abelian anyonic exchange
statistics. They emerge as protected boundary modes of one dimensional
topological superconductors (TSCs). Due to the finite size of these TSCs
the wave functions of the two MBSs can spread across the whole TSC
which leads to the possibility to access both MBSs at the same end of the
TSC.

The goal of this thesis is to propose experimental signatures of the
Majorana non locality in the context of electronic transport. The setups
considered in this work are a metallic lead-TSC-quantum dot setup and
a Josephson junction consisting of an s-wave superconducting lead and a
Majorana nanowire.

In the case of the metallic lead-TSC-quantum dot setup we first consider
a spinless system in which the Majorana system is described with a Kitaev
chain. Here, we show that a pair of Fano resonances arises as a function
of dot level energy in the differential conductance. In an analytical low-
energy description, we show that in the case of isolated MBS, i.e. only one
MBS is contacted by the lead and the second MBS is only contacted by
the quantum dot, these Fano resonances are invariant under a sign change
of the dot level energy. This symmetry, however, is broken as soon as we
allow the quantum dot to not only couple to one but also to the second
MBS. In a numerical analysis using the full Kitaev chain and long range
hoppings between the Kitaev chain and the lead and dot, respectively, we
confirm the low-energy findings.

Next, we consider a spinful model, in which the MBS system is given by
a semiconducting nanowire with Rashba spin orbit interaction, proximity
induced s-wave superconductivity and an applied Zeeman field. We also
include Coulomb interaction on the quantum dot which we treat using
a mean field approximation. In this scenario, we find that even without
a coupling to the dot the transport properties can be used to determine
the different couplings to both MBSs. Furthermore, we find that the
spin canting angles of the MBSs have a profound influence on the low-
energy transport properties. We underline our analytical findings with a
numerical treatment of the proposed transport setup where we apply the
mean field approximation for the Coulomb energy selfconsistently.

For the Josephson junction we use the quasidegenerate perturbation
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theory to obtain an effective low-energy Hamiltonian. Our calculations
show that the MBSs only contribute to the equilibrium Josephson cur-
rent if both of them can be adressed by electron tunneling from the lead.
Moreover, we find that the critical current is oscillating as a function of
applied Zeeman field and exhibits a sign change at parity crossings. We
can attribute these oscillations to the rotation of the spin of the MBS more
distant to the junction. A numerical analysis reveals the contributions of
higher energy states due to a residual s-wave pairing in the topologically
non-trivial regime which shadow the signatures related to the MBSs. We
therefore suggest an experimental scheme that uses quasiparticle poison-
ing to unveil the Majorana contributions.
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Zusammenfassung

Majorana bound states (MBSs) bieten aufgrund ihrer nicht-Abelschen
anyonischen Austauschstatistik einen vielversprechenden Ansatz fiir einen
fehlertoleranten Quantencomputer. Sie entstehen als geschiitzte Grenz-
zustdnde von eindimensionalen topologischen Supraleitern (TSCs). Auf-
grund der endlichen Grofie dieser TSCs kann sich die Wellenfunktion der
beiden MBSs iiber den gesamten TSC ausbreiten, was zu der Moglichkeit
fiihrt, auf beide MBSs am gleichen Ende des TSC zuzugreifen.

Das Ziel dieser Arbeit ist es, experimentelle Signaturen der Majorana
Nicht-Lokalitdt im Rahmen des elektronischen Transorts vorzuschlagen.
Die in dieser Arbeit betrachteten Setups sind eine metallische Zuleitung-
TSC-Quantenpunkt- anordung und ein Josephsonkontakt bestehend aus
einem s-Wellen-Supraleiter und einem Majorana-Nanodraht. Im Falle
der metallischen Zuleitung-TSC-Quantenpunktanordnung betrachten wir
zunéchst ein spinloses System, bei dem das Majorana-System mit einer
Kitaev-Kette beschrieben wird. Hier zeigen wir, dass ein Paar Fano-
Resonanzen als Funktion der Quantenpunktenergie in der differentiellen
Leitfahigkeit entsteht. In einer analytischen Niederenergiebeschreibung
zeigen wir, dass bei isolierten MBSs, d.h. nur ein MBS wird von der
Leitung und der zweite MBS wird nur von dem Quantenpunkt kontak-
tiert, diese Fano-Resonanzen invariant unter einer Vorzeicheninderung
der Quantenpunktenergie sind. Diese Symmetrie wird jedoch gebrochen,
sobald wir zulassen, dass der Quantenpunkt nicht nur an ein, sondern
auch an das zweite MBS gekoppelt wird. In einer numerischen Anal-
yse mit der gesamten Kitaev-Kette und langeweitreichenden Hiipftermen
zwischen der Kitaev-Kette und der Leitung bzw. dem Quantenpunkte
bestétigen wir die Ergebnisse des Niederenergiemodells.

Als n#chstes betrachten wir ein Modell mit Spin, bei dem das MBS-
System durch einen halbleitenden Nanodraht mit Rashba-Spinorbitwech-
selwirkung, induzierter s-Wellen Supraleitung und einem angelegten Zee-
man-Feld gegeben ist. Wir betrachten auch die Coulombwechselwirkung
auf dem Quantenpunkt, die wir mit einer Molekularfeldndherung beschrei-
ben. In diesem Szenario stellen wir fest, dass auch ohne Kopplung an
den Quantenpunkt die Transporteigenschaften genutzt werden koénnen,
um die unterschiedlichen Kopplungen zu beiden MBSs zu bestimmen.
Dariiber hinaus stellen wir fest, dass die Spinrotationswinkel der MBSs
einen wesentlichen Einfluss auf die Eigenschaften des Niedrigenergietrans-



ports haben. Wir unterstiitzen unsere analytischen Ergebnisse mit einer
selbstkonsistenten numerischen Behandlung des vorgeschlagenen Trans-
portsetups.

Fiir den Josephsonkontakt verwenden wir die quasientartete Stérungs-
theorie, um einen effektiven niederenergetischen Hamiltonoperator zu er-
halten. Unsere Berechnungen zeigen, dass die MBSs nur dann zum Gleich-
gewichts-Josephsonstrom beitragen, wenn beide durch Elektronentunneln
von der Zu- leitung adressiert werden kénnen. Dariiber hinaus stellen wir
fest, dass der kritische Strom in Abhéngigkeit vom angelegten Zeeman-
Feld oszilliert und eine Vorzeichenénderung an Paritétsiibergingen er-
fahrt. Wir kénnen diese Oszillationen auf die Drehung des Spins des MBS,
der weiter vom Ubergang entfernt ist, zuriickfiihren. Eine numerische
Analyse zeigt zusétzliche Beitrige héherer Energiezustinde aufgrund einer
verbleibenden s-Wellenpaarung im topologisch nicht-trivialen Regime, die
die Signaturen im Zusammenhang mit den MBSs {iberschatten. Wir schla-
gen daher ein experimentelles Schema vor, das die Majorana-Beitréige
durch Quasiteilchen-Vergiftung enthiillt.
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1. Introduction

In his 1982 keynote speech “Simulating Physics with Computers” Richard
Feynman asks two important questions “Can physics be simulated by
a universal computer?’ and “Can a quantum system be probabilisti-
cally simulated by a classical (probabilistic, I'd assume) universal com-
puter?” |1]. His answer to the second question is plainly “certainly, No!”,
because it is a so-called hidden-variable problem. To answer the first
question it is important to note that the physical world is a quantum me-
chanical world. In general, the number of variables describing a quantum
system growths exponentially with the number of particles N so that a
classical computer with N number of elements cannot be used to efficiently
simulate the quantum system, but N quantum computer elements could
be. In my opinion, this is the most important use of quantum computer
elements, because it allows us to dive deeply in interacting models which
could lead to new advances in material science.

Recently, the researcher team around John M. Martinis was able to
show quantum supremacy |2] Quantum supremacy means that they were
able to perform a computation task, for which a state-of-the-art classical
computer would need thousands of years [3]. Even though the specific
computational task they performed has so far no practical application,
it is an important milestone in the realization of a universal quantum
computer.

The fundamental quantum computer elements needed to construct a
working quantum computer are called qubits and they are the quantum
analogon to the classical bits. Principally, the qubit is a quantum mechan-
ical two-level system described by the two orthogonal computation basis
states |0) and |1) [4]. Because quantum mechanics allows for superposi-
tions of these states and also for entanglement the Hilbert space of IV of
these qubits becomes exponentially large. The evolution of the qubits is
performed by quantum gates, unitary operations that can perform any de-
sired state transformation. In order to build a quantum computer physical
realizations of these qubits should be scalable, a state of the qubit has to
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be initialized, coherence time need to be large compared to gate operation
times, a universal set of gates is needed and a qubit-specific measurement
capability [5]. These criteria are also known as DiVincenzo criteria.

There are several experimental approaches to creating qubits that sat-
isfy the DiVincenzo criteria. For example the spin of a single electron
in a quantum dot |6,|7]. Here, the spin direction (e.g. up and down)
correspond to the two computational basis states. Another physical real-
ization involving spin is quantum computation based on atomic nuclei [g],
nitrogen-vacancy centers in diamonds [9] or molecular magnets [10]. It is
also possible to use the charge states of a double quantum dot (i.e. the
position of the electron) as a qubit [11]. The route that the researcher
team around John M. Martinis chose was to use superconducting qubits,
where the qubit is implemented using small Josephson junctions [12}[13].
These are just a few examples of the proposed realizations of qubits for
quantum computation [14]. The main problems that need to be overcome
are that errors might enter the system either in the form of inaccuracies
of experimental control or uncontrollable perturbations from the envi-
ronment [15]. A solution for this obstacle is error correction codes that
have already been developed |16}/17] that at least theoretically allow for
meaningful quantum information processing. But still, full scale quantum
computing is not within reach of current state-of-the-art experiments, so
that there is still a lot of research directed at new ways of creating and
manipulating qubit states.

An interesting way to achieve fault-tolerant quantum computation is
to use the exchange statistics of non-Abelian anyons [15|18]. If these
anyons would be elementary particles they would be robust up to high
energy scales and therefore the quantum information encoded in their fu-
sion Hilbert space would be resilient and error-free quantum computation
could be performed straightforwardly. However, in reality they are realized
as emergent quasiparticles in topological systems which makes them still
somewhat robust. They are protected from probabilistic errors (e.g. due
to finite temperature) by the presence of a finite excitation energy gap.
Also, because the information is encoded non-locally in these systems,
environmental errors that act as local perturbations to the Hamiltonian
are drastically reduced [19] as long as the anyons are kept far apart. In
addition, the exotic exchange statistics of these anyons can be exploited
to perform unitary gate operations by simple exchange operations where
the concrete realization of the exchange path does not matter (as long
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as the anyons remain far apart) only its topology [15]. Because of this,
these topological quantum gates are very robust. But, not all non-Abelian
anyons have the needed complexity in their exchange statistic to realize
a universal set of gates. Missing gates than need to be introduced via
topologically non-protected and therefore possible quite noisy gates |20].

Early proposal for quantum computing with non-Abelian anyons was
based on the v = 5/2 fractional quantum Hall state [21},22]. Other non-
Abelian states that were in the focus of much research in the last years are
Majorana zero modes that are predicted to arise as emergent quasiparti-
cles in topological superconductors [23128]. Aside from their useful ap-
plication in topological quantum computation schemes they also have the
interesting fundamental property that these quasiparticles are also their
own anti-particles [29]. In order to use these Majorana zero modes for
topological quantum computation, their existence and their fundamental
properties need to be established. The goal of this thesis is to contribute
proposals for detection schemes for these Majorana modes with an em-
phasis on the fact that in any experimental realization the non-Abelian
Majorana quasiparticles are not infinitely spaced from one another but
that finite size effects can have a major role in their electronic transport
signatures.

In the remainder of this introductory chapter, we introduce the concept
of topology in condensed matter systems and cover the basics of creation,
characterization and manipulation of Majorana bound states (MBSs). A
full review of topological quantum computation and all details about Ma-
jorana fermions are beyond the scope of this thesis, however this intro-
ductory chapter will contextualize the findings of the succeeding chapters.
The results of the works presented in the main part of this thesis are sum-
marized in Sec.

1.1. Topological superconductivity

In this chapter, we introduce the basic concepts behind the creation, char-
acterization and manipulation of MBSs. We first start with a general
introduction of topological materials, before focusing on topological su-
perconductors and the emergence of MBSs. We also give a brief overview
of how to use MBS for topological quantum computation schemes.
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1.1.1. The notion of topology in condensed matter
systems

In mathematics topology is used to classify shapes. Two shapes are said
to have the same topology if they can be continuously transformed into
each other. The mathematical concept of topology can also be trans-
ferred to quantum mechanical wave functions and the Nobel prize 2016
was given to Thouless, Kosterlitz and Haldane for the theoretical discover-
ies of topological phase transitions and topological phases of matter [30].
These topological phase transitions are special in the sense that no spon-
taneous symmetry breaking is associated with them [31]. In addition, to
this fundamental feature topological phases of matter are highly robust.
In general, the topology of a given object is characterized by an integer
number, the topological invariant. And because it is integer it cannot be
changed continuously.

The first quantum mechanical system to be recognized to have a non-
trivial topology was the quantum Hall effect. Non-trivial in this context
means that its topology is distinct from that of the vacuum which is
considered to have the trivial topology. Thouless, Kohomoto, Nightingale
and de Nijs discovered that the quantum Hall state can be characterized
by the TKNN number [32] a topological invariant. Later it was shown that
the TKNN number can be derived in the form of the Chern number [33].

Another interesting feature of topological materials is the so called bulk-
boundary correspondence. It connects the existence of boundary modes
with the topological invariant which is a bulk property. In the case of
quantum Hall systems these boundary modes are one-dimensional chiral
edge modes that lead to ballistic transport along the edges of a given
quantum Hall sample [34]. In general, the boundaries at which these
states emerge are boundaries where the topological invariant changes.

To determine the topology of a quantum state it is very important to
consider the symmetry of the underlying Hamiltonian. For example with
no assumed symmetry the only possible topological non-trivial state in up
to three dimensions is the quantum Hall state which is characterized by
a nonzero Chern number [35]. For the combination (or lack) of the dis-
crete symmetries particle-hole, chiral and time-reversal symmetry exists
a classification of topological invariants for arbitrary dimensions, the so
called periodic table of topological invariants [36]. For example in a two
dimensional system with only time-reversal symmetry 72 = —1 where
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T is the time-reversal operator the topological invariant is a Zs num-
ber [37139]. In addition, spatial symmetries (crystal symmetries) can also
lead to topological phases. Material systems with these properties are
called topological crystalline insulators [40]. A combination of temporal
and spatial symmetries can lead to so called higher-order topological in-
sulators [41H44]. These higher-order topologies in d-dimensional systems
lead to (d — 2)-dimensional boundary modes (for three-dimensional sys-
tems these are hinge modes and for two-dimensional systems these are
corner modes).

All the so far discussed topological systems have in common that they
have a distinct ground state that is separated from the excited states by an
energy gap. The topology of these system can only be changed when this
gap closes. Thus, the gap also protects the topological boundary modes.
We want to note here, that also gapless topological materials exist for
example Weyl semimetals or Dirac semimetals [45].

1.1.2. Superconductivity - Bogoliubov-de Gennes
formalism

Before discussing the properties of topological superconductors, we take
a step back and focus on the essential features of superconductivity it-
self. Superconductivity arises in the presence of an attractive interaction
between two electrons. The single band Hamiltonian for an appropriate
interaction in momentum space is

H= Z 63152(k:)c}:mlcks2 (1.1)

k,s1,52

+ % Z ‘/;1325354(’6,k/)CT_kSICL&Ck/SSC,k/SU
k,k',s1,82,583,54
where c,TCS creates an electron with spin s and momentum k, and e, 5, (k)
is the band Hamiltonian which is a 2 x 2 matrix in spin space. Its spin
dependence can arise for example from spin orbit coupling [46}{47]. In
mean field approximation the Hamiltonian becomes [48|

1
H= Z 5180 (k?)CLSlesQ + 3 Z {Aslw(k:)cislcf_ks2 + h.c.] , (1.2)

k,s1,82 k,s1,s2
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where we introduced the pair potential
Asiso (k) = =3 ks au.6s Vsisasssa (b, k') (Chrsgc—krs,). This pair potential
obeys the relation A; g, (k) = —Ag,s, (—k), because of the Fermi statis-
tics of cgs. The mean field Hamiltonian no longer conserves the particle
number, however the parity (the number of electrons modulo 2) is still a
conserved quantity. The Hamiltonian can be rewritten conveniently
in matrix form

1 Cks
H=3 Y (Choy kst Hac (CT ’ ) (1.3)

k,s1,s2 —ks2

with

Hpac (k) = ( Agg’& _ﬁ;lw((fi)) : (1.4)

S182

To arrive at this matrix form we neglected a constant energy shift. This
matrix form now obeys the particle-hole symmetry

CHpac(k)C™" = —Hpac(—k), (1.5)

with the anti-unitary operator

C= ( 0 120“) K, (1.6)

IQ><2

and K the complex conjugation operator. This symmetry arises because
of the redundancy within the Hamiltonian. That redundancy comes from
the fact that the components of (c};s1 ,C—ks, ) are not independent, but are
connected via hermitian conjugation which is of course reflected in the
Hamiltonian.

The eigenvalue problem

Hpac(k)V(k) = E(k)¥ (k) (1.7)

is called Bogoliubov-de Gennes (BdG) equation. The previous mentioned
particle-hole symmetry also leads to

Hpac(k)CU(—k) = —E(—k)CU(—k), (1.8)

which means that the eigenenergies E(k) and —FE(—k) come in pairs. And
for every solution of the BAG equation ¢ = (ut(k), u,(k), vi(—k), v} (—k)T
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there is a particle-hole conjugate partner Ct that is also a solution of the
BdG equation. The four eigenvalues of the 4 x 4 BAG Hamiltonian are
therefore (F1(k), Ea(k),—E1(—k), —E2(—k)) with E;(k) > 0. Without
loss of generality, it is enough to focus on the positive energy solutions
(because of the artificial doubling of degrees of freedom). If we diagonalize
the Hamiltonian and reenter the solutions (") (k) that correspond to the

energy E;(k) into Eq. (1.3) we obtain

H = ZEi(k)'y,Lﬂki, (1.9)
ki
where ] )
i = 3 (0 R)ews + 00 (Rl ) (110)

S

describe the quasiparticle excitations with energy FE;(k). These quasi-
particles are called Bogoliubov quasiparticles. The two energy bands
(i = 1,2) reflect the two spin degrees of freedom in the Hamiltonian
we started with. The operators ~yg; obey the fermionic anti-commutation
relation and for the ground state of the superconductor |0) we find

Vki |0) = 0, (1.11)

which implies that all negative energy states are occupied.

The BdG equation also allows us to introduce a boundary to the system
straight forwardly. By replacing k with —i0, the BAG equation becomes
a differential equation

e W b
. u uy (T
Hpac(—ids) | 3 —E| Y , 1.12
Bac(~is) UT(CE) UT(w) ( )
i () vj ()
where a boundary condition can be introduced for example as
up (o)
ug(@o) | _ (1.13)
vi (o)
v} (o)

Another advantage is that this equation now can also include position de-
pendent potentials by including them into e, 5, (—20;). It is also possible
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to include defects by extending Ay, s, (—i0z) — Ag, s, (—i0s, ). Further-
more, the BAG equation allows us to use a lattice model in order for us to
consider a boundary. We can discretize the real space and the real space
derivative, which leads to a tight binding version of the BAG equation
that we can solve on a computer effectively. We also want to note here
that bound states can arise at these boundaries or defects. These bound
states are generally called Andreev bound states.

The Cooper pairs that form because of the attractive interaction are
formed from two spin 1/2 particles. Therefore, they can either be in a
spin-singlet (spin angular momentum 0) or a spin-triplet (spin angular
momentum 1) configuration. This is then also transferred to the pairing
potential Az (k). It is antisymmetric in spin space for spin-singlet Cooper
pairs and symmetric in spin space for spin-triplet Cooper pairs. In analogy
with the classification of atomic orbitals, superconductors with Cooper
pairs with orbital angular momentum of [ = 0,1,2,3 are called s-wave,
p-wave, d-wave and f-wave superconductors, respectively.

