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A B S T R A C T

Gain, noise figure (NF), and output power are considered the common performance metrics of an optical fiber
amplifier. With an increasing interest of space industry in developing technologies for satellite-ground and in-
tersatellite communication in the optical band, the EDFA (erbium doped fiber amplifier) is needed as power
amplifier in space to compensate attenuation and insertion losses between the building blocks of the archi-
tecture. There is very little research on modeling the degradation mechanisms of typical commercial fibers,
specifically on the NF and output power metrics, that requires knownledge of the insertion losses at the entrance
of the fiber for both the pump and the signal wavelengths λp and λs. In this brief report we propose that the noise
figure and output power trends can be extrapolated from a semi-empirical model for the insertion losses proved
at high and low dose rates at two different temperatures. The results show reasonable trends that a common off-
the shelf EDFA can present in co-propagating configuration on the NF and output power under several doses at
low and high rates. The radiation losses using non-hardened fiber show sustainable attenuation levels in dB that
can possibly allow employing this off-the shelf fibers in CubeSats or small satellites without the need of special
radiation insulation. It is further supported with theoretical data that the temperature factor can affect more the
EDFA degradation in space than the radiation itself, imposing limits on the temperature control of commercial
satellites using this photonics.

Introduction

The technological assessment of high data rate laser link modulators
in space was initiated by ESA in 1977 [1]. As optical space commu-
nications is on the verge of becoming a reality in small satellites [1], the
restricted volumetric dimensions impose system requirements for op-
tical pre-amplifiers (as erbium doped fiber amplifiers, or EDFAs) that
are difficult to meet in space. In particular, radiation and thermal cy-
cling are two effects that requires assessment of the degradation over
the amplifier performance. The following paragraph presents an in-
troduction to the topic.

On EDFA optical amplifiers

In the state of the art of erbium-doped fibers, several authors have
performed studies of EDFAs under radiation environment (e.g. see
[2–7]). The general consensus is that the EDFA as a silica fiber attri-
butes formation of color centers due to radiation exposure increasing
the absortion losses in the near-infrared and visible regions [8,9]. This

leads to insertion losses at the pump and signal wavelenghts that are
quantified reducing the amplified power at the final end of the fiber
[10,11]. However, exposure of the EDFA to ionizing radiation affect the
amplifier performance in several types of forms depending on the fiber
composition, temperature of operation and radiation dose and rate of
dose [9]. A significant amount of research in the field of photonics has
been done to explore approaches for decrease the degradation the
amplifier presents when the fiber is exposed to the harsh radiation and
thermal cycling. Many of those approaches are summarized in different
studies [12–16], proposing manufacture of radiation hardened fibers
that do not follow classical fabrication techniques from typical ones
(e.g. [17–21]). The characterization of this hardened fibers show good
compromises in their gain, noise figure and output power performances
in radiation environment of covering typical TID (Total Ionizing Doses)
of LEO or GEO, and ongoing research is devoted to unit developments
of engineering models of pre-amplifier EDFAs to meet requirements of
potential space contractors [21].

In the other hand, in the search of methods for reducing radiation-
induced losses on off-the shelf EDFAs, different efforts spread in the last
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years have been developed to model the dependence of the gain of
EDFAs with radiation [9,22,7,5,12]. From this work we concluded that
there are almost no insights on how to model the amplifier’s noise
figure profile taking into account temperature and radiation effects.
However, from the different studies conducted in hard and non-hard
radiation fibers, it is clear that the NF increases while the gain decreases
as result of a ionizing environment. The purpose of this paper is to
propose a simple methodology to obtain the NF in a ionizing environ-
ment standing on a verified model for the radiation losses in dB/m,
allowing to employ simple numerical integration of the EDFA propa-
gation equations for the laser power. Given the radiation losses are
temperature and dose rate dependent, the results presented here allow
to observe the metric decay when the temperature changes or when the
dose rate is very high, and draw some conclusions.

Modeling

The general definition of gain is established in terms of the ratio of
the output signal power to input signal power, measured over a fiber of
lenght z as the following:
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P
P
s out

s in

,
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Normally the amount of Erbium ions in the core of the fiber limit the
gain of the amplifier, and above the point all ions are excited the am-
plifier cannot produce more gain and saturation occurs. Thus, operating
in the saturation regime, the signal variation as a function of the lenght
z of the fiber P z( )s is established by a simplified model of Giles-
Desurvire for copropagating 980-nm pumped amplifiers as the fol-
lowing:
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Notice the introduction of the pump power P z( )p in the previous model
representing the physical description of the fiber. N2 is the normalized
metastable population given by [23]:
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In Eqs. (2) and (4), the radiation-induced losses for signal and pump are
αsRAD and α g,pRAD s is the pre-irradiation gain coefficient of an EDFA,
constants αs and αp are the measured erbium absorption for signal and
pump, vs and vp the signal and pump frequencies, ′αs and ′αp the back-
ground losses for pump and signal. The losses αsRAD and αpRAD are
modeled by the following Lorentzian tail following the approach of
Bern et al. [5]:
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where the total deposited dose is given by D, Φ is the irradiation dose
rate, f and c temperature-dependent parameters. The absorption bands
are expressed by λ0. Furthermore, in non-radiative conditions NF of the
EDFA can be estimated though [23]:
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In a former study, the team of Rose et al. [7] established the
boundary conditions to determine the NF increase by defining thee
insertion losses parameters over a set of high gain and low gain regimes.
Such parameters (in our definition) are equivalent to ′α s and ′α p and are
held as constants in the radiation experiment. Rose established a

computational code based on conventional EDFA equations to compute
the radiation induced losses at the pump and signal wavelenghts, αsRAD
and αpRAD. However, such authors leaves inconclusive how such de-
gradation losses were assigned. In another study, Williams [8] used an
equivalent model with radiation induced losses at the pump and signal
wavelenghts that were set as constant values obtained in a post-irra-
diation experiment. Thus, in past models the latter insertion losses were
directly measured to achieve simulations, while the proposition in this
paper is based in [5] to use directly Eq. (5).

