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ABSTRACT 

 

More than 50% of all Web queries are entity related. Users search either for entities 

or for entity information. Still, search engines do not accommodate entity-centric 

search very well. They only provide keyword search and return a list of links to 

articles. It falls on the users’ shoulders to browse through the returned Web pages, 

and to pick the relevant information. In contrast, database systems master this task 

without any difficulties because the data is structured and integrated. Thinking along 

the same lines, the mainstream approach for accommodating entity search was to 

build a structured Web. Linked data and schema.org represent the most prominent 

initiatives for a structured Web. But our analysis shows that neither of the two can 

reliably serve the purpose of entity search. In our opinion, the problem of entity 

search on Web data cannot be solved by manually building a global schema. Instead, 

we propose data-driven approaches, dynamically extracting schemata shaped for 

each entity type. Obviously, these approaches have to be tailored for the various 

types of entity-centric queries.  

Building on the concept of the semiotic triangle from cognitive psychology now 

established also in information theory, which models entity types in terms of inten-

sions and extensions, we identified three types of queries for retrieving entities: type-

based queries - searching for entities of a given type, prototype-based queries - search-

ing for entities having certain properties, and instance-based queries - searching for 

entities being similar to a given entity. For type-based queries we present a method 

that combines query expansion with a self-supervised vocabulary learning technique 

built on both structured and unstructured data. Our approach is able to achieve a 

good tradeoff between precision and recall. For prototype-based queries we propose 
ProSWIP, a property-based system for retrieving entities from the Web. But since 

the number of properties given by the users can be quite small, ProSWIP relies on 

direct questions and user feedback to expand the set of properties to a set that 

captures the user’s intentions correctly. Of course the number of questions has to 

be kept small. ProSWIP cleverly solves this problem with the help of information 

theory concepts choosing to ask user feedback on but a few properties showing the 

highest information gain. Our experiments show that within a maximum of four 

questions the system achieves perfect precision of the selected entities. In the case 

of instance-based queries the first challenge is to establish a query form that allows 

for disambiguating user intentions without putting too much cognitive pressure on 

the user. Learning from standard example-driven entity search tasks like related entity 

finding (REF) and entity list completion (ELC) we propose a minimalistic instance-based 

query comprising the example entity and intended entity type. With this query and 

building on the concept of family resemblance we present a practical way for retriev-

ing entities directly from the Web. Our approach is able to retrieve semantically 

meaningful entities even for entity types, which have proven problematic for REF 

and ELC. 



Providing information about a given entity, entity summarization is another kind of 

entity-centric query. Google’s Knowledge Graph is the state of the art for this task. 

In our quest for enabling instance-based search we observed that entity types from 

manually curated knowledge bases like Wikipedia may group together heterogene-

ous entities. This is problematic especially for entity summarization systems, as the 

resulting entity overviews end up being too general. Unfortunately, Google’s 

Knowledge Graph is also affected by this problem. Relying entirely on manually cu-

rated knowledge bases, this also excludes all new and less known entities. We pro-

pose not to rely on prearranged schemas, but to use a data-driven approach. Our 

approach intelligently blends the homogeneity/heterogeneity of entity types with 

schema integration techniques in the light of facts extracted directly from the Web. 

Our experiments on real-world entity classes representing different degrees of class 

homogeneity show that this approach is indeed superior to both, frequency-based 

statistical approaches and the Knowledge Graph, in terms of precision and recall. 

Our results show that type-based, prototype-based, instance-based, and entity sum-

marization queries can successfully be answered with data-driven approaches, and 
that the results are superior to corresponding state of the art methods. We are 

confident that mastering these four query types enables holistic entity search on 

Web data for the next generation of search engines.   

  



 

ZUSAMMENFASSUNG 

 

Mehr als 50% aller Web Suchanfragen sind entitätsbezogen. Benutzer suchen ent-

weder nach Entitäten oder nach Entitätsinformationen. Dennoch werden entitäts-

bezogene Anfragen von Suchmaschinen nicht gut unterstützt. Sie stellen nur eine 

Liste von Links zu Artikeln bereit. Es ist die Aufgabe der Benutzer die Suchergebnisse 

nach relevanten Informationen zu durchsuchen. Im Gegensatz dazu beherrschen Da-

tenbanksysteme solche Anfragen, da die Daten strukturiert und integriert vorliegen. 