1.1.3. Majorana modes in topological
superconductors

Ettore Majorana showed that real solutions to the Dirac equations are
possible as he found a suitable set of 4 x 4 matrices with pure imagi-
nary components that also obey the Clifford algebra [49]. Fermions de-
scribed by these real fields have the interesting property that they are
their own antiparticle, because particle and anti-particle are connected via
a complex conjugation of their respective fields. In second quantization
this would correspond to self-hermitian creation operators for Majorana
fermions v = v!. Because particle and antiparticle have opposite charge,
these Majorana fermions thus have to have zero charge. Currently, it is
suspected that neutrinos might be Majorana fermions, however the double
beta decay that could underline this hypothesis was not yet observed [50].

The need for this chargelessness provides a challenge for the search of
Majorana fermion like excitations in condensed matter. Because both
electrons and holes which are the building blocks of collective excitations
in condensed matter are charged with opposite charge e [50]. A Majo-
rana excitation has to be a coherent superposition of an electron and a
hole. As seen in the previous section (cf. Eq ) the Bogulibov excita-
tions in superconductors can serve this purpose. This can be understood
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because the number of Cooper pairs is not fixed in the mean field descrip-
tion, so that the difference between an electron and a hole gets blurry.
However, the conventional superconductors are s-wave superconductors
with spin-singlet Cooper pairs. Their Bogoliubov excitations are of the
form of v; = ucy + vci which even for © = v are no Majorana fermions,
because of the spin degree of freedom.

Systems in which this problem could be solved are p-wave supercon-
ductors, because the Cooper pairs in those form spin-triplets. It can be
shown that the Andreev bound states that are pinned to vortices in two di-
mensional p-wave superconductors are indeed Majorana bound states [51].
Experimentally, the p-wave superconductivity can be realized by proxim-
ity inducing superconductivity in the surface state of a three-dimensional
topological insulator by using a conventional s-wave superconductor [52].
In this thesis however, we focus on the Majorana excitations that emerge
at the boundary of one-dimensional topological superconductors.

A one dimensional p-wave superconductor was discussed first by Ki-
taev |29]. Kitaev considered a spinless fermionic tight binding chain with
a superconducting pairing of nearest neighbors. It is described with the
Hamiltonian

N

1
H:fzu (c}cj - 2) (1.14)
Jj=1
N-1
+ Z _tC;CjJrl + Ae_upcj.c;_i_l + h.c. |,
j=1

where c;{ creates an electron at site j, p is the chemical potential, ¢ the
hopping amplitude and A is the superconducting pairing amplitude. It
is convenient to gauge the phase of the superconductor ¢ into the cre-
ation operators ¢; — e~ie/ 2¢;. We transform the fermionic creation and

annihilation operators into Majorana operators with the transformation

1

G =5 (vaj +1vBj), (1.15)

where fyl j = Tnj withn = A, B. Because of the fermionic anti-commutation
relation for the electron creation and annihilation operators the anti-
commutation relation for the Majorana operators is given by

{'anv'ymk} = 25nm5jk~ (116)



1. Introduction

‘d) 1 co c3 Cc4 c5
b) (8] Co Cc3 Cq Cx

c) d)
v=1
ﬁ (trivial)

v=-1
(topological)

Figure 1.1.: a) & b) Visual representation of a 5 site Kitaev chain at the
trivial (see a)) and topological (see b)) sweet spots discussed in the text.
The blue ovals represent a fermionic site, while the red circles correspond
to the Majorana operators. The purple lines stand for the interactions
between the Majorana operators at the sweet spots. ¢) & d) Schematic
diagram for the Kitaev chain Hamiltonian with periodic boundary condi-
tions. Figure adapted from

10



1.1. Topological superconductivity

If we use this transformation we can rewrite the Hamiltonian in terms of
Majorana operators

N-1
Z
Z t+ A)yBjvaj1 + (=t + A)ya;7Bj41-

J:1

. N
7
H= D) ;MW’AWBJ

Here, we want to discuss two special cases that are depicted in Fig. a)
and b). First, we consider the case p # 0 and ¢ = A = 0. In this trivial
case the Hamiltonian is given by

. N
1
H|uz0,t=n=0= 3 Z HYA; VB - (1.17)
j=1

As also seen in Fig. a) this Hamiltonian couples only the Majorana
operators on the same fermionic site. Also, all Majorana operators are
coupled. The other more interesting case is p = 0 and ¢ = A # 0. This
scenario is depicted in Fig. b). The Hamiltonian in this case is

N-1

Hly—0t=n20=1 Z tYBj YA +1- (1.18)
j=1

Here, two Majorana operators (one on the first and one on the last site)
are left uncoupled. Because they no longer enter the Hamiltonian they
commute with the Hamiltonian and span a zero-energy two-fold degen-
erate ground state manifold. These two states are the Majorana bound
states. Together the two MBSs form a non-local fermionic degree of free-
dom. Away from this sweet spot MBSs can still be found, however they are
no longer completely localized at the last site. The wave function rather
decays exponentially along the chain. This also leads to a finite energy
splitting € oc e L/€M | where £y is the Majorana localization length [29].
In this case the low-energy sector of the Hamiltonian can be described
with two Majorana operators 7' and " that are a superposition of the
former Majorana operators

H =iev'y". (1.19)

To understand why the MBS persist away from the sweet spot, we take
a look at the topology of the system. Therefore we consider periodic

11
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boundary conditions and take a look at the Hamiltonian in reciprocal
space. In the BdG formalism the Hamiltonian in reciprocal space takes
the form

iy 3 (e

) , (1.20)
keBZ —k

2y — —tcosk —p  iAsink
=\ —iAsink  tcosk+4pu)-

Now, let us discuss a possible topological invariant. Here, we follow the
strategy outlined in Ref. [23]. The 2 x 2 BAG Hamiltonian can also be
written in the form of

Hy = h(k) - o, (1.21)

where o = o€, + oyey + 0. e, is the vector of Pauli matrices and h(k)
is also a three component vector. Because of the particle-hole symmetry
inherent to the spinless BAG formalism h(k) needs to fulfill the following
relations

hay(k) = —hgy(=k), h.(k)=h.(—k). (1.22)

Let us suppose now, that the system is completely gapped, i.e. h(k) is
non-zero all over the Brillouin zone. Then we can define the normalized

vector h(k) = h(k)/|h(k)| to map the Brillouin zone onto the unit sphere
which is schematically shown in Fig. ¢) and d). By using the relations

from Eq. (1.22)) one finds that

~ ~

h(0) = spe,, h(w) = sre,, (1.23)

where sg and s, are the sign of the kinetic energy measured relatively to
the Fermi level at momentum 0 and 7, respectively. For the product of
these signs v = sgs, there are two fundamentally different results. As
shown in Fig. ¢) for v = 1, h(0) and h(r) point in the same direction,
so that h(k) completes a circle on the interval [0,7]. In contrast for
v = —1, h(0) and h(r) point in the opposite directions, which is shown
in Fig. d). The two trajectories on the unit sphere are therefore
topologically distinct which makes v a Zs topological index. The only
way to change the topology is to close the gap, because then ﬁ(k) is not
defined on the complete Brillouin zone. For the Kitaev chain that means
that as long as |u|< |t| the chain is in the topologically non-trivial phase

12



1.1. Topological superconductivity

with MBS at the ends of the chain. We note here, that the discussion
of the topological index is valid, even if we allow for perturbations in the
Hamiltonian as long as the particle-hole symmetry is present.

In general, the Kitaev chain is not readily realized in nature, as all
electrons carry a spin degree of freedom. A fully spin polarized system is
also very unlikely to realize a Kitaev chain, because most superconductors
found in nature host spin-singlet Cooper pairs. However, the s-wave su-
perconductors can be used to induce superconductivity in other materials
via the superconducting proximity effect.

It was pointed out that semiconducting nanowires with Rashba spin-
orbit coupling with proximity induced superconductivity can realize a
topologically non-trivial phase, when a strong enough Zeeman field is
applied [53/54]. These nanowires are also dubbed Majorana nanowires.
Let us first consider this system without the proximity induced supercon-
ductivity. In this case the Hamiltonian describing the nanowire in the
effective mass approximation in reciprocal space is

h2k2
Lhy::l/ndk<¢¢k,¢{k) (Enn*-—/L%-akUy4—V}ag) (ZI:) . (1.24)

where @[Jik creates an electron with momentum k and spin o, m* is the
effective mass, p is the chemical potential, a is the Rashba parameter and
Vz is the applied Zeeman field. The band energies of this Hamiltonian

are
h2k?
Ei(k) = —— — p* Va?k? + h?, (1.25)

2m

and they are shown in Fig.

The effective mass approximation leads to a quadratic dispersion with
a two-fold degeneracy due to the spin 1/2 of the electrons. The Rashba
spin-orbit coupling then splits the two parabolas (red and blue curve in
Fig. , but keeps the degeneracy at the I' point, because of time-reversal
symmetry. The Zeeman field breaks the time reversal symmetry and opens
a gap at the I' point. If the chemical potential is tuned to be inside this
gap, the system mimics a spinless system.

Now, we can include the proximity induced superconducting pairing

szfﬁvﬁ—ch::Lﬁv+:/dk(Adwmmﬁk4—A*wL*wLJ7 (1.26)
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Figure 1.2.: Band structure of the nanowire without induced supercon-
ductivity for a finite Zeeman field (black curves) and without Zeeman field
(blue and red curve). The dashed curves correspond to the hole degrees
of freedom that arise in the BAG formalism.

14



1.1. Topological superconductivity

with the superconducting paring amplitude A. It is convenient to rewrite
the Hamiltonian in terms of eigenstates of the nanowire Hamiltonian Hyy,

H :/dk <E+(k)¢i(k)w+(k) + E_ (k)Y (k)w_(k) (1.27)
* AT(k) [ (—k) s (k) + ¥ (—R)$ (k) + h.c]

T A(K) [ (—R) o (B) + hec] )

with the pairing potentials

A, = _akA A, = _ VzA (1.28)

\/a2k2+VZQ’ \/anQ—&—VZQ'

The two pairing potentials mix electron and hole degrees of freedom in
the BAG fashion. The dashed curve in Fig. [I.2] shows the hole degrees of
freedom for the wire without superconductivity. At points in momentum
space where the electron and hole energies are the same the pairing po-
tential open gaps. Here, A, is an intraband coupling, because it couples
electron and hole degrees of freedom resulting from the same band, while
Ag couples the bands around k = 0, so it is an interband coupling. In the
limit of large Zeeman field Vz > A assuming that only the lower band
E_ is occupied the Hamiltonian effectively becomes

o = [ i [Zﬂ’j ~ = Vel 0l - (1.29)

alk
2|Vy|

(6o (-R)o- (k) + e ),

which directly maps to the Kitaev chain under £ — 0, and being put on
a lattice. The topological criterion in this case is

V> /A2 12 (1.30)
Because Vz = /A2 + p? describes the point in parameter space in which

the gap in the excitation spectrum closes. In the case of a finite nanowire
the MBSs are not completely localized at the ends of the wire but de-
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1. Introduction

cay exponentially into the wire with additional oscillations [55]. The hy-
bridization energy of the two MBSs then is given by

e—2L/¢

m*¢

where kp g is the effective Fermi wave vector associated with the zero-
mode solution and ¢ is the effective coherence length both of which are
functions of the microscopic parameters of the model Hamiltonians shown
in Eq. . Related model Hamiltonians can not only be realized with
semiconducting nanowires, like for example InAs or InSb nanowires, but
also with 2DEG systems [56] or carbon nanotubes |57].

Another system that is predicted to be a one dimensional topological
superconductor is magnetic adatoms chains on top of a superconducting
surface [58H63|. Here, the needed spin structure comes from the inter-
play of spin-orbit coupling from the superconductor (for example lead)
with the ferromagnetism of the adatoms (for example iron) [59], or in the
absence of spin-orbit coupling spatially modulated spin arrangements in
the adatoms [60,63]. Another way to recreate the low-energy physics of
the Kitaev chain is to use the emerging edge states of two dimensional
topological insulators |52]. Here, again the superconducting proximity
effect is used to induce superconductivity in the spin-locked counterprop-
agating edge states. Other proposals use Josephson junctions induced in
2DEGs [64}65], Corbino geometry Josesphson junction induced in sur-
face states of three dimensional topological insulators [66], proximity in-
duced superconductivity in hinge states of higher order topological insu-
lators [67,/68] and many others |[69H72|. To discuss all these proposals in
detail would exceed the scope of this thesis and we refer the interested
reader to more detailed review articles [23427].

In addition to proposals how to create MBSs, also signatures of MBSs
are needed in order to establish their existence. One of the first proposed
signatures of MBSs is the so called fractional Josephson effect [29}|73}/74].
Here, the periodicity of the supercurrent with respect to the superconduct-
ing phase difference in a junction of two MBSs is doubled (47 instead of
27 periodicity) in contrast to conventional Josephson junctions. This can
be explained by the fact that the two MBSs at the junction constitute
a fermionic degree of freedom. This way single electrons can be trans-
ferred between the two superconductors instead of Cooper pairs. In the
frequency domain this leads to the missing of odd Shapiro steps. In order

£~ hsz_’Cff cos (kpeL), (1.31)
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1.1. Topological superconductivity

to observe the fractional Josephson effect straightforwardly, the number
parity needs to be conserved to protect the crossing in the energy phase
relation that enables the doubled periodicity, so that quasiparticle poison-
ing destroys this signature [75,/76]. Also, the finite size of the topological
superconductor in any experiment leads to a hybridization with the outer
MBSs which introduces a gap at the parity crossing [77H81]. Experimen-
tally, the fractional Josephson effect has been reported in the frequency
domain with missing Shapiro steps [82H88] and Josephson radiation/e-
mission [894/90]. On another note, even higher fractions for the fractional
Josephson effect can be realized with parafermions [91], a generalization
of Majorana fermions [92H94].

Another way to test the existence of MBSs is to couple a normal con-
ducting lead as a local electrical probe. Because the differential con-
ductance probes the density of states, a zero bias peak should arise in
the topologically non-trivial regime. To be precise this zero bias peak
at zero temperature is predicted to be quantized to 2e?/h, if the lead
couples to a single MBS, independent of coupling strength [95H97], be-
cause the MBS couples to the electron and hole states in the lead with
same tunnel coupling due to its particle-hole symmetric property. And
indeed many experiments show the emergence of a zero bias peak in the
predicted regime [564{98-113|. However, only recently the robust quanti-
zation has been reported |114]. If a second lead is coupled to the MBS
that emerges on the other side of the one-dimensional TSC with a sym-
metrically applied bias voltage between lead and superconductor crossed
Andreev reflection is predicted to be the dominant transport process in
the low bias regime [115,/116]. Here, low bias regime means a bias volt-
age energy eV lower than the Majorana hybridization energy €. Also,
because MBSs always come in pairs the differential conductances in the
two leads should be correlated under changes of the microscopic param-
eters [117,|118]. If the nanowire is floating that means that charging on
the nanowire becomes important, “electron teleportation” is predicted to
occur |119]. These floating devices are called Majorana islands. Electron
teleportation means that the Coulomb blockade goes from 2e-periodic
oscillations (transportation of Cooper pairs) in the topologically trivial
regime to le-periodic oscillations (coherent single-electron transport) in
the topologically non-trivial regime. This effect has been reported in Ma-
jorana nanowires where the applied magnetic field changes the periodicity
from 2e to le [120].
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However, the unique signature of MBSs is their non-Abelian anyonic
exchange statistics [24[121[122]. Under exchange of two MBSs one of
them picks up a minus sign

Y1 Y2, Y2 M (1.32)

A second exchange results in a minus sign for both of them with respect to
the start of the exchange. Because of this we can associate the MBSs with
an exchange phase of /2, in contrast to regular fermions (exchange phase
of 7) or bosons (exchange phase of 27). Because their exchange phase is
neither bosonic nor fermionic they are called anyons. Mathematically,
the reason for this is that the parity P = i1y, should not change under
exchange of the two MBSs. Because the Majorana operators also need to
be hermitian, the only possible exchange phase (except which MBS gets
the minus sign under exchange is arbitrary) is the one discussed before.
The exchange of the two MBSs is then generated by the unitary operator
Bia = exp[(7/4)7172] = [1 + 71172)/v/2. Now, let us consider four MBSs.
The unitary braid operators that exchange two neighboring MBSs that
involve a common MBS do not commute

(Bi—1,i, Bijit1] = Yi—17Vi+1, (1.33)

because of this they are called non-Abelian. In order to braid MBSs in real
space a two dimensional system is needed. Suggestions to realize this are
for example T-junctions using Majorana nanowires |123,|124] or Corbino
geometry Josephson junctions [66,/125]. Experiments to report signatures
of braiding of MBSs are however still missing. In addition to braiding in
real space (e.g. exchanging MBS in real space), the non-Abelian property
of MBSs can also be utilized through a sequence of measurements |1264{127]
or switching on and off couplings between different MBSs [128}129].

The non-Abelian exchange statistics is also what makes MBSs a candi-
date for building blocks for qubits. To understand this in more detail we
need to consider not two but four MBSs, because two MBSs are not enough
to constitute a physical qubit because of parity conservation. These four
MBS build up two non-local fermions that both can be empty or occupied
and that are described with the operators

1 . 1 .
= 5(71 i), fi= 5(73 +iva). (1.34)
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1.1. Topological superconductivity

One possible basis for this low-energy space is

oy )y = (1) (#) " 100, (1.35)

where |0) is the ground state with f;|0) =0 for j = 1,2 and n,m =0, 1.
Because of the parity conservation in superconducting systems the four
dimensional low-energy space decouples into to two 2 x 2-blocks. One of
these 2 x2-blocks then constitutes a qubit. For our discussion we focus now
on the odd parity sector that is spanned by the two states |0) = [1), |0),
and |1) =]0), |1),. As seen before the exchange of two MBSs is generated
by B; ;. If we now consider not an exchange but a round trip of v; and
v we find

Bi,=o0.. (1.36)

Additionally, all other Pauli matrices can be generated by
Bis =0, Bis=o0,. (1.37)

The square roots of the Pauli matrices can be realized just by exchange
of two MBS accordingly. Also, more elaborate exchange schemes lead to
the so called Hadamard gate

B 2By 3B 2 = \/g(ffz +o,) = eTH, (1.38)

H= % G 11) . (1.39)

The gates that contain Pauli matrices and their square roots are called
single qubit Clifford gates [28] and they all can be generated through
braiding. However, the Clifford gates do not constitute a universal set of
single qubit gates. The missing magic or T-gate can, however, be realized
by introducing topologically non-protected protocols [20422}]130H132]. To
build a universal quantum computer in addition to the single qubit gates
it is sufficient to implement the controlled not gate (CNOT) which acts
on two qubits. All other unitary gate operations can be constructed as a
combination from the CNOT gates and single qubit rotations. The CNOT
gate can also be realized by braiding MBSs, but additionally one needs
to be able to measure the fermion parity of four MBSs without gaining
information about the fermion parity of pairs within these four |133H136].

with
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A computation based on unitary operations built from braiding is called
topological quantum computation [18,[22]. The Clifford gate operations
are topologically protected by the excitation gap A, in the topological su-
perconductor, because it needs to be closed in order to change the topology
of the physical system [137]. This protection offers a way for fault tol-
erant quantum computation [18]. Also, i/A, constitutes the timescale
on which the quantum operations should be performed. If the exchange
of two MBSs is performed to fast, i.e., non-adiabatically the quantum
computation scheme becomes faulty.

1.2. About this thesis

The aim of this thesis is to contribute to the efforts in characterization
of MBSs formed as topologically protected boundary modes in one di-
mensional TSCs. The main focus lies on the effect that the finite size of
the TSC has. In particular, we consider what happens in terms of elec-
tronic transport if the wave functions of the MBSs reach across the whole
TSC so that both MBSs can be electrically addressed at the same spatial
point. These non-local couplings (i.e. couplings to the MBSs emerging at
both ends of the wire) are the red threat running through the following
chapters.