Simulation results

Low radiation doses

Now we expand the theory to satellite applications. Earth-bounded
orbits can be classified in general form according their altitude: Low
Earth Orbits (LEO) featuring typical altitudes of 400–1000 km (ISS flyes
in a 440 km circular orbit). These type of orbits can present dose rates Φ
in the range of × −3.7 10 4Gy/h and total doses of up to =D 16 Gy (we
reference all dose and dose rates according [5]). Medium Earth Orbits
(MEO) with altitudes ranging 1000 km up to 35,000 km, with

= × −Φ 1.8 10 3 Gy/h and =D 78 Gy. Finally, Geostationary Orbits
(GEO) at 35,790 km with = × −Φ 7.8 10 4 Gy/h and =D 137 Gy. Typi-
cally, to achieve large Earth coverage communication satellites are
placed in GEO orbits, while most of the small satellite programs devoted
to Earth remote sensing applications are linked to LEO or MEO orbits.
Because radiation doses around Earth are found in very low rates, they
seem to affect the gain performance of an EDFA very little over a typical
mission lifetime (much less than 1 dB according [5]). However, perfo-
mance on NF and output power an EDFA placed in a satellite could
experience is yet to be seen and will be the focus of our study. Table 1
presents the different constant values that were introduced in our
previous model, and Table 2 refers to the degradation monitored. A
fifth-order Dormand-Price-Kutta method was used to integrate nu-
merically Eqs. (2) and (6) of the EDFA with an adaptive step size al-
gorithm.

High dose rates

The extrapolation of Eq. (5) to high dose rates (much larger than
satellites around Earth) has been proved experimentally for the gain in
[5]. Thus, the numerical integration of Eq. (2) and (6) will demonstrate
the possible degradation of the NF under such environment constraints.
This is presented in Figs. 1 and 2. Notice that pre-irradiation =t t( 0),
the total dose equals =D 0 and the metrics for both temperatures tested
from the model are very similar each other. Fig. 1 displays the EDFA
degradation for 32 Gy/h of dose rate. The general trend seems to be the
greater temperature the larger the degradation. The radiation-induced
parasitic losses is the dominant factor affecting the amplifier perfor-
mance, resulting in a gain and output power decay according the total
ionizing dose. This is linked to an increasing trend on the NF value for

Table 1
Constant values for EDFA radiation simulation [5].

Parameter[unit] Value Symbol

Signal Power [mW] 1.2 P (0)s
Pump Power [mW] 240 P (0)p

Lenght[m] 24 L
Erbium absoption[dB/m] 1.3; 2.9 α α;s p

Background losses[dB/m∗] × ×− −4 10 ;25 103 3 ′ ′α α,s p

Gain coefficient[dB/m] 1.314 gs
Temperature coefficients 0.77, × −1.9 10 4, × −3 10 4 f c c, ,C C23 73

Absorption band [nm] 326 λ0

∗ at 1310 nm
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about 0.5 dB larger than the measured pre-irradiation at 20 °C, and
about 1.2 dB more than pre-irradiation at 73 °C. As the radiation-in-
duced losses are dependent on the dose rates, the EDFA is more sus-
ceptible to larger degradation at 269 Gy/h as observed in Fig. 2. Post-
irradiation values are larger for up to 2 dB for 20 °C and up to 5 dB at
73 °C. This confirms the fiber sensitivity increases with dose rate and
temperature variation, in a very similar form as presented by previous
studies [7]. The loss in gain and increase in NF monitored by Ma et al.
[19] on commercial erbium-ytterbium co-doped fibers (EYDF) was
25.08 dB and 3.84 dB after exposure to 1440 Gy/h dose rates for up to

50 krad of ionizing dose (or 500 Gy). This represents respectively a
decrease six times and five times larger for the gain and NF here re-
ported at 269 Gy/hr ( = °T 73 C), after 500 Gy. That seems to be because
the larger dose rates the more performance degradation is experienced
by commercial EDFAs, and further the deterioration characteristics of
EYDFA are much bigger than EDFA’s under the same radiation condi-
tions [19].

Conclusions

An equation is complemented to a model to achieve full char-
acterization of the EDFA performance in radiation conditions. The noise
figure of a commercial EDFA under characterization has been estimated
theoretically by dose breakpoint using a numerical integration scheme
with good compromise in computation time. The results presented in
this study, complementing the model of Berne et al. [5], suggest that a
typical commercial fiber could endure radiation conditions in space
under a temperature-controlled environment (e.g. a CubeSat), with
minimum degradation to be actually monitored. However, because the
EDFA contains isolators and multiplexers that are also sensitive to ra-
diation, achieve a general global model for the degradation will require
modeling of the contribution of such elements on the total noise figure
increase. Thus, neglecting the remaining losses from other than fiber
components the proposed method here could be a reliable estimator,
since the general trend of increase of NF according dose has been ob-
served and documented in several studies before, but never modelled.
The coupled term dependent on the insertion losses of the rest of the
elements of the EDFA can be added to the fiber-dependent value es-
tablished in Eq. (5).
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