Folglich war der Hauptansatz um Entitätssuche im Web zu unterstützen, ein struk-

turiertes Web zu bauen. Linked data und schema.org stellen die wichtigsten Versu-

che für den Bau eines strukturierten Webs dar. Allerdings zeigen unsere Analysen, 

dass keiner der beiden Ansätze zuverlässig das Entitätssuchproblem lösen kann. Un-

sere Meinung nach kann das Entitätssuchproblem auf Web Daten nicht durch das 

manuelle Erstellen eines globalen Schemas gelöst werden. Stattdessen stellen wir in 

dieser Arbeit datengetriebene Ansätze, welche entitätstypenangepasste Schemata 

dynamisch extrahieren vor. Offensichtlich müssen solche Ansätze an die verschie-

denen Typen von entitätszentrischen Anfragen angepasst werden. 

Aufbauend auf dem Konzept des semiotischen Dreiecks aus der kognitiven Psycho-

logie, haben wir drei Anfragetypen zur Entitätssuche identifiziert: typbasierte Anfragen 

– Suche nach Entitäten eines gegebenen Typs, prototypbasierte Anfragen – Suche nach 

Entitäten mit bestimmten Eigenschaften, und instanzbasierte Anfragen – Suche nach 

Entitäten die ähnlich zu einer gegebene Entität sind. Für typbasierte Anfragen haben 

wir eine Methode entwickelt die query expansion mit einer self-supervised vocabulary 

learning Technik auf strukturierten und unstrukturierten Daten verbindet. Unser An-

satz liefert einen guten Kompromiss zwischen Precision und Recall. Für prototypba-
sierte Anfragen stellen wir ProSWIP vor. Dies ist ein eigenschaftsbasiertes System um 

Entitäten aus dem Web abzurufen. Da aber die Anzahl der Eigenschaften die durch 

die Benutzer bereitgestellt werden relativ klein sein kann, baut ProSWIP auf direkten 

Fragen und Benutzer Feedback  um die Menge der Eigenschaften zu einer Menge 

welche die Intentionen der Benutzer korrekt erfasst zu erweitern. Man kann natür-

lich nicht erwarten das Benutzer bereit sind viele Fragen zu beantworten. ProSWIP 

lost dieses Problem mit Hilfe von informationstheoretischen Konzepten. Benutzer-

feedback wird nur bei Eigenschaften mit dem größten Informationsgewinn verlangt. 

Unsere Experimente zeigen dass mit maximal vier Fragen eine perfekte Precision 

erreicht wird. In dem Fall von instanzbasierten Anfragen besteht die Schwierigkeit 

darin eine Anfrageform zu finden die die Benutzerintentionen eindeutig macht ohne 

dem Benutzer eine zu hohe kognitive Last aufzuerlegen. Wir stellen eine minimalis-

tische instanzbasierte Anfrage, die aus einem Beispiel und dem entsprechenden En-

titätstypen besteht vor, indem wir Erfahrungen aus standard Beispielgetriebenen En-

titätssuchaufgaben wie related entity finding (REF) und entity list completion (ELC) 

benutzen. Mit Hilfe des Konzepts der Familienähnlichkeit entwickeln wir eine prakti-

sche Lösung um Entitäten mit Bezug zur der Anfragenentität direkt aus dem Web 



abzurufen. Unser Ansatz erzielt sogar für Entitätstypen, die für REF und ELC prob-

lematisch waren, gute Ergebnisse. 

Entitätszusammenfassung ist ein anderer Typ von entitätszentrischen Anfragen, der 

Informationen bezüglich einer Entität bereitstellt. Googles Knowledge Graph ist der 

Stand der Technik für solche Aufgaben. Auf dem Weg instanzbasierte Anfragen zu 

ermöglichen haben wir festgestellt dass Entitätstypen aus manuell erstellten Know-

ledgebases wie Wikipedia heterogen sein können. Besonders für Entitätszusammen-

fassungssysteme ist dies problematisch weil die erzielten Entitätsüberblicke zu allge-

mein werden. Leider ist auch Googles Knowledge Graph von diesem Problem be-

troffen. Das Zurückgreifen auf manuell erstellte Knowledgebases schließt alle neuen 

und weniger bekannten Entitäten aus. Wir schlagen vor sich nicht auf vorbestimmte 

Schemata zu verlassen, sondern datengetriebene Ansätze zu nutzen. Unser Ansatz 

verbindet die Homogenität/Heterogenität von Entitätstypen mit Schemaintegrati-

onstechniken auf direkt aus dem Web extrahierten Fakten. Unsere Experimente auf 

Entitätsklassen die unterschiedliche Grade von Klassenhomogenität aufweisen, zei-

gen dass dieser Ansatz besser in Bezug auf Precision und Recall ist als frequenzba-
sierte statistische Ansätze und der Knowledge Graph.  