Chap. [2l mostly follows Ref. [138]. We consider a Kitaev chain which is
tunnel contacted by a quantum dot on one side and a spinless lead on the
other side. In the topologically non-trivial regime the low-energy sector
of the Kitaev chain is spanned by the two emerging MBSs which obtain a
finite splitting energy due to their possible wave function overlap. First,
we focus on an analytical model that replaces the Kitaev chain with its
low-energy sector spanned by the two MBSs. To calculate the transport
in this setup we resort to the full counting statistics. In the case of no non-
local couplings we show that in specific parameter regimes resonances arise
as a function of dot level energy in the differential conductance that can be
described with the Fano-Beutler formula. These so called Fano resonances
come in pairs and are invariant under a sign change of the dot level energy,
a signature that we can attribute to the particle-hole symmetry of a single
MBS. By the introduction of the non-local couplings in the effective low-
energy model we show that the symmetry of the two Fano resonances with
respect to each other is broken. A numerical analysis using the full Kitaev
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chain verifies our effective model calculation. By introducing long range
hopping between the Kitaev chain and the lead and dot respectively, we
can show that the Fano resonance symmetry is broken as both MBS wave
functions become accessible for tunneling events.

In Chap. [3| which is based on our publication [139], we extend our
analysis by replacing the Kitaev chain with an experimentally relevant
Majorana nanowire. While the Kitaev chain is based on spinless fermions
the Majorana nanowire takes the electron spin into account. Therefore,
we also introduce the spin degree of freedom in the metallic lead and the
quantum dot. We first consider the system without the dot. We show
that non-local couplings lead to deviations from the predicted quantized
differential conductance for coupling to a single MBS. For zero energy
MBSs the height of the resonance in the differential conductance is dic-
tated by the difference in spin canting angles of the two MBS wave func-
tions at the junction. Also, the temperature dependence of the differential
conductance shows that in an intermediate to high temperature regime
the difference between coupling to a single or both MBS becomes blurred.
When including the dot in the calculations we treat the resulting Coulomb
interaction within a mean field approximation. In our analytical model
we find the emergence of two pairs of Fano resonances, one for every spin
on the dot. These pairs again show an inherent symmetry as long as only
local couplings persist. Finally, in a numerical treatment of the setup in
which the mean field approximation is applied selfconsistently, we show
that the asymmetry in these Fano resonances is largest for smallest Ma-
jorana splitting energies.

Chap. [4| is based on Ref. |140]. We investigate a Josephson junction
comprised of an s-wave superconducting lead and a finite sized Majorana
nanowire. In a low-energy effective model we show that the equilibrium
Josephson current is only non-vanishing if both MBSs are tunnel cou-
pled to the s-wave lead. The wave function of the two MBSs enter the
supercurrent in the form of a singlet projection due the singlet Cooper
pairs in the superconducting lead. As a function of Zeeman energy the
critical current is oscillating. This oscillations can be attributed to the
rotation of the spin canting angle of the more distant MBS to the junc-
tion. The amplitude of these oscillations is rising with increased applied
Zeeman field, because the localization length of the MBS is increased.
Furthermore, we see discontinuities in the critical current. These discon-
tinuities occur at points in parameter space at which the parity of the
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ground state changes (parity crossing) and at them the sign of the criti-
cal current changes. A numerical analysis shows a qualitative agreement
for the Josephson current mediated by the low-energy states. However,
higher energy contribution which come from a residual s-wave pairing
in the Majorana nanowire conceal the Majorana contributions. But, by
using quasiparticle poisoning and the inherent particle-hole symmetry of
the superconductors the Josephson current coming from the MBSs can be
unveiled. Lastly, we summarize the findings of this thesis in Chap.
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2. Fano resonances in spinless
Majorana bound
states-quantum dot system

In order to use Majorana bound states (MBSs) as building blocks for
topological quantum computing their existence needs to be established
without a doubt. The key signature of MBS, the quantized differential
conductance at zero bias voltage, was reported recently [114], however
there is still a debate if the reported quantization can come from trivial
Andreev bound states [141H147]. So in order to decide in this matter
additional signatures of MBSs are needed.

A helpful tool to analyze MBSs are quantum dots. These quantum dots
are small structures that confine a precise and tunable number of charge
carriers. In general, the electrons or holes are trapped in the dot with the
help of repelling electric fields, effectively putting the charge carriers in
a box. This leads to eigenstates with discrete energy levels [148]|. These
energy levels can be tuned by using electrical gating. Tunnel barriers
can be used to couple the quantum dot to a reservoir and in this case
to MBSs. The advantage of using quantum dots in combination with
MBSs lies in the additional degrees of freedom and their high precision
tunability [149H156].

Additionally, the inclusion of a quantum dot can lead to Fano reso-
nances. These resonances arise as the interference pattern between a
discrete and a continuous path [157]. The line shape of these Fano reso-
nances is universal and can be described with just three parameters using
the Fano-Beutler formula [158]. These Fano resonances have been seen in
the transmission through a quantum dot [159] as the function of dot level
energy. The emergence of Fano resonances in MBS-quantum dot hybrid
systems has already been discussed in the literature, however the pro-
posed setups analyze Fano resonances as function of bias voltage [160H163|

23



2. Fano resonances in spinless Majorana bound states-...

and/or flux through a loop built from MBSs [164H166].

Here, we consider a Kitaev chain coupled to a metallic lead on one end
and a quantum dot on the other end. We use full counting statistics (FCS)
to calculate the cumulant generating function (CGF). In a low-energy ef-
fective approach the CGF predicts that the only process that contributes
to the transport from lead to Kitaev chain is Andreev reflection. We
show that this setup exhibits Fano resonances as a function of dot level
energy and analytically relate the parameters describing the Fano-Beutler
formula to the microscopic parameters of the considered setup. The two
paths needed for Fano resonances to occur are firstly direct Andreev reflec-
tions and secondly processes in which the charge carriers virtually occupy
the quantum dot before entering the Cooper pair condensate by Andreev
reflection. While the first path is independent of dot level energy, the
second path is resonant with it. We show that the Fano resonances come
in pairs and are invariant under a sign change in the dot level energy.
The asymmetry parameter of an individual Fano resonance can be used
to measure the energy splitting of the two MBS in the finite size Ki-
taev chain, because the asymmetry parameter changes its sign as the bias
voltage between lead and grounded superconductor is tuned across the
splitting energy.

In addition, to the analytical low-energy model we also consider a full
finite size Kitaev chain and find good agreement between the two in the
low-energy regime. We show that the inclusion of finite temperature can
destroy the quantization of the differential conductance. However, the
symmetry of the Fano resonances is not affected by the inclusion of tem-
perature.

Finally, we take a look at extended couplings that not only connect lead
and dot to the closer but also to the more distant MBS, respectively. In an
analytical low-energy model we parametrize the couplings in a way that
allows us to smoothly tune between “pure” Majorana-like couplings, i.e.
coupling to a single MBS, and “pure” Dirac-like couplings, i.e. coupling
to both MBSs with the same tunneling amplitude.

This Chapter is based on Ref. |[138]. In Chap. we introduce the
model Hamiltonians. We also calculate the CGF and discuss the proper-
ties of the probability for Andreev reflections. The relationship between
the probability for Andreev reflections and the Fano-Beutler formula is
discussed in great detail in Chap. 2.2l In Chap. 2.3] we underline our an-
alytical findings by numerically analyzing a full Kitaev chain model. The
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non-local couplings are introduced in Chap. [2.4] in which we focus on an
analytical low-energy model in Chap. and extended tunnel couplings
to the Kitaev chain in Chap. 2:4.2] Finally, we conclude this project in

Chap. 25

2.1. Setup and Andreev Reflection
Probability

The setup under consideration consists of a Kitaev chain in the topo-
logically non-trivial phase which is tunnel coupled to a metallic lead on
one side and a quantum dot on the other side. A sketch of this setup
can be seen in Fig. 2.1] Because the Kitaev chain only consists of spinless
fermions we also approximate the lead with spinless fermions and describe
the quantum dot with a single spinless level ep, thus the spinless quan-
tum dot can only be empty or singly occupied. The low-energy sector of
the Kitaev chain consists of two MBSs, described with the self-hermitian
operators y; = ’y;r , which can have a splitting energy ¢ o e /&M where
L is the length of the Kitaev chain and & is the Majorana localization
length [29]. This splitting is generated by the spatial overlap of the two
MBSs due to the finite size of the Kitaev chain. The full Hamiltonian for
this setup is given by

H=H;+Hr+ Hy + Hpot + Hrpot, 2.
Hy = ey, 2.
Hper = epdid, 2.
2.

Hr =iy [t197(0) + t59(0)] ,
Hp = —ihop / dapt (2)0,10 (),
Hrpot = i [t2d! + t3d] ,

where vp is the Fermi velocity in the normal conducting lead, ¢; is the
tunneling amplitude between the MBS system and the lead, ¢y is the
tunneling amplitude between the quantum dot and the MBS system. The
creation operator df creates an electron on the quantum dot and ¢ (z)
creates an electron in the lead at position z.
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Figure 2.1.: Schematic sketch of the considered setup, in which two
Majorana bound states y; and 79 arise in a Kitaev chain. One of them is
contacted by a normal conducting lead and the other one with a quantum
dot with level energy ep. The two MBS experience a splitting £ due to
a wave function overlap of the two MBS. Figure and caption taken from
Ref. [138]. ©)[2017] American Physical Society.

In order to calculate the electron transport between lead and super-
conductor we resort to the FCS. The FCS is a formalism based on the
calculation of Keldysh Green’s functions [167]. The main entity of the
FCS is the CGF. For its derivation we closely follow [116] and the details
of the derivation can be found in Ref. [168]. The CGF is calculated to be

Inx(A) = % /dE In[1+4 p(E)(e”2** — 1)n(E)n(—E)

+p(E) (e = 1)(n(B) - 1)(n(~E) = 1)], (2.7)

where n(FE) = 1/(1 + e?F=¢V)) is the Fermi function in the lead with
B = 1/kgT the inverse temperature and T is a long measurement time.
This CGF describes a binomial process in which Andreev reflections, the
transfer of two electrons by reflection of an incoming electron as an outgo-
ing hole, occur with the energy dependent probability p(E). It also shows
that these Andreev reflections are the only processes which can contribute
to the electronic transport. The transport characteristics like the current
and symmetrized zero frequency noise can be calculated by taking the
first and second derivative of the CGF with respect to the counting field
A, respectively. At zero temperature the differential conductance and dif-
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2.1. Setup and Andreev Reflection Probability

ferential noise are calculated to be

Il d i 0 2?
Lo 22 == 2.
v oavTon N, TP (28)
dP d —1 92 4¢3
W av T e X T i) (29)
with
4F2 2
p= (V) . (2.10)

452(5123 —(eV)?)
4\t2|2+5]237(eV)2

2
— (eV)Q) +4T2(eV)?
Here, I' = 2mpg|t1]* where I'/h is the tunneling rate between the lead
and the nearest MBS (1) with the constant density of states per length
po = (2rhvp)~! and eV is the bias voltage between the lead and the
grounded topological superconductor hosting the two MBSs. Because the
Andreev reflection is the only relevant transport process the measurement
of the differential conductance and therefore measurement of the Andreev
reflection probability is enough to fully characterize the full transport. For
the dot level energy

4ta]*(eV)?

2 _ 2

€D,max = (€V) (20)? — (V)2 (2.11)
the differential conductance becomes quantized with 2e%/h, because of
perfect Andreev reflection (p = 1). In addition, the Andreev reflection can
also be blocked (p = 0) which leads to antiresonances in the differential
conductance and occurs when the dot level energy satisfies

eho = (eV)? — 4ft2]?. (2.12)
It is convenient to rewrite the Andreev reflection probability to

1

2(s2 o2
q (ED ED,Inax
G

)

p(ep) = (2.13)

1+ )

with ¢% = (2 — (eV/2)?)?/(I'?(eV/2)?), because we are interested in the
influence of the quantum dot on the transport properties.
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eple]

Figure 2.2.: Resonances (p = 1, blue) and antiresonances (p = 0, red) of
the differential conductance in dependence of the bias voltage eV between
lead and the Kitaev chain (grounded), and the quantum dot level energy
for to = 0.25¢. The resonances correspond to the spectrum of the system
without the lead. The levels show an avoided crossing if ep &~ +2¢. Figure
and caption adapted from Ref. .
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2.2. Fano Resonances

The resonances and antiresonances as a function of applied bias volt-
age and dot level energy are summarized in Fig. The resonances
correspond to the spectrum of the considered setup without the metallic
lead and we see a hybridization of the MBSs with the quantum dot state
when they are in resonance with respect to each other. This hybridiza-
tion manifests itself in form of an avoided crossing. At dot level energies
away from this hybridization we can attribute the resonances to the MBSs
(nondispersive with ep) and quantum dot states (linear dispersion with
ED).

The point eV = ep = 0 is also of special interest. For a finite overlap
energy € # 0, the Andreev reflection probability vanishes at zero bias volt-
age and zero temperature for all finite quantum dot energies ep # 0 [75].
If we however set the dot level energy in Eq. to zero first and then
look at the zero-bias Andreev reflection probability, we find it to be one.
However, this problem is resolved as soon as we take finite temperature
into account, because of its broadening effect on the resonances.

2.2. Fano Resonances

In this section, we want to show that Fano resonances (FRs) arise in dif-
ferential conductance as a function of dot energy level. These resonances
are the result of an interference between a continuous and a resonant
path |169] and their line shape can be described with the normalized
Fano-Beutler formula [158]

1 ((ep — ERr)/(2TF) +¢)*
prB(eD) = 5@ 1+ (en — En)/(20p))2’ (2.14)

where I'p is the width of the FR and Eg is the resonance energy. The
parameter q describes the asymmetry of the resonance and its sign deter-
mines whether the destructive or constructive interference can be found
at smaller energies.

In this setup the continuous path for an electron is direct Andreev
reflection without including the quantum dot. As this path does not
include the quantum dot it is independent of its level energy. In the
second path the electron first traverses the wire and occupies the dot
before returning to the wire and forming a Cooper pair by emission of a
hole into the lead as shown in Fig. This second part is dependent on
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Figure 2.3.: Two possible paths for Andreev reflection (lines with ar-
rows). In the upper panel the incoming electron (full circle) directly enters
the Cooper pair condensate (denoted by an oval with two electrons) by
simultaneous back reflecting of a hole (empty circle). This process is in-
dependent of the dot. The second panel shows a transport path where the
incoming electron virtually occupies the quantum dot before entering the
condensate. This process is resonant with respect to the dot level position.
The interference of these two paths leads to the Fano resonance (further
processes where the reflected hole visits the dot are possible, too). Figure
and caption taken from Ref. . (©]2017] American Physical Society.

the dot level energy and the interference of both leads to the emergence
of Fano resonances as function of the dot level energy.

In order to show that the Andreev reflection probability and there-
fore the differential conductance really exhibits Fano resonances, we re-
late p(ep) with the Fano-Beutler formula. In order to do this we com-

pare special points of Eq. (2.14) with those of Eq (2.10]), the resonance
(prB(ep) = 1) and the antiresonance (prp(ep) = 0) of a FR as a function
of ep appear at

€D = €D,max = 2I'r/q + ER, (2.15)
and at

ep =¢epo = —2qI'r + ER, (2.16)
respectively. We can now enter these in Eq. for the calculated An-
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2.2. Fano Resonances

dreev reflection probability. In the limit of small FR width i.e. |T'r/ERr|<
1 the Andreev reflection probability can be simplified to

N (B + )%\ (B —g)?
e~ (r7) <1+<8%;fﬁ>2> <1+<ED+ER>2 -

2I'r

This describes the product of two Fano-Beutler formula. The resonance
energies Er as well as the asymmetry parameters ¢ for the two Fano
resonances have opposite sign and both have the same width I'r. We
can further simplify the Andreev reflection probability in the limit of
E%/T% > ¢° to find

—F
1 (B 4 g)?

1+ q2 1+ (|E%|F—FE’R)27

p(ep) (2.18)

which also describes two FRs which are mirrored at ep = 0. To relate the
parameters of the Fano-Beutler formula to the microscopic parameters of

the setup we enter ep max and epo from Eq. (2.15) and Eq. (2.16]) into
Eq. (2.11)) and Eq. (2.12), respectively and focus on the FR at positive
dot level energy

(e g+ ()7 -2) () () - 2 - aP2)

(F)°r2 + (2~ (%))
(2.19)
i () =)V -8V _i \/(CT) () - _t), (2.20)
()T + (2= (F)*) /(F)1D)
. (eX)? - &2 (2.21)

The assumptions of a large resonance energy Fr and small width 'z can
now be represented with the model parameters and it can be seen that the
description with the Fano formula holds for |t2|< |eV/|. This corresponds
to a weakly coupled QD. We note that the sign of the asymmetry changes
as the applied bias voltage energy is tuned through 2e. This means that
the asymmetry can be used to measure the overlap energy. For a large
bias voltage the position of the resonance is in leading order given by the
bias voltage energy. But we also find a regime in which the description
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Figure 2.4.: Resonances and antiresonances in the setup with to = 0.25¢.
The dashed lines correspond to the bias voltages chosen for the plots in
(b) (eV = 0.095T for the left plots, eV = 0.2T" for the right plots). Orange
background color marks the parameter space in which no Fano resonances
arise. (b) Differential conductance vs. quantum dot level energy for differ-
ent bias voltages between lead and topological superconductor. The blue
line is the exact calculated differential conductance, whereas the yellow
dashed line is the approximation using Eq., where Fr, I'r and q are
given by Eqgs. , respectively. Figure and caption adapted from
Ref. [138].
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2.3. Kitaev Chain Calculations

using the Fano-Beutler formula fails. First of all, it fails in the regime
(eV/2)? < |ta]?, because the resonance energy and the width of the FR
would both become imaginary. This can be explained by the fact that
the Fano-Beutler formula only describes a single Fano resonance. In this
regime however, the two resonances overlap so that the description using
the Fano-Beutler formula fails. Second, for e < [eV|/2 < +/[t2]|?+&2 the
Fano-Beutler formula is also not applicable. This is the regime in which
the MBSs hybridize strongly with the quantum dot states. Because of this
hybridization the distinction of the two different paths becomes blurry.
These two regimes are highlighted in Fig (a) with orange boxes and the
dashed lines correspond to the line cuts for which we show the differential
conductance in F ig (b). The full lines display the exactly calculated
differential conductance and they are in very good agreement with the
deduced Fano form (dashed lines). The dashed lines result from the Fano-
Beutler formula Eq. with the parameters Fr and I' p expressed with
the microscopic parameters of our model via Eq. and Eq. .

The clear signature of coupling to a single MBS in this setup is that
the differential conductance peaks are quantized with 2e2/h and that the
differential conductance is invariant under the transformation ep — —ep.
Both are a direct consequence of the particle-hole symmetric nature of a
Majorana excitation. The invariance under a sign change of the applied
bias voltage, however, comes from the particle-hole symmetry inherent to
all superconductors described within the Boguliobov-de Gennes formal-
ism.

2.3. Kitaev Chain Calculations

Now, we want to extend the previous calculations by including the full
Kitaev chain instead of only the low-energy MBSs. Here our starting
point is a continuum Hamiltonian for a p-wave superconductor within the
Boguliobov-de Gennes formalism which we discretize on a one dimensional
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2.3. Kitaev Chain Calculations

Figure 2.5.: (a) Differential conductance as function of the dot level
energy and the bias voltage between lead and the Kitaev chain with N =
100 sites. The parameters are a = 6 - 1072, # = 1/4500, |A|= 1/700,
I'=1,U = 0.2 and t = 0.09, which corresponds to the topologically non-
trivial phase. The p-wave gap is around A, = 0.1I" and above this gap

the differential conductance is on the order of 10_3%. At lower energies
resonances can be seen which correspond to in gap states. The strongest
resonance is the Majorana induced resonance with a quantized differential
conductance of 22. The influence of the dot can be seen best at the
Majorana resonance and results in destructive interference. The inset
shows the low-energy section. The quantized resonances corresponding to
the dot level cannot be clearly seen because of resolution problems. (b)
Fano resonance at finite temperature kg7T" = 0.02A,. This temperature
is in agreement with comparable experiments [106]. The symmetry with
respect to the dot level energy is conserved also at finite temperatures.

Caption and Figure adapted from Ref. [13§].

chain with N sites and site spacing a = L/N
1 [ 102 +U  —i2A0 U (x)
H == T z _ z
p-wave =5 /0 dx (\I/ (CU), \I/(l')) <12A*am tag _ U> (\I;T(x))

(U - ) (o}cj - ;) (2.22)

1
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where £ = h?/(2m*) and in last step we followed a transformation to
Majorana fermions similar to the one described in Ref. [29]. The operator
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U (x) creates a Dirac fermion at position x while c; is its discretize version
and creates an electron on site j. For |U — 2t/a%|< |2t/a?| the chain is in
the topologically non-trivial regime and the MBSs emerge at the ends of
the wire [29].