Unsere Ergebnisse zeigen dass typbasierte Anfragen, prototypbasierte Anfragen, in-

stanzbasierte Anfragen und Entitätszusammenfassungsanfragen erfolgreich durch da-

tengetriebene Ansätze beantwortet werden können. Die Ergebnisse sind entspre-

chenden state-of-the-art Methoden überlegen. Wir sind überzeugt dass das Bewäl-

tigen dieser vier Anfragetypen eine holistische Entitätssuche auf Web Daten für die 

nächste Generation von Suchmaschinen ermöglicht. 
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Introduction 

With the widespread use of the Web as primary information source, entity-centric 

search has become a common task for many people. For decades, Web search en-

gines have been the de facto tools for searching the Web. Searching for something? 

Google it! Entity-centric search is no exception. In fact, according to studies per-

formed on the Yahoo! query logs ([73, 74]), entity related search has already sur-

passed the mark of 50% of all Web queries.  

Typical entity types in this context are ‘people’, ‘places’ or ‘products’. But gener-

ally speaking, an entity is defined as any existing or real thing. In consequence, things 

like ‘diabetes’, ‘hypertension’ or ‘the flu’ are entities just as ‘Angela Merkel’, ‘Berlin’ 

or an ‘iPhone 6’ cell phone are. Entities have various properties and corresponding 

property values. For instance, amongst many others, a person has properties like 

‘gender’, ‘nationality’, or ‘profession’. Only this way, can abstract queries like retriev-

ing all female German Chancellors be answered. Not only do entities show different 

properties, they are also categorized in classes, the entity types. Entity types span 

over various degrees of granularities. They range from all-encompassing types like 

‘thing’ representing all possible entities, to basic entity types like ‘person’ or to more 

fine granular entity types like ‘female German Chancellors’, constructs obtained by 

fixating the values for one or more of the entity properties. 

With entity data in mind, the functionality of entity search refers to methods 

which enable search engines to answer entity-related queries on Web data, by un-

derstanding and satisfying the user intent. Entity-related queries are in this case all 
queries on entities, properties or entity types. Entity-related data is abundantly avail-

able on the Web in three main forms of representation:  

 Embedded in text documents 

 Stored as facts in linked data stores 

 Embedded in text documents and annotated with global semantic vocabu-

laries 

These three forms of data representation have emerged as a consequence of the 

purposes they were designed to serve. For instance text documents are the standard 

means for communicating information between people using the Web as a medium. 

Since the text documents were written for humans, entities are described with just 

enough information for people to understand the meaning. For this reason, this data 

representation form heavily relies on common knowledge and contextual infor-

mation. For example  when writing about a certain entity, like the new ‘G63 AMG’ 

car from Mercedes most properties of this entity are not required to be explicitly 

mentioned in the document. Since it is a car, it obviously has a body, an engine, 

wheels and all the other properties a car has. Only things that set it apart from other 
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cars, like the fact that it has six wheels1 have to be made explicit. But since most of 

the information is implied and has to be decoded by the reader with the help of 

background information, understanding and retrieving entity-meaningful information 

implied in text documents is a difficult task for machines.  

Driven by the Semantic Web initiative to make entity data on the Web accessible 

to machines, a large amount of data has been published online in linked data stores. 

Building together the Linked Open Data (LOD) cloud, data stores contain billions 

of facts about entities. Facts are extracted from text documents with the help of 

information extraction techniques or produced and maintained by large data pro-

viders. Storing even the most basic facts, this is an important form of entity data 

representation for entity search because all information is made explicit. But the 

data is still difficult to query in integrated form, because each data store has its own 

vocabulary for structuring the data. This way, entities, properties or entity types 

may bear different names or identifiers in different data stores making it difficult to 

join facts from different sources. 

To make all entity data available to machines in an integrated fashion, semantic 
vocabularies for annotating in-text entity data were proposed. Schema.org is the 

most popular collection of such entity annotation vocabularies. For documents an-

notated with schemata from schema.org, all annotated entity data is this way availa-

ble in structured form and can theoretically be queried with structured query lan-

guages, like a huge Web database. Having the same structure, all data can be queried 

in an integrated form. Regarding implicit information, the main assumption is that 

even the most basic information is available somewhere on the Web, annotated with 

schema.org. Unfortunately, there is not nearly enough data annotated with such vo-

cabularies. In fact as we will extensively discuss in Chapter 2, none of these data 

representation forms managed to facilitate entity search on Web data.  

The problem of searching for entities on the Web is obviously important and 

neither the appearance of the LOD nor schema.org has solved it for now. Although 

a fully structured Web building on a global schema would definitely empower entity 

search, we believe that such an approach is not feasible. Instead, in this thesis we 

claim that independent of the way entity data is represented on the Web, entity 

search should consider how humans manage entity data. Perhaps the best example 

for this, is the way information is handled on an abstract, conceptual level. For in-

stance, in terms of data modelling, during the conceptual modelling phase data engi-

neers have a mental representation of ‘things’ they require for describing entities. 

Those ‘things’ are a generalization of the mind, for a category of real world entities. 

They are mere abstractizations, or concepts, as they are referred to in cognitive 

psychology [114]. In the context of information theory, a concept represents a set 

of entities of a similar kind. Such entities may be similar in terms of structure, i.e. 

sharing a certain set of attributes. The may also be similar in terms of attribute 

                                            

1 http://www.autocar.co.uk/car-review/mercedes-benz/g63-amg-6x6 
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values, i.e. sharing both attributes and the corresponding values. But a more elabo-

rate view over the meaning of concepts is provided by linguists Ogden and Richards 

in [92]. In this work the authors introduce the triangle of reference. Also known as 

the semiotic triangle (see Fig. 1), this is now an established model also in information 

science [114]. In this model, concepts are represented in language through words 

or labels. They are defined by their extensions and intensions. The extension of a 

concept is the set of entities that fall under it while the intension determines the 

concept via its properties or attributes. Going back to entities, with the semiotic 
triangle in mind, the word or symbol is, in this case, the entity type (e.g. ‘actor’) that 

the user thinks of. For entity type ‘actor’ the extension would comprise all actors 

that ever existed and its intension could be ‘person’ and ‘played in at least one movie’.  

Considering the semiotic triangle as a model of how people handle entity data, 

when searching for entities, users are searching for the set of entities (the extension) 

of a certain entity type that they have in mind. In exploratory search, and especially 

in product search, this is the first step towards compiling a list of candidates to 

choose form (see [107] for details). The next step, also relevant for entity search, 

requires paying closer attention to some of these candidates. Entity summaries of a 

certain entity come in handy for this purpose. In order to get either the set of enti-

ties or the entity summary, users have to express their information need somehow. 

As a query, they may provide for instance the entity type; or they may provide an 

intensional description, a prototype of the expected entities; or some partial exten-

sion, instances, most probably well-chosen examples of entities that one is searching 

for. Taking all this into consideration, the following types of queries are relevant for, 

and should be supported by systems offering entity-centric search: 

 Entity type query. Input: the entity type. Expected output: the exten-

sion; the set of entities of the given type. An example of such a query 

would be searching for all entities of type ‘movie’. Search engines, which 
are the de facto information retrieval systems for the Web, were not built 

for, and are not able to accommodate such queries. A try on one of the 

 

Fig. 1. Semiotic triangle. 

 

Concept 
Label

Entities Properties

extension intension
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leading search engines2 on query ‘movie’ returns links for IMDb, YouTube, 

AppleTrailers, RottenTomatoes but not even one movie. 