To couple the p-wave superconductor to a lead, we modify the tunneling
Hamiltonian to couple the first Dirac-fermionic site of the chain to the
lead with a tunneling amplitude ¢;, and the last Dirac-fermionic site of
the chain to the quantum dot with a tunneling amplitude ¢p. The full
Hamiltonian in terms of Majorana operators then reads

)
H =H yave + H1 + Hp + 3 [—tpY2nNY2N+1 + tDV2N 172N +2)

+ 2 [00)"9(0) + (00)01 )] — 22 [101(0) + 60(0)] . (229

Without loss of generality, we choose t; and tp to be real valued. To
calculate the transport properties we again resort to FCS and use the
Levitov-Lesovik formula derived in Ref. [168] and evaluate it numerically.
The resulting differential conductance at zero temperature is shown in
Fig.|2.5 (a). As seen in the inset the low-energy behavior recovers our an-
alytical findings. Both symmetries (eV — —eV as well as ep — —ep) and
the quantization of the differential conductance can be seen. We attribute
this, following our interpretation of the analytical model, to the coupling
to a single MBS. Following the original work of Kitaev |29] the localiza-
tion length of the MBSs in the isolated wire for the chosen parameters is
&v = 0.244L. This localization length leads to an energy splitting due to
the spatial overlap of the MBS wave functions, but suppresses the cou-
pling to the dot and/or lead strongly enough that we address the MBSs
individually.

The coupling between the dot and the higher energy states is much smaller
than the coupling to the MBS which is due to the fact that the higher
energy states are delocalized over the whole wire and are not concentrated
at its end. Moreover, the differential conductance is not quantized for
those resonances corresponding to the high energy states.

At finite temperatures the resulting Fano resonances can still be resolved
as shown in Fig. [2.5] (b). Furthermore, the finite temperature has no
influence on the symmetry of the two emerging Fano resonances with
respect to each other.
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2.4. Nonlocal Couplings

In the following section, we consider more elaborate couplings between the
MBSs and the quantum dot and lead. Again we start using an analytical
low-energy model and focus on the differential conductance. After that
analysis we consider a numerical model with a full Kitaev chain and long
range couplings.

2.4.1. Analytical Calculations

In general, all fermions can be decomposed in two Majorana fermions.
However, for most fermions these Majorana components are not spatially
separated, so that a tunnel contact couples to both of them. We want to
emulate the cross-over from a Majorana-like coupling to a regular Dirac-
fermion-like coupling. A sketch of the considered setup can be seen in
Fig. (a).

To realize these couplings physically one can consider a short chain, so
that the exponentially localized MBS wave functions can reach the other
side of the wire. The effective low-energy Hamiltonian then is

H =Hj, +ieyivy2 +epd'd
— i1 [t1 cos(P)y + t cos(p)hT + ity sin(¢)d — ity sin(gb)dT]
— gty sin(@)h — ity sin(@)T + to cos(p)d + ta cos(p)d'], (2.24)

where Hp, 7; and v are the same operators as before and ¢; and to are
real valued. We choose the parametrization using the angle ¢ so that we
can continuously tune between a pure Majorana like coupling (¢ = 0) and
a pure Dirac like coupling (¢ = 7/4). We choose the angle to be the same
for the coupling to the lead and for the coupling to the dot, because of
the spatial symmetry of an isolated Kitaev chain.

The CGF for this setup has the same form as the CGF in Eq.
which means that Andreev reflection is still the only process contributing
to transport, however the Andreev reflection probability is different. In
Fig. (b) we show the differential conductance as function of dot level
energy for different non-local coupling angles ¢.
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2.4. Nonlocal Couplings

Figure 2.6.: (a) Sketch of the extended setup. By varying the parame-
ter ¢ we can tune the system from pure Majorana-like coupling (¢ = 0)
to pure Dirac-fermion-like coupling (¢ = %), in order to find unique sig-
natures of coupling to a single MBS. (b) Differential conductance in the
extended setup for different ¢. In the Majorana coupling case ¢ = 0 the
Fano resonances are quantized and are mirrored at ep = 0 due to the real
valued properties of the Majorana fermion. For 0 < ¢ < 7 the resonances
are no longer quantized and the peaks are no longer symmetric. Param-
eters are eV = 3T, |ta|]= T, ¢ = 04I'. Figure and caption taken from
Ref. [138]. (©)[2017] American Physical Society.

For pure Majorana-like couplings we restore the symmetric results from
Sec. In the case of pure Dirac-like couplings the transport is com-
pletely blocked. Because the lead and the dot couple to single normal
Dirac fermionic degree of freedom, the superconductivity is effectively
shut off, and therefore no Andreev processes are possible. In between
pure Majorana-like and Dirac-like couplings (0 < ¢ < 7/4), the emerging
Fano resonances are no longer symmetric with respect to each other. De-
pending on the parameters the sign of the asymmetry parameter of both
resonances can even be the same (see Fig. [2.6 (b) ¢ = 7/16). Moreover,
the Fano resonances are no longer quantized to 2¢2/h.

The loss of symmetry regarding the Fano resonances can be explained with
asymmetric hybridizations between the non-local fermion composed of the
two MBSs and the electron and hole degree of freedom of the quantum
dot, respectively. Fig. 2.7 shows the differential conductance as a func-
tion of applied bias voltage energy and dot level energy. The resonances
in the differential conductance again correspond to the spectrum as the
differential conductance also probes the density of states. The different
hybridizations for positive and negative dot level energy can be clearly
identified. To understand this on a mathematical level we take a look
at the Hamiltonian from Eq. without the attached lead and rewrite
the MBS operators in regular Dirac fermion operators y; = fT 4 f and
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Y2 =i(fT = f)

H =2:(71f = 3) + [t25in(6) + 2 cos(9)]d + [t sin(6) — b5 cos(g)] fd

— [tasin(¢) — ta cos(¢)] fTd" + [ta sin(¢) — t2 cos(p)] fd'
+ epd'd. (2.25)

This Hamiltonian is only invariant (up to a constant) under the trans-
formation d — df, d — d and ¢ — —& if ¢ = 0 which shows that any
non-Majorana-like coupling destroys the dot-particle-hole symmetry.
Recent experiments including a quantum dot coupled to a Majorana
nanowire [106}/113] showed that the differential conductance in the low-
energy sector shows asymmetric hybridizations between the electron and
hole states and an in-gap low-energy state. In Ref. [113] they also analyzed
this hybridization following a similar formalism that we used to measure
a so called quality factor [152L[153] ¢ = 1 — tan(¢), which quantifies the
“Majorananess”’ of the coupling between dot and Majorana nanowire. In
the reported experiments they were able to achieve quality factors of up
to ¢ = 0.97 which is consistent with highly non-local MBSs. In their ex-
periments Deng et al. were not able to see Fano resonances because the
quantum dot was created between the lead and the Majorana nanowire,
so that all transport paths include the quantum dot.

2.4.2. Long-range Couplings to the Kitaev Chain

In order to connect our low-energy analysis including the non-local cou-
plings and our numerical calculation using a full Kitaev chain we extend
the tunnel Hamiltonian from the Kitaev chain to the lead and the dot.
We consider a coupling to every single site of the chain, but with expo-
nentially decreasing amplitude over the length of the wire. The modified
tunneling Hamiltonian then can be written as

N
(n—1)a (N—n)a
Hp = Z (tLe* 3 Vie, +tpe” = cld+ h.c.) ; (2.26)

n=1

where £ is a length scale on which the tunneling amplitude decreases. In
Fig. 2.8 we show the resulting differential conductance as function of dot
level energy for two different decay lengths £. In both cases we can again

40



2.4. Nonlocal Couplings

eV [T

ep [T

6
3
0

0.8
-3
b6 -3 0 3 6

1.8
1.6
1.4
1.2«£t

3k
0.6

0.4
0.2

Figure 2.7.: Differential conductance as function of dot level energy and
bias voltage for non-Majorana fermionic couplings with ¢ = 0.4, ¢ = 0.5,
|ta]= 1.5T". The maxima of the differential conductance correspond to the
eigenenergies of the system without the lead. Figure and caption taken

from Ref. [138]. (©)[2017] American Physical Society.
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Figure 2.8.: Fano resonances in the Kitaev chain for non-trivial cou-
plings to normal conducting lead and QD using tp = 0.15I'y,. The other
parameters are the same as in Fig. (a). In the case of long range
couplings (¢ = 0.5L) the two Fano resonances are no longer symmet-
ric. For a shorter decay length (¢ = 0.1L) the symmetry of the two
FRs is restored. The inlay shows the symmetry breaking parameter
sb = (plep = eV) — p(ep = —€eV))/p(ep = eV) vs. the tunneling de-
cay length. Figure and caption taken from Ref. |[138]. (©)[2017] American
Physical Society.
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2.5. Conclusion

identify the two Fano resonances. In the case of the longer decay length
& = 0.5L the symmetry of the two resonances is broken, while it is restored
in the case of £ = 0.1L. This is in agreement with our interpretation of the
analytical model, because in the case of the shorter decay length only a
single MBS is accessible for lead and quantum dot, respectively. In order
to quantify the symmetry breaking induced by the non-local couplings we
introduce the symmetry breaking parameter

sb = (p(ep = eV) —p(ep = —€eV))/p(ep = €V), (2.27)

which is shown in the inlay of Fig. 2.8 It can be clearly seen that the
symmetry of the Fano resonances is intact until the decay length exceeds
the Majorana coupling length (for the chosen parameters &y = 0.244L).
This is again in accordance with the analytical model which predicts the
loss of symmetry as soon as both Majorana wave functions are accessible
by electron tunneling.

2.5. Conclusion

To summarize, we have calculated the electron transfer between a spinless
lead and an MBS-quantum dot hybrid system. To perform this calcula-
tions we resorted to full counting statistics, a Keldysh Green’s function
based formalism. The cumulant generating function showed that the only
process that contributes to transport is Andreev reflection. The probabil-
ity for this Andreev reflection characterizes the transport in the consid-
ered setup completely. Resonances in the Andreev reflection probability
correspond to the spectrum of the considered setup without an attached
lead. This spectrum shows hybridizations of the electron-like and hole-like
states on the quantum dot with the MBSs.

Fano resonances emerge in the differential conductance as a function of
dot level energy. These Fano resonances always come in pairs (one for the
electron and one for the hole degree of freedom of the quantum dot).

In the case of lead and quantum dot coupling to only one MBS each,
we presented that the differential conductance can be described with the
Fano-Beutler formula which proves that the observed line shapes are in
fact Fano resonances. The two emerging Fano resonances are mirrored at
zero dot level energy. We also expressed the three parameters describing
a Fano resonance in terms of the microscopic parameters of our setup.
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And showed that a sign change in the asymmetry parameter of a single
Fano resonance can be used to measure the splitting energy of the MBSs.
Moreover, we showed that the resulting Fano resonances are quantized to
2¢2 /h.

When considering extended couplings where both MBSs couple to the lead
and to the dot we found that the symmetry of the two Fano resonances
as well as their quantization is lost. In the special case of equal tun-
nel amplitudes to both MBSs, the electron transport is even completely
blocked.

We support our effective model findings with the numerical analysis of a
full Kitaev chain coupled to a quantum dot at one end and to a lead at
the other end. We showed a good agreement with our analytic results
in the low-energy sector. We showed that the Fano resonances persist at
finite temperature and that even though their quantization is lost, the
symmetry of the two Fano resonances with respect to each other remains.
In addition, we showed that a long ranged coupling between Kitaev chain
and quantum dot and lead respectively can lead to the breaking of the
symmetry of the two Fano resonances. Long range in this context means
that tunneling amplitudes connecting the lead and the dot with the Kitaev
chain can reach the Majorana wave function of the MBS located at the
opposite side of the wire.

We showed that the symmetry of the Fano resonances can only be ac-
complished if the MBSs can be addressed individually which corresponds
to them being spatially separate. Thus, we consider it to be a unique
signature of coupling to a single MBS which goes beyond the quantized
differential conductance.
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spin 1n the electrical
transport in a Majorana
nanowire

In the previous chapter, we considered a Kitaev chain as the system in
which the MBSs emerge. However, the Kitaev chain is more of a toy
system that is not realized directly in nature. A more experimentally
relevant system in that MBSs can be found as topologically protected
boundary states are the Majorana nanowires which we have introduced in
Chap. Recently, there have been experimental reports of coupling
quantum dots to low-energy states in these Majorana nanowires [106}/113].
The experimental results showed different hybridizations of spin polarized
electron- and hole-like quantum dot states with the close to zero energy
state which can be explained by a coupling to both emerging MBSs [138|
152,|153},[170]. Generally, both MBSs can be accessible by tunneling to
the dot state, because their wave functions decay exponentially into the
wire which means that if the wire is not long enough, the wave functions
of both MBSs have a finite weight at the interface with the quantum dot
(and/or a lead).

In addition, it was pointed out that near-zero-energy bound states can
emerge rather generically in a tunneling junction if there is a non-
superconducting section between the tunneling barrier and the Majorana
nanowire [142}(144,[154,|170H175|. Some of these low-energy modes can
be already distinguished from topological MBSs, because they are only
zero energy states for fine-tuned parameters. However, some of them
are pinned to zero or close to zero energy over a wide range of param-
eters |141}/142}/1541/156,/170-178|. These pinned modes are also dubbed
non-topological MBSs or quasi-MBSs [179] and have been shown to mimic
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3. Signatures of the Majorana spin in the electrical transport ...

many signatures of topologically non-trivial MBSs [118}[141}142,[174,[175].
So that additional signatures for topologically non-trivial MBSs in the
Majorana nanowires are needed.

Another tool to discriminate between topologically non-trivial MBSs and
topologically trivial MBSs is the spin-canting angle of the Majorana wave
function. Because of the interplay of the Zeeman field with Rashba spin
orbit coupling there is no fixed spin quantization axis in the nanowires.
This leads to a non-trivial spin structure of the Majorana wave func-
tions [152},/180-182]. This non-trivial spin structure can lead to different
spin-canting angles for the two MBSs at the same spatial position and
thus can also have an influence on transport properties [140L152].

Also, to distinguish between topologically non-trivial MBSs and non-
topological MBSs non-local measurements schemes can be employed,
because topological MBSs should always emerge on both ends of the
nanowire. The non-local probe could be a quantum dot contacting the
MBSs as discussed in the previous chapter or truly non-local probes
using two leads |115,|116] which has been realized in experiments re-
cently [183H185].

In this chapter, we consider two setups. First, we take a look at a Ma-
jorana nanowire that is tunnel contacted by a spinful normal conducting
lead. We focus on the finite size of the nanowire that allows us to couple
the lead to both MBSs which can have different spin-canting angles at the
tunneling interface. The second setup under consideration is a Majorana
nanowire that is coupled to a lead on one side and a quantum dot on the
other side. What differentiates this setup from the one in the previous
chapter is that we use a spinful lead and quantum dot and we find that
the additional spin degree of freedom leads to further signatures in the
transport characteristics.

To calculate the transport properties in these setups we use an effective
low-energy approach together with full counting statistics. The calculated
cumulant generating function shows that only Andreev reflection in two
channels contributes to the transport in both setups. In the case with-
out quantum dot we show that the probability for an Andreev reflection
becomes a function of spin-canting angle difference of the two MBSs and
that the transport in one channel is blocked if the spins of the two MBSs
are the same or only one MBS is contacted by the lead. In the case with
dot we show that pairs of Fano resonances emerge as a function of dot
level energy. We find that the symmetry relation within each of these
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3.1. Full Model Hamiltonian

Figure 3.1.: Schematic representation of the setup under consideration.
The normal spinful lead contains two electron (up, down) and two hole
(up, down) channels. We assume a point-like tunneling from the lead
(tr,) and dot (tp) to the corresponding ends of the nanowire. Blue (red)
are the calculated Majorana wave functions of the left (right) ends of the
grounded spin orbit coupled Majorana nanowire (SOCNW). Caption and
figure taken from Ref. [139]. (©)[2020] American Physical Society.

pairs can be used to distinguish if the dot couples to only one or both
MBSs in the nanowire.

In this chapter, we present the results of our publication [139]. The rest of
the chapter is organized as follows. We introduce the full model Hamilto-
nian in Chap. and describe the low-energy physics of the full model by
using an effective Hamiltonian that we present in Chap. To calculate
the transport properties by using full counting statistics the cumulant gen-
erating function has to be calculated. The calculation of it is presented in
Chap. 3:23] In Chap.[3:2.2] we apply full counting statistics to the spin-
ful lead-Majorana nanowire setup. Next, we consider the setup in which
an additional quantum dot is tunnel coupled to the Majorana nanowire
at the side opposite to the lead in Chap. [3.2.3] Finally, in Chap. [3.3] we
extend the transport calculations of the effective models by employing
a numerical scattering matrix approach to the full Majorana nanowire
Hamiltonian.

3.1. Full Model Hamiltonian

We consider a Majorana nanowire which is tunnel coupled to a spinful
normal metallic lead on one side and to a quantum dot on the other side
as depicted in the sketch in Fig The Hamiltonian describing this
system

H = Hy + H, + Hp + Hr, (3.1)
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3. Signatures of the Majorana spin in the electrical transport ...

can be split up in four individual parts. The first part describes the
topological superconductor. We use the Boguliobov-de Gennes formalism
for the Majorana nanowire

1 L
Hy = 5/ U (2)HE XU (2)d, (3.2)
0

where L is the length of the nanowire and HY Y, is presented in the Nambu

T
basis with ¥(z) = [w(m),m(x),wl(w), —Qﬁi(x)} ; and

- -

Here, m* is the effective electron mass, p is the chemical potential, « is
the Rashba parameter, V; is the Zeeman energy and A is the induced
s-wave pairing. The Pauli matrices o; and 7; act in the spin and particle-
hole space, respectively. The topological non-trivial phase with emerging
MBSs is present for Vz > /A2 + p? [53,/54]. For the lead we assume a
linearized dispersion relation

H, = —ihvp Z/dazcl(m)@mcg(x), (3.4)

h2
2m*

ag — y) - ia@xay] 7, +Vzo, + A1,. (3.3)

where cf (z) creates an electron with spin ¢ at position z in the lead.
Here, we neglect effects that dominate at the band bottom (Zeeman effect
and spin-orbit coupling), because of the large Fermi energy in a metallic
lead. For the quantum dot we assume a single level with energy ep that is
Zeeman split with the same Zeeman field strength as in the wire, because
in previous experiments [106}/113] the quantum dot was formed by gating
inside the semiconducting nanowire. Double occupancy of the quantum
dot leads to an additional charging energy U, so that the Hamiltonian is
given by

Hp :Zd2[6D00+V20Z]00,d01 +UTLTTL¢, (35)

o0’

where dg creates an electron with spin ¢ on the dot and n, = df,dg counts
the number of electrons with spin ¢ on the dot. We treat the Coulomb
interaction using a mean field approximation [152]

Unyny = U (ny (ny) + (ny) ny — (ng) (ny)) . (3.6)
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3.2. Low Energy Effective Model

In the mean field approximation, quadratic fluctuations in the dot occu-
pation number are neglected, so that the approximation works best in the
Coulomb valley as fluctuations are smaller away from points in parameter
space at which the occupation of the dot changes. Also, interaction ef-
fects like the Kondo effect are beyond the mean field approximation |186].
However, the applied Zeeman field suppresses the Kondo correlations (for
Az larger than the Kondo temperature).

We assume a point-like tunneling between the end of the lead and one end
of the nanowire with amplitude 1, as well as a tunneling between the dot
and the other side of the nanowire with amplitude tp

Hyp = trch (0)45(0) + todf v (L) + hec.. (3.7)

If not explicitly stated otherwise we will use the parameters m* = 0.015m,
where m, is the electron rest mass, & = 20 meVnm and A = 0.5 meV.
With these realistic parameters we do not aim for a quantitative agreement
with the experiments, but show rather qualitatively the existence of the
proposed signatures.