 Prototype-based query. Input: the intension; a set or attributes de-

scribing the entity type. Expected output: the extension; the set of enti-
ties of the intended type. Since it relies on attributes/properties to describe 

the entity type, this type of query is also called a prototype based query, 

and the properties are expected to offer a prototypical sketch of the ex-

pected entities. An example of such a query would be searching for all 

entities having ‘title’, ‘year’, ‘director’, ‘actor’ and ‘genre’ as attributes. Due 

to the co-occurrence of terms that have a high characteristic power for 

movie Web pages, for query ‘title’, ‘year’, ‘director’, ‘actor’, ‘genre’ search en-

gines are able to return two IMDb pages of two movies3. An important 

problem for this type of queries is the fact that providing a complete in-

tensional description of the intended entity type is not a trivial task for the 

user. Instead, systems that support such a query type will have to take into 

consideration that the user may provide a subset of the intension, a small 

number of properties he/she is aware of.  

 Instance-based query. Input: partial extension; a few examples of en-

tities best representing what the user is searching for. Expected output: 

the extension; the set of entities of the same type as the example entities. 

An example of such a query would be searching for all entities similar to 

‘The Matrix’, ‘Avatar’ and ‘Inception’ as examples. This kind of queries have 

been previously researched in the context of multimedia databases, e.g. 
query by humming for audio [45], or by sketch for images and videos [66, 

90]. As expected also in this case, Web search doesn’t provide any satis-

fying results. Major concerns for this query type are the fact that the ex-

amples have to be well chosen and that users will not be able to provide 

more than a handful of examples. For reasons of practicality one can ex-

pect that the user provides at best a maximum of five examples.  

 Entity summary. Input: an entity. Expected output: an entity sum-

mary; the intension plus values for the attributes in the intension. 

Knowledge Graphs, introduced by Google and recently adopted by Bing, 

provide this kind of functionality. But they rely on manually curated 

knowledge bases that prevents them from accommodating many new or 

more obscure entities available on the Web. 

                                            

2 https://www.google.de/?gfe_rd=cr&ei=zdmeU66iKaWK8QeIqoHoBQ&gws_rd=ssl#q=movie 

3https://www.google.de/?gfe_rd=cr&ei=zdmeU66iKaWK8QeIqoHoBQ&gws_rd=ssl#q=%E2%80%98ti-

tle%E2%80%99%2C+%E2%80%98year%E2%80%99%2C+%E2%80%98direc-

tor%E2%80%99%2C+%E2%80%98actor%E2%80%99%2C+%E2%80%98genre%E2%80%99+ 
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Taking all this into consideration, our goal is to research data-driven methods, 

which independent of the data representation forms, are able to answer these typical 

entity search query types. 

Boundaries of the thesis. Two types of entity related queries will not be han-

dled in the course of this work: user/user group specific entity types that require 

personalization and entity related question answering. 

All these query types are quite flexible, allowing users to express all kinds of entity 

types. For example one could search for clear-cut categorical entity types like 

‘movie’ or ‘actor’. Users can also search for entity types where the expected result 

set enjoys the consensual acceptance of the large majority of users e.g. ‘science fic-

tion movie’. But, as introduced in [114], one can also search for more individual, 

user/user group specific entity types like for instance ‘good mood movie’. In the 

course of this thesis we will consider only entity types where there is consensus 

w.r.t. the expected result and user profiling or personalization is not required. Of 

course personalized entity search is very interesting for product search and it may 

be interesting for systems like Amazon’s A9 product search engine. In fact, there is 
a compelling amount of research in the field of recommender systems ([85, 100, 

101]) focusing on exactly these problems. But especially in a time when privacy con-

cerns have reached critical levels and users are advised to use alternative methods 

(see https://duckduckgo.com/privacy for more information) to avoid profiling from 

Web search engines, this type of queries has lost, relevance for Web search.  

The task of “Web-based Question Answering” where users search for a specific 

piece of information about a certain entity e.g. ‘Amazon customer service phone 

number’ is also not a subject of this thesis. In this field extensive research ([26, 27, 

78, 134]) has been done. Systems like the well-known IBM Watson [120] stand as a 

proof of their success. 

Thesis structure. In this thesis we propose a solution to entity-centric search 

on Web data. Our approach builds on the assumption that different types of entity-

centric query types require different methods. In Fig. 2 we present a simplified view 

of our system for holistic entity-centric search. The heart of this system is repre-

sented by the four core components corresponding to the entity-centric query 

types. They rely on Web data and query type specific methods to enable entity-

centric search. Discussed and evaluated individually, they are the central part of this 

thesis. In the middle, there is a basic component whose only purpose is to forward 

the query to the appropriate component according to the query type, and present 

the result back to the user.  

The entity type query type for entity-centric search poses the least cognitive bur-

den to users. One just needs to state the entity kind and the system will do the rest. 

But precisely because entity-type queries are concise, simple keywords, it makes the 

work of a system that supports them, much more difficult. While the information 

transmitted by such a keyword is easy to understand for people due to common 

sense and background knowledge, machines require complicated methods and large 
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amounts of data to mine this information from. The details on how to build such 

methods are presented in Chapter 3. 

The prototype-based query type requires that the user provides a set of properties 

that intensionally define the intended type of entity. But, as we have found out in 

[59] users are rarely keen on providing more than four properties. This leads to the 

fact that in most cases, a system accepting this kind of query has to be able to work 

with only a subset of the actual intentional description. For instance, a user may 

provide ‘Title’, ‘Director’, ‘Genre’, ‘Language’ as an intension. But this description, is 

rather broad, as it may refer to movies, audio books or even video games. In Chapter 

4 we present a method that is able to cope with such cases. 

Also in the case of the instance-based query type, one cannot expect that the user 

will provide more than a few examples of entities to point out what his/her infor-

mation needs are. But as we will discuss in more detail in Chapter 5, providing ex-

amples may leave room for ambiguity. For instance, with “Ronald Reagan” as a query 

entity and “Clint Eastwood” as additional example, the user will be referring to 

American actors rather than American presidents. However, he/she might also have 

more restricted entity types in mind like Western actors, actors from California, 

American actors with political ambitions, and so on. The more examples, the better 

a query can be disambiguated, however increasing query complexity. 

Next, we present an approach for providing a data driven entity summary that is 

not limited to popular entities already present in manually curated databases. But 

what should such a summary comprise and how long should it be? The answer to 

these questions is presented in Chapter 6. 

Finally, in Chapter 7 we present our conclusion on entity-centric search together 

with an outlook to future work.  

But before proceeding to introduce our take on entity-centric search, in the next 

chapter we provide an extensive overview on existing approaches and efforts being 

made to enable entity search on the Web.

 

Fig. 2. System overview, with the four main components of the system being presented 

in detail in chapters 3 to 6. 
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Related Work 

The storage, management, and retrieval of entity-related data has always been among 

the core applications of database management systems. Such systems can master 

entity queries because the underlying data is provided in structured form on a model 

that matches the query needs. However, entity search has moved to the Web. And 

on the Web, entities are not only characterized by structured data alone but to a 

large extent, by unstructured information. Indeed, unstructured data is a rich source 

of information on the Web. In order to exploit it best for entity-centric search, the 

research community has focused on building capabilities for extracting structured 

information out of it. Named entity recognition (NER) [31, 80], entity detection 

(ED) [7], or the extraction of precise facts from unstructured data known as open 
information extraction (OIE) [37] are just a few of the information extraction tech-

niques that reached maturity. With these tools, large repositories of facts in the 

form of (subject, predicate, object) triples could be extracted. But without proper 

structure, like a global ontology or schema, querying entities in such triple stores 

remains a challenge. In fact, the problem of algorithmically structuring information 

on the Web has been extensively researched, see e.g., [22, 24, 116]. However, cur-

rent automatic approaches still face quality problems and require considerable effort 

for extracting, transforming and loading data. Thus, from a practical perspective they 

are not yet mature enough to keep up with the volume and velocity, at which new 

data is published on the Web. 

Another way of approaching this problem emerged from how data surfaces the 

Web. Most websites are dynamically generated from some structured data source. 

For instance, the IMDb page of the movie ‘Iron Man 3’4 is obviously a dynamically 

generated page. It is most probably built with some HTML template engine and 

server sided scripts accessing the needed data from a database. This is convenient 

for human use, but not for machines. However, making the data directly available 

online, in structured form, in a data store, would allow machines to perform proper 

entity search, much beyond the naïve information retrieval (IR)-style keyword 

search. Instead of trying to automatically extract the structured data, the Linked 

Open Data (LOD) [9, 13] initiative tried a different approach. It offers technology 

for information providers to directly publish data online in structured form and in-

terlinked with other data. In Fig. 3 we present a small selection of the data on movie 

                                            