3.2. Low Energy Effective Model

Because we are interested in the transport signatures of the MBSs, we
introduce an effective low-energy model for the Majorana nanowire. The
finite size of the wire leads to an energy splitting € of the non-local fermion
1 = (71 +97v2)/2 composed of the two MBSs which can be described with
the Hamiltonian

Hygg = 17172, (3.8)

where v; = ’yj is the self-hermitian creation/annihilation operator gener-
ating the i-th MBS and these operators obey the anti commutator relation
{7i,7;} = 20;;. In this low-energy approach the annihilation operator for
the electrons in the Majorana nanowire can be written in terms of the
Majorana operators ¥, (z) = Aio(2)y1 + Aoy (z)v2, where A (x) is the

electronic part of the spinor wave function of the i-th MBS. It is convenient

49



3. Signatures of the Majorana spin in the electrical transport ...

to use the parametrization

trAir(0) = t; cos <@i(0)) =trit,

2
trA;(0) = t;sin <®i2(0) =tri, (3.9)
tDAiT(L) = tDi COS <GZ§L)> = tDiT,

i(L
tpAi (L) = tp;sin <@§ )) =tpiy,

with the spin-canting angle ©;(x) of the i-th Majorana wave function at
position x in the nanowire. Because we base our effective Hamiltonian on
Eq. (33), we find for the spin-canting angles ©;(0) = ©(L) = ©; and
©2(0) = —O1(L) = O2. With this the tunnel Hamiltonian can be written
as

Hrpg = i:ti cos (922(0)> c$(0)% + t; sin <612(0)) CI(O)%

i=1

6,(L ACHe”
+tp; cos (é)) d?yz- + tp; sin ( ; )) dI’yi + h.c.. (3.10)

Also, we assume that the dot is only weakly coupled to the wire, so that
we approximate the expectation values for the occupation of the dot with
those of a completely isolated dot at zero temperature

(ny) =9(~U — Vz —ep)
(ny) =9(Vz —ep), (3.11)

where ¥(z) is the Heaviside function. =~ We perform this approxi-
mation, because the analytical self-consistent treatment of the mean
field approximation is in general not possible. In the following sec-
tions we use that the Heaviside function can be written as ¥(z) =
lim,,_,0 (1/2 + 1/marctan(xz/n)). However, instead of performing this
limit we use n = 10~* for all plots.
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3.2. Low Energy Effective Model

3.2.1. Cumulant Generating Function

To calculate the cumulant generating function (CGF) we transform the
dot creation and annihilation operators into a Majorana basis

1

df = 5 (v +i7) (3.12)
1 )

dI 5(75-1—276)7

to obtain the Hamiltonians

i
=3 > A, (3.13)

v
O; O,
/A A T ) ol % T ]
H = t; cos (2 > c3(0)vi + ¢ sin <2 > ) (0)vi + hec,

where the matrix A is a real valued skew symmetric matrix containing the
splitting energy, the dot level energy, the Coulomb energy in the mean field
approximation and the couplings between the MBS and the quantum dot.
So that the full Hamiltonian of the low-energy systems is H = Hy;+H}+
Hi,. To calculate the CGF we use the Levitov-Lesovik formula [167,/187].
A detailed derivation of this formula is shown in App. [A] where we closely
follow the calculations of Ref. [116]. In order to include the spinful lead, we
treat the two spin channels as independent leads with the same counting
field A\. The CGF is then given by

T det ([D* " (w))
In x (A / ldet e 1(w))]’ (3.14)

where the inverse full Majorana Green’s function [DA '(w) =
[D©(w)]~! = $AM(w) is a 12 x 12 matrix (2 for the MBS, 4 for the electron
and hole degree of freedom on the dot and doubled because of the Keldysh
formalism). Here, D(®)(w) is the unperturbed Majorana Green’s function,
the Fourier transform of [D© (t,¢')],5 = —i (Teva (t)75(t')), and M (w) is
the Fourier transform of the selfenergy containing the counting fields

. _iAm-AG)
Egﬁ@’ t/) = Z |: - tLaatLﬁo-e ’ 2 Go-(t, lfl)

g

A (D) =A(t)

+irgotiace’ 2 Go(t' 1), (3.15)
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3. Signatures of the Majorana spin in the electrical transport ...

where G, (t',t) = Gy(z' = 0,2 = 0,5',5) = —i (Tcéo(0,5)¢,(0,5)) is
the unperturbed lead boundary Green’s function for spin o. Detailed
calculations for the unperturbed Majorana Green’s function can be found
in App. If we insert the calculated Green’s functions in Eq we
find for the CGF

In x(\) :% z;t/(;fln |:1 + i (e*Qei)\ _ 1) n(E)n(—E)

+p; (€2 —1) (n(E) — 1) (n(—E) — 1) |, (3.16)

where n(E) = Wlbﬂ,ev) is the Fermi function in the lead with 5 = 1/kpT
the inverse thermal energy, kp is the Boltzmann constant and V' the bias
voltage between the lead and the grounded superconductor, 7 is the large
measuring time and e is the elementary charge. At zero temperature the
CGF simplifies even more to

eV 27

eV
IIIX()‘”T:O = % Z/ @ In [1 +pi(E) (67261‘)\ . 1) ) (3.17)
i==+

This CGF describes a binomial process in which two electrons are trans-
ferred across the junction in two independent channels + with the prob-
ability p;, respectively. The process which transfers two electrons in the
single particle picture is Andreev reflection where an incoming electron
is back scattered as an outgoing hole. There are two channels for the
Andreev reflection, because of the two spin channels in the normal con-
ducting lead. The first two transport cumulants follow by simply taking
the derivative of the CGF with respect to the counting field

I *?alnX()\)v
1 d?

where [ is the average current and S is symmetrized zero frequency noise.

3.2.2. Transport without quantum dot

In the following section, we want to focus on the case in which the dot
is decoupled from the Majorana system, i.e. tp = 0, and find the influ-
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3.2. Low Energy Effective Model

ences of the finite size of the considered Majorana nanowire on the trans-
port characteristics. This simplified setup has already been considered in
the literature, but these previous works only focused on parallel [188] or
anti-parallel [142] Majorana spins, respectively. These special cases are
included in our model for ©; = Oy (parallel) and ©; — O = 7 (anti-
parallel) and our findings are consistent with the results of these previous
works.

Here, we find that the Andreev reflection probabilities

o 20T (41T + 4e? + E?)sin®(°2) + E*(I'y — I'y)?
16 (T4 T +€2)® + 2(2(I2 + T'2) — 4¢2) E2 + E4

\/(Fl—F2)4E4+4F1F2E2(F1—F2)2(462+2E2+4F1F2) Siﬂ2(576)...
+2

p+(E) =

+—16I2T3E2((I'1 —T2)2—4e2) sin? (22)

5 . (3.19)
16 (T1Tg +2)° +2(2(I'% +13) — 4e2) E2 + E*

with T; = 27v(0)[t;|*> and 60 = ©; — O3 are only depending on the
spin-canting angle difference and not on the individual angles. This can
be explained with the spin rotation invariance of the lead, because we can
always choose a spin basis in which the spin of the first MBS is aligned
with this basis, so that only the difference to the second MBS matters.
Also, in the case of no spin-canting angle difference (600 = 0) p_ vanishes,
as one spin channel in the lead decouples from the Majorana nanowire
following the same argument as before. Finally, for I's = 0 we also end
up with a single transport channel (p_ = 0), because only one MBS can
be contacted by the lead. The differential conductance is calculated to be

dI

2¢?

v o h (p+(eV) +p-(eV)) (3.20)
8e2 (eV)?(T'1 = T'p)® + 20 Ty sin®(%P) (46 + (eV)? 4 4T T,)
h

(482 — (6V)2)2 + 8F1F2(452 + 2F1F2) + 4(€V)2(F% + F%) ’

As seen in Fig. [3.2] a) the influence of the coupling to the second MBS
is negligible if € > I's, because the differential conductance shows nearly
quantized peaks with height 2¢2?/h at the applied bias voltage energy
eV = 2e which is expected for coupling to a single MBS. However, if the
coupling to the second MBS is much larger than Majorana overlap energy
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3.2. Low Energy Effective Model

Figure 3.2.: Differential conductance in the low-energy model in the
setup without QD with finite coupling to both MBS. (a) Differential con-
ductance as a function of bias energy with zero Majorana splitting energy
(blue) and finite splitting energy ¢ = 5T'; (yellow). For ¢ = 0, the dif-
ferential conductance has the shape of a sum of two Lorentzians with
two different widths and deviates strongly from the expected value at the
resonance in the case of a coupling to one MBS. Whereas in the case of
large splitting energy € > I's, such deviations at the resonance are very
small. (b) Zero bias differential conductance vs Majorana splitting energy.
The differential conductance at zero bias is not quantized for ¢ = 0 and
does not vanish for finite splitting energies. The other parameters are
I'; = 0.01T'; and 0© = 7 — 1. Caption and figure taken from Ref. |139].
(©)[2020] American Physical Society.

¢ the key signature of quantized differential conductance is lost. For zero-
energy MBSs the differential conductance is described by the sum of two
Lorentzians whose widths is basically determined by the coupling to the
first and second Majorana, respectively. The height of these Lorentzians is
not quantized and the sign of it can even be different for both Lorentzians
so that the differential conductance at zero bias can assume any value
between zero and 4e?/h. In general, at zero bias voltage the differential
conductance is given by

dl 462 F1F2 . 2 (59
lezo = Tm S <2> . (321)

This again is a Lorentzian, but this time as a function of Majorana split-
ting energy with its width given by /I'1['s as shown in Fig. b). The
height of it can be used to extract the spin-canting angle difference, be-
cause it is given by 4e? sin(§0/2)/h. It is important to note that Eq.
was derived with the assumption that either I'y # 0 or € # 0. The emer-
gence of the two different coupling strengths that determine the widths
of the Lorentzians can mathematically be understood in the framework of
bifurcation of exceptional points [174].

In addition to the differential conductance we can calculate the differential
noise

63
O pt-p 1)), (3.22)
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3. Signatures of the Majorana spin in the electrical transport ...

By measuring both the differential noise and the differential conductance
it is be possible to calculate the two Andreev reflection probabilities

oy tENew \aw) s (3:23)
which means that the measurement of these two measurands is enough to
fully characterize the transport in this setup. However, because the differ-
ential noise is quadratic in the Andreev reflection probabilities there is an
ambiguity (“(£)”) in the calculation of the two probabilities. Physically,
this reflects the fact that p_ and py cannot be distinguished experimen-
tally, because of the spin rotation invariance in the lead.

The influence of finite temperatures on the differential conductance can
also be analyzed and is shown in Fig [3.3] We can identify three distinct
temperature regimes. The first is the low temperature regime kT < T's.
In this temperature regime the differential conductance plateaus at its zero
temperature value. The second regime is the intermediate temperature
regime (I'y < kT < T'1). Here, depending on the difference between the
couplings to the two MBS the differential conductance plateaus at 2¢2/h,
the value expected for coupling to a single MBS. In the latter regime at
even higher temperatures the differential conductance drops due to the
temporal broadening in the lead.

We also calculate the Fano factor

Ah dI \/4h I (4h dI )2 8h dP

S

F= N (3.24)
which is shown in Fig. [3:24] In general the Fano factor is between 0 and
2. In the case of a large splitting energy ¢ > T'; there is no qualitative
difference of the Fano factor between the case of coupling to only one MBS
or the case of an additional small coupling to the second MBS (Fig. [3.4
(a)). In the case of zero energy MBSs, however, the behavior of the Fano
factor is fundamentally different at low applied voltages for the case of
coupling to only one MBS in contrast to coupling to both MBSs as seen
in Fig.[3.4] (b).
In general, we cannot find an analytical expression for the Fano factor,
however at zero bias, zero temperature and finite MBS splitting energy
we manage to find

' T5 cos? (%) +&? h dI

Fly—o=2 =2— ——|v=o- 3.25
‘V_O F1F2 —+ 82 262 dV ‘V_O ( )
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Figure 3.3.: Differential conductance in the low-energy model in the
setup without QD with finite coupling to both MBS (T'y = 0.01T';) at
finite temperature. (a) Differential conductance at zero applied bias volt-
age energy (eV = 0) for three different spin-canting angle differences 60
for zero Majorana splitting energy (¢ = 0). At very small temperatures
(kT <« T') the differential conductance shows plateaus. (b) & (c) Differ-
ential conductance as a function of applied bias voltage energy at different
finite temperatures with spin-canting angle difference §© = n. The Ma-
jorana splitting energy is finite (¢ = I'y) in (b) and zero in (¢). Caption
and figure taken from Ref. [139]. ©][2020] American Physical Society.
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Figure 3.4.: Fano factor in the low-energy model as a function of applied
bias voltage energy in the setup without QD. If not stated otherwise I'y =
0.01I'y. (a) & (b) Fano factor for various spin-canting angle differences
00 and tunneling rates to the second MBS at zero temperature. In (a)
the Majorana splitting energy is finite ¢ = I'; and in (b) it is assumed to
be zero. (c¢) Fano factor with e = 0 and §© = 7 for various temperatures.
Caption and figure taken from Ref. [139]. (©)[2020] American Physical
Society.

58



3.2. Low Energy Effective Model

In the case of coupling to only one MBS or to only one spin direction
the Fano factor at zero bias is quantized to 2. This Fano factor of 2
corresponds to Cooper pairs being transferred between the lead and the
superconductor. In the large voltage regime (V' — oo) the Fano factor is
exactly one in the case of coupling to a single MBS. At finite temperatures
the Fano factor diverges at zero bias due to the thermal noise. For large
bias voltage energies eV > kpT the zero temperature behavior of the
Fano factor is recovered.

3.2.3. Transport properties with quantum dot

Now, in this section we focus on the influence of the quantum dot on
the electronic transport. First experiments that suggest the existence of
the non-local couplings have been using a quantum dot that is coupled
to a Majorana nanowire and a normal conducting lead [106,/113]. Spec-
trally, this experimental setup has also been analyzed from a theoretical
standpoint [152|153]. In the following, we look at a setup where the dot
is not directly contacted by the lead. This difference to the previously
mentioned experiments and theoretical works has the advantage that we
can probe non-local effects of the MBSs. In this section, we also focus on
a low-energy regime.

Because of the spatial symmetry of the Majorana nanowire, we use a fixed
ratio for the two couplings to the two MBSs for the tunneling amplitude
between Majorana nanowire and lead and the Majorana nanowire and
quantum dot, respectively. Then we can use the parametrization

t1 =tcos(¢p) to =itsin(¢)
tp1 = tpot SIN(P)  tpa = itpot cOs(d), (3.26)

which leads to I' = 2m1p[t|?. The angle ¢ then controls the strength of
non-local couplings, where for ¢ = 0 only couplings to the nearest MBS
exist (Majorana-like), while for ¢ = 7/4 the couplings to both MBSs are
the same (Dirac-like).

First, we note that in contrast to the case without the dot the Andreev
reflection probabilities do not only depend on the difference in the spin-
canting angles at the junction, but on the two spin cantings themselves.
This is due to the fact that the spin rotational invariance on the dot is
broken by the applied Zeeman field.
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3.2. Low Energy Effective Model

Figure 3.5.: (a)-(f) Differential conductance in the low-energy model
as a function of applied bias voltage energy eV and dot level energy ep
with tpot = 10T, U = 100T" and Vz = 40T. (a)-(c) show the differential
conductance at finite splitting energy ¢ = 5I". In (a) and (b) the spin-
canting angles are ©; = O, = 0.8. Here both anticrossings are visible.
In (a) ¢ = 0.3. This resulting non-locality manifests in the asymmetry of
dI/dV peaks around the points where the occupancy of the dot changes.
In (b) ¢ = 0 and the differential conductance shows a bow-tie shape. In
(c) we consider ¢ = 0.3 and ©1 = O3 = 0. Here only the anticrossings
around ep = U—Vy can be seen. (d)-(f) show the differential conductance
at ¢ = 0 and ¢ = 0.3 for various spin-canting angle configurations ((d)
01 =02 =038, () O =0, O = 1.4, (f) ©; = O3 = 0). All plots show
a diamond-like lineshape. The dashed lines indicate line cuts shown in
(g) & (h) as a function of dot level energy. (g) corresponds to the upper
row of plots with eV = 25I" and (h) corresponds to the lower row of plots
with eV = 22T". In (g) and (h) the kets denote the spin ground state of
the QD that changes when passing a Fano resonance. Caption and figure
taken from Ref. [139]. (©)[2020] American Physical Society.

The particle-hole symmetry which manifests itself in the Andreev reflec-
tion probabilities in form of py(eV) = pi(—eV) is still intact.

If we take a look at the differential conductance as a function of applied
bias voltage, we find six resonances for a given set of other parameters
which correspond to the eigenenergies of the system without lead. Fig.[3.5]
shows that we can identify resonances that correspond to the states on
the dot (disperse linear with dot level energy) and that correspond to
the MBSs (do not disperse with dot level energy). The states on the
dot have an electron-like (positive slope) and a hole-like (negative slope)
behavior. Furthermore, we see the hybridization of the MBSs with the
quantum dot states. This hybridization can be different for up and down
spin states, because of the MBSs spin-canting angles. The shapes of the
resonances in Fig. [3.5] (a)-(c) resemble a bow-tie-like form because of the
large Majorana splitting while the shapes of the resonances for a small
splitting (see Fig. |3.5| (d)-(f)) resemble a diamond-like form. However,
the diamond-like lineshape only emerges if the non-local couplings do not
vanish. These patterns can be used to analyze the Majorana non-locality
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as discussed in Ref. [152,[153)].

It can also be seen that the approximations we made (mean field ap-
proximation and nearly isolated dot) breaks down at points where the
occupation of the dot changes and leads to nonphysical discontinuities in
the differential conductance. At those degeneracies the fluctuations in the
dot occupation are largest and therefore the mean field approximation
leads to unphysical results.

The width of the resonances corresponding to the dot states is smaller than
those corresponding to the MBSs, because the lead which is responsible
for the broadening is coupled directly to the MBSs but only indirectly to
the quantum dot.

At fixed bias voltages the differential conductance shows Fano resonances
as a function of dot level energies shown in Fig. 3.5 (g) and (h). These
resonances arise because two fundamentally different electron paths in-
terfere with each other. The first is a structureless path in which the
electrons enter the superconducting Cooper pair condensate directly via
an Andreev reflection. The second path involves an incoming electron
virtually occupying the dot before entering the Cooper pair condensate.
This second path is resonant with respect to the dot level energy while the
first is not. This then leads to the emergence of the Fano resonances. We
find that these Fano resonances always come in pairs at approximately

cbres & {U —Vz+V where (n4) changes, (3.27)

VzxV where (n;) changes.

For V = 0 these dot level energies correspond to the changes of the occu-
pation number in the ground state of the isolated dot.

In the bias window in which we see the hybridization between the dot
states and the MBSs no Fano resonances can be found, because the hy-
bridization makes a distinction of the two path’s impossible.

In the case of coupling to only one MBS, these two Fano resonances are ap-
proximately symmetric with respect to each other, because a single MBS
couples to electron and hole degrees of freedom in the same way. Mathe-
matically, this can be explained if we examine the low-energy Hamiltonian.
For a large Zeeman field and large Coulomb interaction Vz, U > € and for
dot level energies epp where the occupation of the dot can change (i.e. if

62



3.3. Numerical scattering matrix formalism for the full wire model

a spin level is close to zero energy) the low-energy physics is described by
Hrp =iey1ys + EDZT(i)d&L)dT(i) (3.28)

+ iz [tmm)d%) + tE,¢(¢)dT(¢)} ’

where we projected out the higher energy dot state, accordingly and
ep,s = €p + 0Vz + U (nz). This Hamiltonian is invariant under the
transformation

epaw) = —Epaw by = iy, (3.29)

up to a phase that can be gauged away. This reflects the particle-hole
symmetry of an isolated MBS and is only present if the dot couples to a
single MBS.

The resonances can also be linked to the spin states of the QD. In general,
the height of the Fano resonance is only quantized to 2e2/h for the case
of coupling to a single MBS (¢ = 0). In this case, the antiresonances
also completely block the transport (dI/dV = 0). Moreover, because of
the intrinsic particle-hole property of a single MBS the Fano resonances
corresponding to an electron-like or hole-like state on the QD are sym-
metric with respect to each other in the case of ¢ = 0. In the case of finite
non-local couplings, the quantization of the height is gone and it can be
different for the two resonances within a pair.