4 http://www.imdb.com/title/tt1300854/ 
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‘Iron Man 3’ available on DBpedia.org5. Such data would most definitely allow us to 

perform some entity-centric search. For starters, entity summary queries seem to be 

fairly simple: just by searching an entity, in this case a movie, one can get all infor-

mation about it. Or not? Unfortunately, some of the important information is missing 

in the case of the ‘Iron Man 3’ movie. For instance, no information about the full cast 

or the movie genre is provided on DBpedia. However, this data is available on Free-

base. After all, this is the point in linked data: to join information from multiple data 

stores for a unified view of an entity. In LOD entities are matched to one another 

through the owl:sameAs property. Hence, for the example presented in Fig. 3, we 

would require that an owl:sameAs link matches the entity from DBpedia to its coun-

terpart on Freebase. But this link is missing. As discussed in [33], the cross-linkage 

in the LOD is not nearly as extensive as one would hope. At the same time, auto-

matic instance matching solutions present important quality problems [57].  

Furthermore, it is worth noticing that, in the example presented in Fig. 3, various 

vocabularies (e.g. DBpedia’s dbpedia-owl, foaf, owl, rdf, rdfs and dbprop) are being used 

                                            

5 DBpedia [14], is a crowd-sourced community effort to extract structured information from Wikipedia and 

make this information available on the Web. It is the heart of the LOD cloud as most other data stores link 

their data to DBpedia. The data on movie ‘Iron Man 3’ can be found at: http://live.dbpe-

dia.org/page/Iron_Man_3 

 

Fig. 3. Data from dbpedia.org about the Iron Man 3 movie. 
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for describing the structure of the data. Indeed, the LOD is very flexible since it 

even allows for each data publisher to define its own structure. But, as we have 

shown in [59], this flexibility comes at a price: although data stores may overlap in 

terms of the data stored, the vocabulary used for structuring (and thus querying) 

may seriously differ. Ontology alignment has been proposed as a remedy, but the 

quality of results is still not convincing [62, 63]. An in depth analysis on the benefit 

of LOD for entity-search, the problems that arise and possible solutions are pre-

sented in Section 2.1.  

To avoid all these problems while improving their query capabilities, major Web 

search engine providers went a slightly different way. Their managed approach builds 

on a collection of ready-made schemas accessible on schema.org, which are centrally 

managed by Bing, Google, Yahoo! and Yandex. These schemas are used as a vocab-

ulary to be embedded in the HTML source code of a page using microdata. An ex-

ample of a microdata annotation integrated into the Web page of the ‘Iron Man 3’ 

movie on IMDb is presented in Fig. 4. The main incentive for page owners to use 

schema.org is that once a Web page features content annotated with schema.org’s 
vocabulary, any search engine can present it as a rich snippet. Furthermore, the Web 

page has a higher chance of being found by users interested in that very specific 

content, too. Indeed, motivating page owners to annotate their data with schema.org 

vocabulary has multiple advantages: 

 The effort is spread over many shoulders reducing the effects of volume 

and velocity at which new data comes to the Web; 

 annotations are of high quality – the one creating the data should under- 
stand its semantic meaning best; 

 the structure is centrally managed and data can be queried globally with- 

out complicated alignment operations like in the case of LOD; 

 entity-centric queries with Web data are enabled, ultimately fostering se-

mantic search for the next generation Web. 

For entity-centric search, schema.org represents an important advantage because 

every entity type is described by one global schema. There is no need to solve com-
plicated schema mapping, or instance matching problems to get a unified view of 

 

Fig. 4. Schema.org annotation for movie Iron Man 3 in microdata format. 
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some entity. Getting all entities of the same type, or based on some properties is 

also straight forward. One just needs to index Web data with microdata aware in-

dexes like for instance Sindice (see [36]) is doing6. But an in depth analysis on 

schema.org reveals, that the number of annotations is in fact very small [56]. This 

means that, until schema.org gains traction, its practical use for entity search is quite 

limited. More on this topic is presented in Section 2.2. 

Unstructured data, linked data and data annotated with global vocabularies like 

schema.org are the main representation forms for entity data on the Web. Building 

on representation form specific query functionality (see Fig. 5), systems like the 

Google Knowledge Graph or the recently published Google Knowledge Vault [35] 

have been proposed.  The Knowledge Graph provides a short and concise summary 

of an entity. After typing some entity name into Google’s search field, an entity sum-

mary is displayed on the right hand side of the search results, if the Knowledge 

Graph contains the entity. A sample entity summary for ‘Chuck Noris’ is shown in 

Fig. 6. According to Google’s official blog7, the Graph mainly relies on manually cu-

rated data sources like the Wikipedia infoboxes8, Google’s Freebase9, and 
schema.org10 annotations on the Web. But the Knowledge Graph has a major short-

coming: it doesn’t cope with the number of new entities published daily on the Web.  