We also want to note here, that the case of both spins pointing in the same
direction along the quantization axis of the spins on the QD is equivalent
to the system considered in the previous chapter, because then one spin
channel and one spin state on the QD decouples from the Majorana sys-
tem. However, there are two differences. First, because of the applied
Zeeman field and charging energy the occupation number change in the
ground state of the isolated dot is shifted in energy. Second, there is the
discontinuity due to our approximations (Eq. )

3.3. Numerical scattering matrix formalism
for the full wire model

In this section, we want to connect our analytical low-energy findings to
the full Hamiltonian represented in Eq. Therefore, we discretize it on
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a chain to obtain a tight binding model of the full system. The discretized
Hamiltonian for the nanowire reads

N 2
h
HNum = Z \III |:<m*a2 - M) T, + VZUZ + A7—a::| qu

=1
iy h? o
+ Z \III |:WTZ + iaTZUy:| \I]i_;,_l + h.C., (330)
i=1
with a = %, where N is the number of sites of the discretized nanowire.

To calculate the transport properties we use a scattering matrix approach
which is implemented in the python package Kwant [189]. The scattering

matrix 5 s
S = (e et 3.31
<She Shh) (3:31)

connects the outgoing modes of kind ¢ with the incoming modes of kind
j with the amplitude S;;. The modes in the metallic lead are either of
electron or of hole kind. The differential conductance at zero temperature
is

dI

— =N, —Tee +T.p, 3.32
av + Len ( )

where N, is the number of propagating electron modes in the lead. The
transmission amplitudes T;;, even though T, is actually describing the
reflection of an electron, can be calculated from the scattering matrix

Ty =T (1,55 - (3.33)

3.3.1. Without dot

Again, we start by analyzing the system without quantum dot. For Zee-
man fields larger than the critical Zeeman field Vzo = /A2 + p? the
wire is in a topological non-trivial phase which leads to the emergence
of close to zero-energy states. Due to the finite size of the nanowire the
energy of this state is oscillating with the applied Zeeman field [55,(190]
which is shown in Fig. [3.6| (a). The differential conductance at zero bias
voltage shows a peak whenever the excitation energy is zero which is to
be expected, because the differential conductance probes the local density
of states at the end of Majorana nanowire. However, the peak height is
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not quantized with 2e2/h, but varies for different oscillation periods. The
height of the peak can undercut or exceed the quantized value depending
on the applied magnetic field. This indicates that the lead is not only
coupled to one MBS but also to the second MBS and following the an-
alytical model that the difference in spin-canting angles is decreasing for
each period of the splitting energy oscillations.

In Fig. [3.6] (b) the differential conductance as a function of applied bias
voltage at two different fixed Zeeman fields is shown. For the Zeman
field that corresponds to the close to zero energy Majorana splitting the
differential conductance can be described as a sum of two Lorentzians with
two different widths. It was already pointed out that the width of the
second Lorentzians is so small that current state-of-the-art experiments
are not able to resolve it properly due to too high temperatures [172]. In
the case of a magnetic field that corresponds to the maximum Majorana
splitting energy, the differential conductance does not deviate much from
the quantized value of 2e%/h at the resonances which points to a coupling
to an isolated MBS . This is consistent with the findings of Penaranda et
al. [170] who showed that the non-local couplings are smallest when the
Majorana splitting is maximal.

The low-energy transport in both cases can be very well described with
the effective model calculations. This is shown by the fits (dashed lines)
to the numerical data using Eq. . What cannot be described with
the effective model is the transport due to the higher energy states shown
in the inset in Fig. [3.6| (b).

In recent experiments [109], first hints of the non-local couplings could be
seen, because the zero bias differential conductance peak exceeded 2¢2/h
at low temperatures and large tunnel couplings. However, the full regime
was not yet explored, because in these experiments the ratio of kpT/T’
was still too large to fully resolve a possible coupling to the more distant
MBS.
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Figure 3.6.: (a) Zero bias differential conductance at zero temperature
(blue) and energy E of the lowest energy excitation in the nanowire (yel-
low) as a function of the applied Zeeman field for the setup without QD.
The peaks in the differential conductance correspond to zero energy states
in the nanowire. (b) Differential conductance vs. applied bias voltage en-
ergy at fixed Zeeman field Vz = 0.7236 meV (blue) and Vz = 1.2 meV
(yellow). The Zeeman field values correspond to a small Majorana split-
ting (blue) and large splitting energy (yellow). The dashed lines are fits
to the numerical data using Eq. with §0, I'; and 'y as free parame-
ters. The inset shows the differential conductance for a larger bias voltage
energy window which includes higher energy states in the superconducting
gap. The other microscopic parameters are g = 0, m* = 0.015m, where
me is the electron rest mass, & = 20 meVnm, L = 1.1 ym and A = 0.5
meV. Caption and figure taken from Ref. [139]. (©)[2020] American Phys-
ical Society.

3.3.2. Self consistent mean field approach for the
quantum dot

So far, the non-local couplings have only been conclusively seen in exper-
iments containing a quantum dot. Therefore, we now turn again to the
setup with a quantum dot. To include the quantum dot, we implement
the mean field approximation self-consistently. Also, we stay in a regime
in which the dot is only weakly coupled to the nanowire in order to ensure
the comparability to our effective model calculations, i.e. the hopping be-
tween the dot and the nanowire is assumed to be only 10% of the hopping
inside the nanowire.

For the self-consistent calculations we start with a finite size system in-
cluding a finite sized lead with M sites. From this we extract the quantum
dot occupation numbers that we then insert into the open system. A pro-
gram flow chart for our selfconsistent method can be seen in Fig. We
start with a given input vector for the spin-up and spin-down ground-state
occupation numbers (n,,) on the dot and a number of sites for the lead
M. Then, we calculate the expectation value for the number operator on
the dot (n,,,) in the ground state. We check if the difference between
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Begin
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Input:
M, <n;, >
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Calculate < n,,,, >
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Figure 3.7.: Program flow chart for the self-consistent calculation of the
QD occupation number. The program contains two loops. In the first loop
the QD occupation number (n) is calculated selfconsistently for a fixed
number of sites of the lead M, while the second loop increases the number
of sites for the lead until convergence (with small convergence parameter
v). Caption and figure taken from Ref. [139]. (©)[2020] American Physical
Society.
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input and output |(n;,) — (n,,;) | is larger than a predefined value v (in
our case v = 0.001). If it is we use (n;,) = 0.5((n;,) + (n,,)) as the
newinput value and start the calculation again. If it is smaller than v, we
add a site to the finite size lead set (n;,,) = (n,,:) and calculate (n,,,)
again. We check again if input and output do not differ more than v. If
the system has not converge yet, we start the selfconsistent calculation
from the start. However, if it has converged, we use the output as in-
put for the calculation using the scattering matrix formalism. As seen in
Fig. 13.8| (f) the occupation of the dot corresponds nearly to that of an
isolated dot. The limitations of the self consistent mean field theory is
visible as a discontinuity of the occupation number at the transition from
a doubly to a singly occupied QD.

To compare the numerical analysis to our effective model calculations,
we focus on the topological regime. As seen in Fig. [3.8| (a) this regime
is dominated by the oscillating energy of the near zero energy Majorana
states. However, not only the MBSs emerge inside the gap, but also other
low-energy bound states can be found. The dot states hybridize with
the MBSs as well as with the other states in the wire. Fig. 3.8 (b)&(c)
show the differential conductance as function of applied bias and dot level
energy. The resonances reveal that there is a large splitting energy for the
MBSs. However, the line shapes at low energies are symmetric around
the dot level energies where the ground state occupation number of the
dot changes. This indicates, according to our effective model, that there
is only an insignificant or even vanishing coupling to the second MBS.
The hybridization of the dot spin-up state with the MBSs is much smaller
than that of the dot’s spin-down state. This can be explained with the
spin-canting angle of the MBSs. The different hybridizations can therefore
also be used to analyze the spin-canting angle [113].

In Fig. 3.8 (d)&(e) the Zeeman field is tuned in such a way that the
Majorana splitting energy is close to zero. In the low-energy transport
regime (|eV]< 0.3 meV) the resonances are asymmetric around the point
where the ground state occupation number changes which indicates the
existence of a large non-local coupling. This is consistent with our findings
in the previous section for the setup without the QD.

69



3. Signatures of the Majorana spin in the electrical transport ...

(a) (b)
I e?

av %]

eV [meV]

1.0

0

N
2 15
=
S
© 1.0
05
0
1.0F—— — 0y
0.8}
A - n
& 0.6/
Vo0.4f
0.2f
0.0
-4 -2 0 2 4

ep [meV]

70



3.4. Conclusion

Figure 3.8.: (a) Spectrum of a finite-length nanowire - QD setup without
an attached lead as a function of applied Zeeman field with ep = —10
meV. The vertical dashed lines indicate the Zeeman fields which were
used in the calculations of the differential conductance in (b)-(e). (b)-
(e) Differential conductance as a function of applied bias voltage between
lead and Majorana nanowire and dot level energy for various Zeeman fields
Vz =2.4meV ((b) & (¢)) and Vz = 2.15 meV ((d) & (e)). (f) Occupation
number of the QD as a function of dot level energy for V; = 1.5 meV.
The other microscopic parameters are y = 0, m* = 0.015m, where m,
is the electron rest mass, & = 20 meVnm, A = 0.5 meV, L = 1. ym and
U = 3 meV. Caption and figure taken from Ref. [139]. (©)[2020] American
Physical Society.

The higher-energy states also hybridize with the QD states. This hy-
bridization is also asymmetric for electron- and hole-like excitations on
the dot. It reflects the fact that all excitations can be decomposed into
two MBS components, and, in general, these components are not spatially
separated and thus the dot couples to both Majorana components of each
higher-energy state.

The advantage of this setup compared to the setup without QD is that
we can efficiently tune the spectrum of the system which can be probed
by electron transport. This leads to qualitative features (symmetric vs.
asymmetric hybridization) that allows to discriminate between the case of
coupling to only one or both MBSs. In contrast, the differential conduc-
tance peak in the setup without quantum dot only changes its height but
not its position when we include non-local couplings and its height change
might be hard to detect experimentally due to thermal broadening of the
conductance resonances.

3.4. Conclusion

To sum up, we analyzed the electronic transport in a metallic lead-
Majorana nanowire-quantum dot structure. In the topological regime
the low-energy physics of the nanowire is described by the two Majorana
bound states (MBSs) emerging at both ends of the wire. We allowed
for tunnel couplings to both MBSs for lead and dot, respectively and in-
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cluded the spin structure of the Majorana wave functions in these tunnel
couplings. We treat the charging energy of the quantum dot with a mean
field approximation. For the low-energy model we use the full counting
statistics, a Keldysh based technique, to calculate the cumulant gener-
ating function (CGF) which characterizes the full transport between the
lead and the topological superconductor. The CGF shows that the only
process that contributes to the current is Andreev reflection in two dif-
ferent transport channels which can be associated with the spin in the
metallic lead.

If the quantum dot is decoupled from the nanowire, the probability for
an Andreev reflection to occur is only depending on the difference of the
two Majorana spin-canting angles at the junction. This dependence can
be explained with the spin rotation symmetry in the metallic lead. In
general, the differential conductance can take on any value between zero
and 4e2/h. In contrast to a setup in which only one MBS is contacted by
the lead, the quantization of resonances in the differential conductance is
lost. We showed that the differential conductance or the Fano factor at
zero bias and temperature can be used to determine the spin-canting angle
difference. Furthermore, we showed that the finite temperature behavior
of the differential conductance can be used to extract the coupling to the
more distant MBS.

The quantum dot introduces more complexity to the system. If the dot
levels and the MBS splitting energy are in resonance there is a hybridiza-
tion between the dot states and the MBSs which leads to bow-tie-like and
diamond-like lineshapes of the resonances in the differential conductance
as a function of applied bias voltage and dot level energy. At fixed bias
voltage Fano resonances emerge as a function of dot level energy. These
Fano resonances come in pairs around the points where the occupancy of
the dot changes. If the dot and lead couple only to one MBS each pair of
Fano resonances is symmetric and quantized to 2¢2/h.

Finally, we used a tight binding model of a full Majorana nanowire to
calculate the differential conductance numerically. In the case without
quantum dot, the numerical calculation shows that for realistic parameters
both MBS can be contacted by the lead. In the case with quantum dot,
we treat the mean field approximation self-consistently. By comparing the
numerical calculations with the effective model, we find that the non-local
couplings are largest when the splitting energy of the MBS is smallest.
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4. The influence of the
Majorana non-locality on the
supercurrent

In the two previous chapters, we considered the transport between a metal-
lic lead and a grounded topological superconductor (TSC) and have seen
that the transport was governed by Andreev reflection a process that
transfers two electrons (or holes) from the lead to the superconductor.
However, in this chapter we focus on a setup in that the TSC is not
probed by a normal metallic but a superconducting lead. Together lead
and TSC form a Josephson junction and a supercurrent can be driven
through the junction without a voltage drop [191]. This Josephson ef-
fect occurs in all junctions between superconductors that are connected
by a weak link. The maximal current that can be driven through the
junction without voltage drop is called critical current. Without going
into the details here, the equilibrium Josephson current can be calculated
by taking the derivative of the free energy (or the ground state energy
at zero temperature) with respect to the superconducting phase differ-
ence [192|. For a standard Josephson junction consisting of two BCS
(Bardeen-Cooper-Schrieffer) superconductor’s energy phase relation and
therefore the Josephson current is 27 periodic. Additionally, an applied
bias voltage leads to an evolution of the phase over time following the
second Josephson equation [47]. In the case of a rf-driven junction with
the bias voltage V' = V) + V; cos(wst), Shapiro steps in the dc current
occur when Vj = nfiw; /2e [193].

The Josephson effect in TSC-TSC Josephson junctions that are also called
topological Josephson junctions can show a different behavior. In an ideal
configuration the supercurrent shows a 4m-fractional Josephson effect in
that the energy phase relation becomes 47 periodic [29[73l[74]. This dou-
bling of period corresponds to the fractionalization of charge carriers, in
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this case Cooper pairs. This fractionalization is possible because of the
zero-energy fermionic degree of freedom of the idealized MBSs. Taking
interactions into account even higher fractionalized Josephson effects can
occur, e.g. 8m. In these cases, the Josephson current is mediated by
parafermions, a generalization of Majorana fermions [91].

In any finite size topological Josephson junctions the degeneracy of the
fermionic degree of freedom is lifted and in general the 47 effect becomes
27 periodic again [75,[77,[79]. Also, quasi-particle poisoning events that
change the parity of the junction reduce the periodicity back to the 27
periodicity. These, in addition to the fact that every real world experiment
uses finite size TSCs, make the fractional Josephson effect fragile and
not directly measurable in equilibrium experiments. The 47 effect can,
however, be restored by applying a dc bias voltage which results in a
linear time dependence of the superconducting phase difference. If the
phase is swept fast enough, Landau-Zener process can induce transitions
between the non-degenerate states which recovers the 47 periodicity |75,
77H79). However, Landau-Zener processes can also induce transitions to
continuum states which again destroys the 47 periodicity.

Another experimentally feasible strategy to unveil the fractional Joseph-
son effect is relying on Shapiro step experiments. Because Shapiro steps
are connected to the periodicity of the junction, a 47 periodicity leads to
the missing of odd Shapiro steps [86-88],194]. First experiments showed
the missing of the first odd Shapiro step [82)84] and current state of the art
experiments showed a suppression of all odd Shapiro steps [83]. Another
dynamical measurement of the 47 effect is to directly detect the emitted
Josephson radiation which also has been observed experimentally [89,/90].
Another tool for the detection of MBSs is to look at the dissipative
quasi-particle current in a voltage biased junction. In the TSC-TSC
case, multiple Andreev reflection leads to multiple peaks at subgap volt-
ages [77,/195,196]. In a normal S-TSC setup the subgap transport is
suppressed and a universal peak in the differential conductance with
% = (4- 77)% arises at eV = +£Apcs, where Apcs is the supercon-
ducting gap in the normal s-wave superconducting lead [196H200]. The
advantage of the superconducting lead in comparison with a normal con-
ducting lead lies within the exponential suppression of thermal broadening
effects due to the density of states in the superconducting lead. First STM
experiments that use a superconducting tip in order to probe magnetic
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adatoms on lead surfaces, show these peaks that however are not quan-
tized to the predicted value [110,201].

The Josephson current in junctions consisting of normal s-wave super-
conductor and TSCs show a different behavior. In a junction between a
pure s-wave and a pure p-wave equilibrium superconductor the Joseph-
son current is completely blocked [202]. This blockade can however be
lifted if the s-wave superconductor does not only contact a single, but two
MBS [203}/204] if their spin is non-collinear. In junctions between an s-
wave lead and a Majorana nanowire in the topologically non-trivial phase
finite Josephson currents can be found in an s-wave Majorana nanowire
junction [205H207|. This can be attributed to a residual s-wave pairing
in the higher-energy states coming from the parent superconductor that
proximity induces the superconductivity in the nanowire.

In this chapter we focus on the equilibrium supercurrent in an s-wave
superconductor - finite size Majorana nanowire Josephson current. In
contrast to the previous works considering this kind of Josephson junction
we emphasize the finite size of the nanowire and explicitly analyze the
contribution to the supercurrent coming from the MBSs emerging at both
ends of the Majorana nanowire. We show that a coupling to both MBSs
in the nanowire lifts the supercurrent blockade.

In order to calculate the Majorana contribution to the Josephson cur-
rent, we use the quasi-degenerate perturbation theory to find an effective
Hamiltonian for the low-energy sector. As already seen in Chap. [3] the
spin-canting angle difference J© of the two MBSs at the position of the
junction has influence on the transport properties. We show that the
critical current shows a dependence on 00. In order to relate the re-
sulting supercurrent to experimentally relevant parameters, we calculate
the Majorana spinor wave function approximately. As a function of ap-
plied Zeeman field the critical current is oscillating with an increase in
amplitude for larger Zeeman fields. We attribute these oscillations to the
rotation of the spin-canting angle of the MBS more distant to the junc-
tion. Also, the critical current changes sign at parity crossings. These two
effects are the main findings of this chapter.

In addition, we show that higher-energy states can also contribute to the
Josephson current, if they experience a residual s-wave pairing from the
parent superconductor. We verify our findings using a numerical tight-
binding calculation for the full system. Here, we find that the high-energy
contributions are concealing the Majorana contributions. We also suggest
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Figure 4.1.: Sketch of the considered Josephson junction between an s-
wave superconductor and a topological superconducting nanowire includ-
ing the calculated wave functions of the two MBS ~; and 5. The wave
functions decay into the wire and their spin cantings (arrows) change
with position along the wire. Electrons can tunnel between the s-wave
superconducting lead and the nanowire with tunneling amplitude ¢ cre-
ating overlap with both MBS. Figure and caption taken from Ref. [140].
(©)[2018] American Physical Society.

an experimental scheme to unveil the Majorana contributions by using
quasi-particle poisoning.

The rest of this chapter is organized as follows: In Chap. [£.1] we introduce
the model under consideration. We derive the low-energy effective model
in Chap. [£.2] and discuss the contribution from higher-energy states in
Chap.[4.3] To verify our analytical results we present a numerical analysis
of the considered model in Chap. The results presented in this chapter
have been originally published in Ref. [140].

4.1. Model

We consider a Josephson junction between a conventional s-wave super-
conducting lead and a grounded finite size Majorana nanowire. The s-
wave lead is described with the standard BCS Hamiltonian

Hpcs = Z ekc};acko + Agcs (ei“’lc;ﬁciki + e_wlc_kicm) , (4.1
k
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where ¢, = h2k2/2m — ppes is the single-particle energy of the lead in
the normal phase [47], Apcs is the superconducting pairing amplitude,
1 is the superconducting phase and CLU creates an electron with mo-
mentum %k and spin 0. We note that the superconducting phase itself
is no measurable entity because of the U(1) gauge degree of freedom of
the electron creation and annihilation operators. With the use of the

Bogoliubov-Valatin transformation [208}/209)]

Ckt = UgVko + 'Uk'}/]il

Cim = —UpYko + Uk’)/;ip (4.2)

where the coefficients ug, and vy, satisfy |ug|?+|vg|>= 1, the Hamiltonian
in Eq. (4.1)) is being diagonalized

Hpcs = Z Br(vhovko + V1), (4.3)
k

with By, = \/€2 + A% and 4] = creating a quasi-particle excitation in the
superconducting lead. To be precise, we shifted the ground state energy
of the Hamiltonian in Eq. to zero, because we are only interested in
the excitation spectrum.

To describe the Majorana nanowire we resort to a one dimensional effec-
tive mass approximation in real space [53/54]. Within the Bogoliubov-de
Gennes (BdG) formalism the Hamiltonian can be written as

1 L
Hyw = 5/ dz ¥t (r)Hpac ¥ (z), (4.4)
0

where L is the finite length of the nanowire and
Ui(z) = [wl(x), zpi(x),i/)i(x), —14(x)] is the creation operator in
Nambu basis with 1] (z) creating an electron at position z with spin o.
The BAG Hamiltonian Hpqq is given by

72
Hpag = K— Y 85 — ,u) - ia@xoy] 7.+ Vz0. + Ay, (4.5)

where the Pauli matrices o; and 7; act in spin and particle-hole space
respectively. Here, m* is the effective mass, p is the chemical potential, «
is the Rashba spin orbit parameter, Vz is the applied Zeeman field and A is
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the proximity induced superconducting pairing amplitude in the nanowire.
For simplicity, we directly choose a gauge in which the superconducting
phase ¢s does not enter the nanowire Hamiltonian. This Hamiltonian
can also be diagonalized using a Bogoliubov transformation. However,
because of the richer spin dependence, it is necessary to introduce the
spinor wave function a,,(z) and B,,(z) along with the quasi-particle
excitation creation operator 7

Vo(r) = Z Qo (T) 1 + 520(37)77:17 (4.6)

which results in
Hxw = Y entlfiin- (4.7)

In the topologically non-trivial phase (Vz > /u? + A?) the low-energy
sector of this Hamiltonian is given by a single fermionic level which can be
either empty or occupied. This level is of special interest because it can be
decomposed in two mostly spatial separate MBS n; = (71 + i72)/2 which
emerge at the end of the nanowire as its topologically produced boundary
modes. Because of the finite size of the nanowire the spinor wave functions
of these two MBSs A,,,(x) overlap which leads to a finite splitting energy
¢ and the low-energy Hamiltonian for the nanowire is given as

Hywie = iev172. (4.8)

The tunnel Hamiltonian that mediates the transfer of electrons between
the lead and the Majorana nanowire is given as

Hyp =Y te'2cl, 1y(0),

k,o

with the momentum and spin independent tunneling amplitude t. We
choose to gauge the superconducting phase difference ¢ = 1 — o into
the tunneling Hamiltonian and note that this difference has a physical
meaning. The full Hamiltonian of the system is therefore given by

H = Hpcs + Hnw + Hr. (4.9)
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4.2. Low energy effective system

4.2. Low energy effective system

Because we are interested in the contributions of the MBSs to the Joseph-
son current we consider the nanowire to be in the topologically non-trivial
regime so that we describe the complete nanowire with Hywpg. More-
over, we can rewrite the electron creation and annihilation operators in
terms of the MBS operators and their wave functions

1,[}0(0) ~ AlU(O)’Y1 —+ AQU(O)’}/Q. (410)

In order to calculate the Josephson current analytically, we use the quasi-
degenerate perturbation theory, where we assume the tunneling to be a
small perturbation to the unperturbed Hamiltonian Hy = Hgsc+HNwWLE-
Up to second order in the perturbation the effective low-energy Hamilto-
nian can be calculated as

H = PHyP + PHTLHTP, (4.11)
E—Hy

where P projects onto the low-energy sector comprised of the ground state
of the BCS lead and the two MBS in the nanowire and Q = 1— P projects
onto the high-energy sector, meaning an excitation in the BCS supercon-
ductor. The first order corrections vanish, because a single tunnel event
always brings the superconductor from the ground state to an excited
state. In the limit ¢ < Apcg, we find for the eigenenergies

B = Fe£2mp(0) (it%e"[A11(0) A2, (0) — A1 (0)A2r(0)] + c.c.) , (4.12)

where the upper sign corresponds to the even parity in the system and the
lower sign to the odd parity respectively and v(0) is the density of states
at the Fermi level in the lead. The details of the calculations leading to
this result can be found in App. [C} At this point we want to note two
things. First, the Majorana wave functions enter Eq. in a singlet
projection which reflects the singlet character of the Cooper pairs in the
s-wave lead. Second, if the wave function of the more distant MBS does
not reach the junction, i.e. Ag,(0) = 0, we retrieve the results found
in Ref. [202] and the ¢ dependence drops from the eigenenergies and no
Josephson current can flow.

In the next step, we want to connect the effective parameters to the micro-
scopic parameters introduced in the previous section. However, because
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4. The influence of the Majorana non-locality on the ...

the BAG Hamiltonian is of dimension 4 x 4 and it includes a second order
derivative there is no closed analytical solution to its eigenvalue problem
and we need to resort to approximations in order to solve it. It is possible
to find Majorana wave function solutions of Hpqg in the case of semi-
infinite wires analytically [55],/190]. So we calculate these Majorana wave
functions and cut them off at position L to enforce the finite size of the
nanowire. The details of this calculation can be found in App.[D| We find
that the Majorana spinor wave functions have no spin-y component, so
that we can parameterize them as

An1(0) n—1 cos(©,/2)

(AnI(O)) =0k (m(@n/z)) : (4.13)
Here, ko = rie /¢, with € being the Majorana localization length and
k1 being a real valued free parameter. We introduced x; as another ap-
proximation, because strictly speaking the boundary conditions lead to
vanishing wave functions at the ends of the wire. The exponential sup-
pression of ko with respect to k1 is due to the exponential decay of the
Majorana wave functions along the nanowire. The spin-canting angles at
the position of the junction O, can be different, because the spin of the

Majorana wave function rotates as the wave function traverses the wire
because of spin-orbit interaction. We can now insert this parametrization

into Eq. (4.12)) to find
©, -0
Eé?())) = +e F ' cos(ip) sin (122> e L/¢, (4.14)

where I' = 4wk2t%1(0) and we assumed that ¢ is real valued. A close look
at Eq. reveals that the ¢-dependent contribution to the eigenen-
ergies vanishes if the spins of the two MBSs at the junction point in the
same direction. In this case, Cooper pairs cannot be transferred from
the lead to the nanowire, because the Cooper pairs in the lead are built
up from two electrons with different spin. Moreover, we see only the
spin-canting angle difference enter in Eq. , because the lead is spin
rotation invariant and we can always choose a spin basis in the lead in
which one spin points along the direction of the spin of the nearest MBS.
Also, we see an exponential suppression of the p-dependent contribution
to the eigenenergies with the length of the nanowire, because the more
distant MBS becomes less accessible for electrons tunneling through the
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Figure 4.2.: a) and b): Effective low-energy spectrum (Eq. ) as
a function of the superconducting phase difference for different applied
Zeeman fields (blue: Vz = 5.05A, black: Vz = 6.0A, red: V; = 6.5A)
(a)) and as a function of the applied Zeeman field for ¢ = 7/2 (b)).
Dashed lines correspond to odd parity states, while full lines correspond
to even parity states. The microscopic parameters are m* = 0.015m,,
A =02meV, g =0, a =20 meV nm, I' = 0.004 meV, L = 1.3 um.
Figure and caption taken from Ref. |140]. (©)[2018] American Physical

Society.
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junction. In general, because of the particle-hole symmetry the energies
of even and odd parity show a zero or 7-junction behavior. Depending on
the parameters, either the even or odd state can be the ground state of
the system. It can also happen that the ground state changes during the
evolution of the superconducting phase difference as seen in Fig. a).
As a function of magnetic field both eigenenergies are oscillating with a
rising amplitude for higher Zeeman fields (see Fig. b)). This increase
in amplitude can be attributed to a larger localization length [76] and thus
a bigger spatial overlap of the two MBSs.

The equilibrium Josephson current can be calculated from the ground
state energy by taking the derivative with respect to the superconducting
phase difference

2
I(p) = 5-0,min(EP), E)
= Ic(p) sin(p), (4.15)

where the ¢ dependency of Io only changes its sign, if the two energy
levels cross as a function of ¢. As shown in Fig. a) the critical current
oscillates with applied Zeeman field. We can attribute the oscillations to
the rotation of the spin-canting angle difference as function of Zeeman
field seen in Fig. b). It can also be seen that this rotation is nearly
completely governed by the more distant MBS, while the closer MBS
is spin polarized in the direction of magnetic field. Furthermore, the
amplitude of the oscillations is rising with increased applied Zeeman field
because of the better accessibility of the second MBS. Also, the critical
current jumps at parity crossings as the junction switches between a zero
and m-junction or vice versa.

4.3. High energy contributions

In the previous section, we focused on the Majorana contributions to the
supercurrent, but previous works showed that even in the limit of semi-
infinite wires a finite Josephson current can be found [206}207]. These
contributions can only come from higher-energy states of the wire. In
order to analyze their contribution in leading order, we calculate the sec-
ond order corrections to the eigenenergies of the full wire Hamiltonian
Hyw + Hpcs where we again consider Ht as a perturbation. The phase
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Figure 4.3.: a) Critical current (Ic(¢ = 7/2)) in the ground state of the
low-energy model and b) tangent of the spin-canting angles at position
x = 0 of the two MBS (1,2) as a function of Zeeman field Vz. The other
parameters are the same as in Fig. [£.2] The jumps in the supercurrent
occur when there is a parity switching of the ground state, while the
oscillatory part is due to spin canting rotation of the MBS. When the
difference of the spin-canting angles is zero the critical current vanishes.
Figure and caption taken from Ref. |140]. (©)[2018] American Physical
Society.

83



4. The influence of the Majorana non-locality on the ...

dependent energy corrections are

ER) =37 ¢1 (i (0)5,(0) — vy (0)82:(0)) f ( cn ) tee,

ABpcs
(4.16)
where f(z) = v(0) foym” dy(v/1+y2(\/1+ 92 + 2))~ ! with ymee =
hiwp/Apcs and with wp being the Debye frequency. In Eq. (4.16) the

En

function f (Ascs
cause of this suppression it is common to only look out for states at small
energies. The wave functions again enter in the form of a spin singlet,
because of the singlet Cooper pairs in the BCS lead.

These findings are also consistent with the results of Zazunov and Eg-
ger [202] which show that the supercurrent in a Josephson junction be-
tween an s-wave superconductor and a “pure” p-wave superconductor is
completely blocked. For a “pure” p-wave superconductor the singlet pro-
jection of the wavefunction would vanish, i.e.

0t (0)85,(0) — any (0)824(0) =0 Vn, (4.17)

which results in a completely vanishing supercurrent. In general, the
analytical calculation of all the wave functions is not possible, therefore
we resort to a numerical treatment of the proposed setup in the following
section.

) suppresses the contributions of higher energies and be-

4.4. Numerical results

In this section, we want to expand our previous analytical analysis of the
Josephson junction with numerical results coming from a tight-binding
model. We split our analysis in two parts. First, we consider only an
isolated finite-size Majorana nanowire to extract some key characteristics,
before we calculate the Josephson current numerically using a discretized
version of the full Hamiltonian defined in Eq. .

4.4.1. Finite size Majorana nanowire

As a first step we discretize the full nanowire Hamiltonian in the BAG for-
malism shown in Eq. (4.4)) by replacing the spatial derivative with a differ-
ence quotient and the integration with a sum over discrete four component
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creation operators in Nambu basis \Il;r The discretized Hamiltonian than
reads

N 2
h
Hpnw = Z \I/-jr |:(m*a2 - [L)TZ +Vzo, + AT$:| \Ijj
j=1
t ’ @
—+ \I/j |:_2'n’],*(127—z —+ iaTzUy:| \I/j,1 + h.C., (418)

where a is the spatial spacing a = L/N with the number of sites N.
Before we focus on the complete Josephson junction we consider the char-
acteristics of the isolated finite size nanowire. We use the python package
Kwant |189] to initialize the discretized Hamiltonian from Eq. and
return it as a sparse matrix. Then we perform a numerically exact diago-
nalization to calculate the 4N eigenenergies F, which we sorted by their
value and eigenvectors 7),, of the discretized Hamiltonian in matrix form.
Because of the particle-hole symmetry, intrinsic to the BdG formalism, the
eigenenergies come in pairs F; = —F,n_;. The Majorana wave functions
can now be extracted from the eigenvectors [210] via v1 = man + Nan+1
and v3 = i(nay — m2n+1). The eigenstates nan and nan41 are the two
eigenstates that have the eigenenergies closest to zero energy.

Using the electronic components of the Majorana wave functions, we can
calculate its spin direction which is depicted in Fig. a) for the spin at
the left end of the wire (the end at which ~; is mostly localized). The spin
shows a qualitative agreement with the effective analytical calculation,
because it shows that the spin of the first MBS is nearly constant at high
magnetic fields, while the spin of the second MBS rotates as function
of Zeeman field. However, the spin rotation of the second MBS shows
quantitative deviations which we attribute to the approximation that we
just cut off the wave function in order to account for the finite size of the
nanowire.

Moreover, we consider the so called Majorana charge [210]

L
Qum = 6/0 deu};(x)uz(a:), (4.19)

where u(1:?) are the electron components of the left (1) and right (2)
Majorana wave function, respectively. As seen in Fig. b)7 the Majorana
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Figure 4.4.: a) Tangent of the spin-canting angles, b) Majorana charge
and c) s-wave pairing amplitude at = 0 as function of Zeeman field for
a finite size Majorana wire with length L = 1.3 pym. The other parame-
ters are as in Fig. [£.2] The spin-canting angle ©2 of the right Majorana
shows an oscillatory behavior as a function of the Zeeman field, while ©,
remains nearly constant. The Majorana charge and the s-wave pairing
amplitude exhibit jumps at parity crossings. Figure and caption taken
from Ref. [140]. ©)[2018] American Physical Society.
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charge oscillates as a function of applied Zeeman field. It is maximal at
the parity crossings and abruptly changes sign after crossing one of those,
which again shows that the crossings seen in the spectrum are indeed
parity crossings. The Majorana charge vanishes when the splitting energy
is maximal.

Also, we calculate the residual ground state s-wave paring in the nanowire

(100 (0)) = D it (0)55,(0) — cvny (0)554(0)]. (4.20)

The pairing amplitude is decreasing with increasing Zeeman field and
shows discontinuities at parity crossings (see Fig ¢)). These jumps
can be attributed to the contribution of the two overlapping MBSs. It
also can be seen that these contributions are smaller than the combined
contributions of the higher-energy states.

4.4.2. Josephson current and experimental realization

Now, we introduce the discretized Hamiltonian for the BCS lead with M
sites

M
Hppsc = Zts Z C}’O.cj—17o' + ABcsewcj,ch7¢ + h.c., (4.21)
Jj=1 o

where the hopping parameter tg is connected to the bandwidth of the
superconductor in the normal state and cj-,n creates an electron at site j
with spin 0. We also choose to put the chemical potential of the super-
conductor in the middle of the band. For the tunneling Hamiltonian we
consider a point like tunneling from the last site of the BCS lead to the
first site of the nanowire with a spin independent tunneling amplitude

Hpr = ich; ;1.0 + hec.. (4.22)

In order to calculate the Josephson current we diagonalize the full dis-
cretized Hamiltonian Hp = Hppsc + Hpnw + Hpr numerically. The
ground state Josephson current is than given by

I9)= %0, Y Eiy), (4.23)
E;<0
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Figure 4.5.: Numerically calculated ground state critical current I
(black) and Majorana contribution to the critical current Ip; (blue) ex-
tracted following the scheme proposed in the main text. Jumps in the
critical current occur at parity crossings in the spectrum. The used pa-
rameters are tg = 10A, = 2.96 meV and Agcs = A. The other parame-
ters are the same as in Fig. M Figure and caption taken from Ref. [140].
(©)[2018] American Physical Society.

and the critical current I is given as

Ic = mgx I(p). (4.24)
In Fig. [I.5] we show the critical current as function of applied Zeeman.
First, we notice that the critical current from the full numerical model
and the effective critical current shown in Fig [£.3 have in common that
there are discontinuities at parity crossings and an oscillating behavior
in between them which we showed to be connected to an oscillation of
the Majorana spin-canting angle difference in the low-energy analytical
model. However, in contrast to the low-energy model we find that the
critical current does not vanish during these oscillations regardless of the
spin-canting angle differences and in general is decreasing with increasing
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Zeeman field. We attribute these difference between our numerical results
and the analytical effective low-energy calculations to the neglected higher
energy contributions, because the contributions of the lowest energy level
(see Fig [£.3] (blue line)) show a qualitative agreement with the effective
model calculations.

As shown in Sec the high-energy contributions are suppressed with
increasing energy by the factor f( AEB"C S) in Eq. yet they conceal
the contributions of the MBSs. This is because the Majorana contribu-
tions are exponentially suppressed with the length of the wire, because of
their wave function localization. However, for a certain set of parameters
(very short wires, small BCS gap parameter) it is possible that the low-
energy contributions surpass the higher energy contributions. But, in this
parameter regime the effective model looses its validity.

Now, the question how to access these Majorana contributions experimen-
tally remains, as they are shadowed by the high-energy contributions in
a realistic parameter regime. We propose the following route to extract
the Majorana contributions experimentally. First, we propose to mea-
sure the critical current I for a fixed set of parameters Ay. Within the
quasiparticle poisoning time Tp ~ 100us [211] the parity of the junction
changes which results in a different sign for the Majorana contributions
but leaves the higher energy contributions unchanged. Now, the critical
current is measured for a second time. The difference between the two
critical currents for the two different parities reveals then twice the Ma-
jorana contribution Ij;. The suggested experiment is feasible as currents
with a sensitivity of 10722efi/A can be measured on a time scale of 10

ps [}

4.5. Conclusion

In conclusion, we calculated the equilibrium Josephson current in a
Josephson junction built from a superconducting s-wave lead and a fi-
nite sized Majorana nanowire. We set our focus on the influence of the
MBS more distant to the junction on the supercurrent.

In an analytical effective low-energy calculation, we showed that the su-
percurrent is only carried by the MBSs if both of them can be addressed by
electron tunneling. Because the Cooper pairs in the lead are spin singlets,

1Private communication with Cristian Urbina.
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the Majorana wave functions enter the eigenenergies in singlet form. As
a function of applied Zeeman field the critical current is oscillating with
increasing amplitude for higher Zeeman fields. We can attribute the oscil-
lations to the spin-canting angle difference of the two MBSs, because the
spin of the second MBS is rotating as a function of Zeeman field. The in-
crease in amplitude can be explained with a larger Majorana localization
length. Also, the critical current changes sign, whenever the parity of the
ground state is changed.

Furthermore, we showed that contributions from higher-energy states also
enter in spin singlet form. These contributions are suppressed for higher
energies. In general, the wave functions of the higher-energy states can
have a finite singlet projection, because of the residual s-wave pairing from
the parent superconductor used to proximity induce the superconductivity
in the nanowire.

Moreover, we contrasted our analytical findings with a numerical analysis
of the full model. Here, we showed that the high energy contributions
conceal the Majorana contributions. Also, we suggest to use quasiparticle
poisoning to experimentally extract the Majorana contributions to the
Josephson current.
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5. Summary and Conclusion

This thesis is based on the transport signatures of Majorana bound states
(MBSs) that emerge as topological boundary states of finite size one di-
mensional topological superconductors. Special focus was laid on the finite
size effects that arise when a lead is tunnel coupled to both MBSs. All in
all, three different setups have been considered.

First, we considered a spinless model consisting of a Kitaev chain tunnel
coupled to a metallic lead on one side and to a single energy level quantum
dot on the other side. To calculate the transport properties we used full
counting statistics and found that the only process that contributes to
transport are Andreev reflections. In the low-energy regime where we
approximated the Kitaev chain by just considering the two MBSs emerging
in the topologically non-trivial phase, we could show that pairs of Fano
resonances arise in the differential conductance. In the case when the dot
and the lead couple to a single MBS each we can describe the differential
conductance using the Fano-Beutler formula and show analytically that
the particle-hole symmetric property of an isolated MBS is transferred
to a mirror symmetry between the two Fano resonances. Moreover, the
two Fano resonances are quantized to 2e%/h. The finite size of the Kitaev
chain allows for couplings between the dot and lead and both MBSs,
respectively. In general this coupling to both MBSs destroys the symmetry
of the two Fano resonances. Also, the resonances are no longer quantized
and for equal couplings to both MBSs the transport is completely blocked.
To extend the effective low-energy model we considered a full Kitaev chain
instead of just the two MBSs. For a chain that is longer than the Majorana
localization length, we observed two mirror symmetric Fano resonances.
However, if we included extended tunnel couplings to the lead and the dot
that allowed us to access both MBS wave functions, we saw the emergence
of an asymmetry between the two Fano resonances which is in accordance
with the low-energy model.

Second, we considered a spinful model, where we considered a metallic
lead coupled to a Majorana nanowire with a quantum dot coupled to the
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other end of the nanowire. Again, we started with a low-energy analysis
and allowed for a tunnel coupling to both MBSs, respectively. We calcu-
lated the cumulant generating function in order to obtain the transport
properties. Like in the previous setup we found that only Andreev re-
flections contribute to the transport, however due to the spin in the lead
they can occur in two different channels. We first focused on a case in
which the quantum dot was decoupled from the nanowire. We found that
the Andreev reflection probabilities then only depend on the difference of
the Majorana spin-canting angles of each MBS at the junction with the
lead. We found that depending on the spin-canting angle the differential
conductance peaks are not quantized when both MBSs can be accessed
by the lead and can take on any value between 0 and 4e%/h. We showed
that in order to differentiate the case of coupling to a single MBS or to
both MBSs experiments need to be performed at very low temperatures.
The inclusion of the quantum dot leads to a hybridization between the
Majorana states and the spinful states on the dot, that heavily depends
on the spin-canting angle of the MBS. The differential conductance probes
this hybridization, as the resonances correspond to the spectrum of the
system without the dot. Finally, we considered a full Majorana nanowire
by using a numerical scattering matrix formalism. We have seen that our
effective model describes the differential conductance at low bias voltage
very well. Without the quantum dot the differential conductance at zero
bias voltage showed resonances as a function of applied dot level energy
whenever the MBSs are at zero energy. However, these resonance peaks
were not quantized which we can attribute to the finite size of the wire and
the coupling to the second MBS. The inclusion of the quantum dot showed
that the asymmetry within a pair of Fano resonances emerges whenever
the Majorana splitting energy is small and vanishes whenever the splitting
energy is maximal. This we attributed to the absence of non-local tunnel
couplings at high splitting energy.

Lastly, we investigated a Josephson junction consisting of an s-wave su-
perconducting lead and a finite size Majorana nanowire. We started our
considerations with an effective low-energy Hamiltonian, that we obtained
using quasi-degenerate perturbation theory. In this low-energy approach
we found that the MBSs only contribute to the equilibrium Josephson
current if both of them are tunnel coupled to the lead. Furthermore, we
showed that the supercurrent is proportional to the sine of half of the
spin-canting angle difference of the two Majorana wave functions at the
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end of the wire. We approximately calculated the Majorana wave func-
tions to relate the coupling strength to the more distant Majorana and
the spin-canting angles to the microscopic parameters of the Majorana
nanowire. We showed that as a function of applied Zeeman field the crit-
ical current shows three distinct features. First, it is oscillating and these
oscillations can be traced back to the rotation of the spin-canting angles.
We also found that the spin-canting angle of the more distant MBS is
rotating stronger than the spin of the closer MBS. Second, the sign of
the critical current changes at parity crossings. And third, the amplitude
of the oscillations in the critical current is rising with increased Zeeman
field, because the localization length of the MBSs is increased by the larger
Zeeman field. In addition to the low-energy contribution, we also looked
at the contributions coming from higher-energy states. We have seen that
the wave functions of the higher-energy states in the nanowire enter the
critical current in a singlet projection because of the s-wave pairing in
the lead. We also performed a numerical tight-binding analysis that in-
cluded the full nanowire. Here, we found that contributions from the
higher-energy states shadow the Majorana contributions. To unveil the
Majorana contributions we suggested an experimental scheme involving
quasi-particle poisoning.

All of the proposals in this thesis focus on the electrical transport sig-
natures of MBSs. For all three setups we considered what happens to
the transport signals when not only one but both MBSs are accessible
at the same end of the topological superconductor. Some recent experi-
mental data can be explained by the inclusion of these non-local tunnel
couplings. However, more detailed investigations with regards to these
finite size effects need to be performed, because a coupling to the second
MBS can introduce unwanted errors in topological quantum computation
schemes.
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A. Derivation of the
Levitov-Lesovik formula

Here, we outline the derivation of the cumulant generating function (CGF)
for a system of coupled MBSs including the spin degree of freedom of the
charge carriers along the lines of Ref. |[116]|. For simplicity we perform the
calculations using natural units (A = e = 1), however the SI units can be
restored by dimensional analysis.

The moment generating function is defined as

X(A) = (e79), (A1)

where the counting field A\ is coupled to the transferred charge @ =
fOT dtI(t). We introduce the auxiliary Hamiltonian

H =H - %A(t)], (A.2)
with
A tel0,T] & tecC-
At)=¢-X te[T,0] & tely, (A.3)
0 else

where C is the forward (backward) part of the Keldysh contour and 7 is
the time during which the measurement is performed. With this auxiliary
Hamiltonian we can rewrite

YO = (Te exp (—i /c dtH’(t))> (A4)
=(Tc (1 —i/cdt[H— (A(t)/2)I]+(...)>>

—<1+z‘A/OTdtI+(...)>—<e“Q>.
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Also, the current operator is the total derivative of the number operator
in the lead with respect to time

I= f%N = f% d:c;cj,(x)co(z) (A.5)

= [H / dng:cl(x)ca(x)]
i [HT, / dngzcl(x)wg(x)]

=3 Y (tLonch(0) = £ 5neq (0)) -

. . . . AR
Next we consider the time-dependent unitary transformation Uy = i N

and apply it to H

H — Hy = UyHU] —iUUy. (A.6)
This leads to 1

HY = Hy = SA(t)] = U\HU. (A7)

For the calculation of Uy H7U )T\ we first point out that Uy commutes with
all Majorana operators, so all we need to consider is

U)\CU(LL')U;: = eNON/2e (1) MON/2 (A.8)
= (@) + 20N s @)+ (.. )
— co(z) — “2“) colz)+ (..

Therefore, we find

H\ = Hp + H); + Zthge”“)/?cf,(o)% + 15, e D2y ¢ (0) (A.9)

n,o
= Hy + H), + H,

where H), is defined in Eq. (3.13) and tr,. is defined for n = 1,2 in
Eq. (3.9) and t1,e = 0 for n > 2. So we find

x(\) = (Tg exp <z /C dsHp, + Hy + H%)> . (A.10)
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We can formulate this moment generating function in the continuum no-
tation as a functional integral. It is important to have in mind that
Majorana fermions are described by real field operators and therefore we
introduce real Grassmann variables 4 in order to calculate the functional
integral, while we need two mutually independent complex Grassmann
variables ¢ and € for the electrons in the lead.

The functional integral to calculate the moment generating function is
then given as

~ [ Pl eggers e, (A11)

where SM4,¢,¢] = Su[d] + S2[4,¢é,¢] + Splé, ¢ is the Keldysh action,
containing the action for the Majorana fermions, the action of the lead
and the action describing the tunneling from the lead to the system of
Majorana bound states.
These parts are given as

Z//dsds $)[D© (s, s)] 2578(s)
A i AA(S) A~ % _iX(s) “
24, ¢,¢] Z/ds {the 7 Gy (0,8)9(8) F thove” 2 Yal($)ér(0,s)

q=> /C /C dsds'ty(0,5)[Go(s,5")] " s (0, ), (A.12)

where, D'(s,s’) is the unperturbed Green’s function for the Majo-
rana bound states and G,(s,s’) = G,(¢’ = 0,z = 0,¢,s5) =
—i(Téq(0,5)¢4(0,5)) is the boundary Green’s function for the lead with
spin 0. The position integral for x # 0 for the lead has already been per-
formed and is neglected because the path integral is normalized in such
a way that x(0) = 1. Now the moment generating function only contains

Gaussian integrals. We can integrate over the lead degrees of freedom to
find

/D 4] exp Z/dsds s)[D* (s, s)]aé‘yﬁ(s’) ,  (A13)

where [D*(s,s')]™' = [D©(s,5)]"" — (s, '), with the counting field
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A. Derivation of the Levitov-Lesovik formula

dependent self energy

i A(s)=A(s)

Z())‘é,@(s) 8/) = Z |: - tLOéO'tzﬂg-e GU(S, SI)

g

i)\(s)—)\(s/)

+ 030t Lot Gg(s',s)} (A.14)

To evaluate the Gaussian integral for real valued Grassmann fields we
follow Ref. [212] and consider

J:/D[a] exp —ZaiMijaj , (A.15)
j

where {a;} is a set of real valued Grassmann variables and M;; are the
elements of a skew symmetric matrix M. To evaluate J we first square it

J? = /D[a, b] exp —ZaiMijaj —biM;;b; |, (A.16)
ij

where {b;} is also a set of real valued Grassmann variables. We can now
define complex Grassmann variables n; = % (a; +ib;) and find

J? = JG/D[W,TI} exp —ZﬁjMijUj ; (A.17)
ij

with Jg being the Jacobian of the above transformation. Now, we can
use the Gaussian integral for Grassmann variables

J? = Jgdet M, (A.18)

and therefore

J = /JgVdet M. (A.19)

Because [DA(s,s')}a_ﬁ1 = f[DA(s’,s)]gi we can apply this to Eq.
which leads to
det ([DA]71)

W= o=y

(A.20)
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where we enforced the normalization by division with /det ([DA=0]-1).
The determinant has to be calculated with respect to time, Majorana and
Keldysh indices. During the long measuring time 7 the counting fields
are constant and a Fourier transform diagonalizes the Keldysh Green’s
function in energy space, so that the determinant with respect to the
energy space is just a product and therefore the cumulant generating
function, the logarithm of y, is given by

A Zl [ det ( (2" ]O] 52)))] (A.21)

Now the determinant has to be taken with respect to Keldysh and Ma-
jorana indices. The summation can be transformed into an integration,
because the frequencies will be quantized due to the long measuring time
which results in the Levitov-Lesovik formula [116,167,187]

T det w
In x (A / ldet é)\ ]0] 1<2))))] . (A.22)
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B. Calculation of the
unperturbed Majorana
Green’s function

In this section we want to describe the calculation of the Majorana Green’s
function in detail. We start with the Heisenberg equation of motion
(EOM) for the Majorana operators with the unperturbed Hamiltonian

H), (sce Eq. (8.13))

d .
%’Yoz = Z[H;Vb’}/a] = 2214&5757 (Bl)
B
where we used the skew symmetric property A,g = —Ag,. The solutions
to this EOM are
Yo (t) = ZBaﬁ(ﬂ’Yﬁ(O)v (BQ)
B

with B(t) = exp(24t). The time dependent unperturbed Majorana
Green’s function then is

DO)(t) = — i (Tea(t)y5(0)) (B.3)
= — iBas(t) (Oc(t) — Oc(—t) =i Y Bau(t)ess
v#B
— —iBus() (Siglll(t) _Si’grll ( t)) (B.4)
1 1
—1 Bawu(t)e, ,
S Etten ;1)

where O¢(t) is the Heaviside function on the Keldysh contour and we
defined e g = (7,v3). Here, the Keldysh indices are organized as
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B. Calculation of the unperturbed Majorana Green’s function

[(——,—+)(+—,++)]F. In order to calculate the Fourier transform of
Dgg (t) we need to consider the Fourier transforms of B(t) and B(t)sign(¢).
First, we note that we can diagonalize the Hermitian matrix —iA =
UDAU' where D, = diag()\,) with the eigenvalues A\, where for every

positive Ay there is a Ay = —A; which in our case leads to six Ax and find
/ dte™'B(t) = U / dte™tetPatyt
= U diag 2md(w — A\ )UT. (B.5)

In order to calculate the second Fourier integral we find it convenient to
use the following change of basis 24 = QSQT with

0 M O 0 0 0
A 0 0 0 0 0
o 0o 0o A 0 o0
=1 0o o0 =x 0 0o o] (B.6)
0 0 0 0 0 X
0 0 0 0 =X O

which is possible because A is skew symmetric. Using this we find

—i/dtei“’tsign(t)B(t) = Q/dtei“’teStQT (B.7)

cos Ayt sin A\pt

- —iQ/dtsign(t)ei“’tdiag (_ St cos Aﬂ) QT

2w — 2tk
. w222 Ww2-XP T
= leag 21)% 2w F Q .

w2-A2 w22

For w # A, the off diagonal blocks and all terms containing e,5 in
Eq. vanish so that Dg))(w) is block diagonal. For w = A the
Dirac distribution in Eq. as well as the terms in Eq. diverge
so that the inverse of the corresponding Ag-block of the Green’s function
Vanlsheb It would vanish even if we would neglect the terms coming from
Eq. . So we only need to consider the block diagonal part of D(O)( )
for 1ts inverse and find

(0)——1-
(DO = <[D 0 . ]! _[D(o?——]—1)7 (B.8)
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with

w (2
(DO~ = Qding (_ 5, 2 ) o (B.9)
2 2
w

Following Ref. [213| the lead boundary Green’s function G,(t',t) =
Gy = 0,2 = 0,t',t) = —i (Tecy, (2" = 0,t')cl (v = 0,t)) for spin o can
be written in the Keldysh-rotated basis in matrix form as

iGo(t',t) = 7v(0) (‘W 0_ ) 2%((;: f,?) , (B.10)

where v(0) is the density of states per spin at the Fermi level in the lead
and the Fourier transform of the distribution matrix is F,, (w) = 1—2n,(w)
with the Fermi distribution function n, (w) = (1 + e</k87)~1,

After a back rotation and Fourier transform we find

G (w) = i270(0) (””(”)% Mo (w ) (B.11)

Ng (W) — Ng(w) — %
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C. Quasi-degenerate
perturbation theory

To start our calculations we use a effective Hamiltonian to describe the
Majorana bound states

. 1
Hy = —ieq172 = 2e(nim — 5)» (C.1)

where the non-local Fermion operator 7; can be extracted from

Y1 =m+ 771
y2 = i(n] —m). (C2)

The corresponding eigenstates and eigenenergies are

|O> E() = —€
1) =ni|0) Ei=e. (C.3)

The BCS-Hamiltonian can be written in Terms of Bogoliubov operators

Hpos = Y Byl o Vhos (C.4)
k,o

with Ex, = /&7 + |Apcs|? and where the Bogoliubov operators can be
obtained by a Bogoliubov transformation

Cht = UgYRo + 'Uk'yi];n

Ctm = —UpYko + Uk’Y};l- (C.5)

105



C. Quasi-degenerate perturbation theory

The tunneling process between BCS-lead and Majorana bound states can
now be described with

Hy = [tAT,(0)9 + tA3, (0)72]ck,o + hec.
k,o

= Z t+077h;m +t_oMVke + h.c.. (C.6)
k,o

In this effective description A(z),, corresponds to the Spinor component
of MBS n at position x with spin o. In Eq. (C.6) we use

tog = (EAT;(0)up — A1 (0)v}) — i (A3 uk — 1" A2, (0)0})

tro = (EATH(0)ui — £ Aay (0)v7) +7 (A5 (0)u, — ¢ Az (0)v)

t_1 = — (t" A (0)vg + tAT (0)uy) + i (t AZT Jug; + tA3) (0)uj)

ty1 = — (" A (0)vg + tAT (0)uy) — i (£* Aoy (0)vy + tA3 (O)uy) . (C.7)
Next, we want to integrate out the s-wave superconducting lead, by dis-

missing the continuum of states and only keeping the BCS ground state.
The corresponding projectors therefore are

P =10)pcs [0 (Olses (Oly + 100 sos [Dw Olses (L (C.8)
1
Q :ZZ|k70>BCS [P (K, olges (Pl s (C.9)
n=0 k,o

where P projects into the low energy space and () into the high energy
space. Here we define

|k, 0)pes 1 = VIZUfT 10)Bes [0 - (C.10)

In order to calcalute the Josephson current analytically we use the quasi-
degenerate perturbation theory, where we asume the tunneling to be the
small perturbation to the unperturbed Hamiltonian Hy = Hgsc+Hwn. Up
to second order in the perturbation the effective low-energy Hamiltonian
can be calcaluted as [214]

H = PH,

(C.11)
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For PHyP we find in the basis of {|0)5cg [0)3510)pos 1wt

PH,P = (‘OE g) : (C.12)

and for PHT HTP in the same basis

lt—ol?
% HyP = (wa By 0|t ) (C.13)
o0 0 Zka —JrEk

The first order corrections vanish PHTP = 0, because every tunneling
event brings the low energy system into the high energy sector. By replac-
ing the summation over the momentum in Eq (C.13|) with an integration
we find

PHr

PHy C HyP = (C.14)
—H,
—i(A1,(0)A24(0)—A1+(0) A2, (0)) Acgre’® 0
0 i(A1,(0)A21(0)—A17(0) A2, (0)) Acgre™,
+ H.c.
with

2(71' — arctan(%))
Ao = 2620(0)| Apcs| VASBos et T (C.15)
\/4|ABCS|2_52

And finally in the limit of Agcs — oo we find

B = Fe & 2m0(0) (12" [A11(0) A2, (0) — A1y (0)A24(0)] + c.c.) .
(C.16)
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D. Calculations of Majorana
wave function

In the following, we want to calculate the spinor components for both
MBS of a SOCNWs in order to relate the Josephson current to microscopic
parameters. For the calculations we closely follow [152]. To start with, we
consider a spin orbit coupled nanowire in proximity to a superconductor
and an applied Zeeman field. Its BAG Hamiltonian in the Nambu basis is
given as

— SOtV —ad, A 0
Hpaa = Oy 7%857M7VZ 0 A
A 0 B2 924tV ad,
0 A —ad, B2 92 pu—Vy

As we search for Majorana like solutions the hole-like and electron-like
components of its wave function

@ () = () ), w0 @), () (@), = () (@)

have to satisfy

L,R)\ « L.R
(i) = aal®, (D.1)

where A = %1 for the left (L) and right (R) MBS and need to be zero
energy solutions. Here, we denote the MBS with left and right for clarity.
This reduces the four dimensional eigenvalue problem to a two dimensional

problem
R —pt+ Vs —ade+2A ) (u V@) 02
a0y — AA Eff 02 —p—Vy uiL’R) (z) ' .

We are now considering two kinds of solutions, a solution for the left MBS
which decays exponentially for z > 0 and a solution for the right MBS
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D. Calculations of Majorana wave function

at position L which exponentially decays in the other direction. How-

ever, the solutions of Eq. which also satisfy the boundary conditions
ui?’R)(O) = ui?’R)(L) = 0 do not exist. So we consider two independent
semi infinite nanowires which range from x = 0 to = oo for the left
MBS and from x = 0 to £ = —oo for the right MBS which leads to the

boundary conditions

u2(0) = uff(—00) = 0. (D.3)
We use the ansatz
uf™ " () EON
’U?L”R) (.’,U) X UZL7R) ’
+ ¥
which leads to
h? ’ (L,R)\4 2 h (L,R)\2

+ 2 aAa BB 2 4 A% - B2 = 0.

For the anticipated decay, we need Re[a”] < 0 and Re[a’] > 0. For the
spinor components we find

(L,R) "2 ¢ (L,R)\2
U 5—(a'™ + B+
Q&m>m<%ﬂ( ) “). (D.5)
1

aiL’R)oz —A\A

For B2 — A% — ;2 > 0, so in the topologically non trivial regime, we find 3
solutions of Eq. (D.4) for both MBS which satisfy the restraints to their
real parts. They can be parametrized as

L,R L,R) | . (LR
ag/z ):c§ ):i:zcg ), (D.6)

) = = e (P (B = A2 ) () (),
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L.R
where c(1 ) and ¢

can then be written as

u(L’R)(Qz)
Vip(z)= ( IR > (D.7)

h? ( (LR)y2 .
= Zci(L,R) <2m (a’z ) + B+ M) eagL,R)w

éL’R) are real valued. The wave functions of the MBS

agL’R)a — AA

Here, the factors C’Z»(L’R) follow from the boundary conditions Eqgs. li (4
equations: T, ], R, L) and normalization (2 equations: L, R). To calculate

the wave function at = 0 we neglect the solution corresponding to a%

for the right MBS, because |af| is larger than |Re( (L’R))|. The real and

@92
imaginary part of agL’R) then correspond to the Majorana localization

length £ and the wave number kp.g. To extract the spin canting angle of
the MBS at x = 0 we consider

lim Zﬂg — tan (621) , Z;:g — tan (622> . (DY)

The arctangent then reveals the spin canting angles of the MBS.
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