It only provides information on well-known entities already having a Wikipedia arti-

cle, Freebase record or sufficient schema.org annotations. Our extensive evaluation 

presented into more detail in Chapter 6, shows that this is indeed rather limited. 

For instance, from a list of 14,199 common diseases (according to World Health 

                                            

6 An example of retrieving all schema.org annotations for movies with Sindice: http://sin-

dice.com/search?q=schema&nq=&fq=class%3Ahttp%3A%2F%2Fschema.org%2FMovie%20format%3AMI-

CRODATA&interface=guru&facet.field=domain  

7 http://www.googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html 

8 An infobox is a fixed-format table designed to be added to the top right-hand corner of articles to consistently 

present a summary of some unifying aspect that the articles share and sometimes to improve navigation to 

other interrelated articles. 

9 Freebase ([16]) is a community-curated database of well-known people, places and things. 

10 Schema.org is an initiative of Bing, Google, Yahoo! and Yandex to create and support a common set of schemas 

for structured data markup on web pages. 

 

Fig. 5. Entity data on the Web. Representation forms, query functionality and entity-

centric search systems. 
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Organization – the International Statistical Classification of Diseases11) we found 

about 7,000 being covered by the Wikipedia diseases category, with only about 

3,000 of them also featuring an actual article on Wikipedia or Freebase. As we will 

discuss in Section 2.2, schema.org has not really gained traction. Considering its low 

acceptance of only about 1.5% of the websites, schema.org doesn’t contribute much 

to extending the knowledge base either.  

This way, the majority of entities (in particular, new or more obscure entities) not 

present in the manually curated Web resources used by Google’s Knowledge Graph, 

cannot benefit from data summarization. 

                                            

11 http://www.who.int/classifications/icd/en 

 

Fig. 6. Knowledge Graph - result for ‘Chuck Noris’. 
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The Knowledge Vault is a Web-scale probabilistic knowledge base. It combines 

information extracted from unstructured data from the Web obtained via tech-

niques like OpenIE and NER, tabular Web data, page structure elements, data man-

ually annotated with schema.org and prior knowledge derived from existing 

knowledge repositories from the LOD cloud. All these information sources are 

fused together with machine learning methods to build a unified and representation 

form independent data source for entity search. Published just few weeks ago, the 

system is the latest development from Google. It is meant to replace the Knowledge 

Graph and it follows the same basic idea as proposed in this thesis, i.e. tapping all 

information sources by abstracting from the various data representation forms and 

fusing them into an integrated data repository. More on our system for data extrac-

tion and representation is provided in Chapter 5. But like any system that integrates 

data from multiple sources, the Vault, suffers from problems regarding entity recon-

ciliation and duplicate detection. This problems are known from core database re-

search and have recently been discussed with respect to interlinking data in the LOD 

cloud. Proposed solutions seem to have reached maturity and show promising re-
sults. We discuss this topic in more detail in Section 2.3. 

2.1. Linked Data 

The term “Linked Data” was coined by Tim Berners-Lee, the director of the World 

Wide Web Consortium in a design note ([9]) discussing issues around the Semantic 

Web project. His vision was that intelligent agents will one day be able to handle all 

the “day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled 

by machines talking to machines.” [10]. But for this to be possible, computers have 

to become capable of analyzing all the data on the Web – the content, links, and 

transactions between people and computers.  

Linked Data describes a method for of publishing structured data on the Web in 

such a way that it can be interlinked and become more useful. The building blocks 

are standard Web technologies such as the Hypertext Transfer Protocol (HTTP) 

[38], the Resource Description Framework (RDF) data model [93] and Uniform 

Resource Identifiers (URIs) [11]. But rather than using them to serve web pages for 

human readers, it extends them to share information in a way that can be read 

automatically by computers. This enables data from different sources to be con-

nected and queried. 

The core of publishing linked data is outlined by Tim Berners-Lee through four 

design principles published in [9], paraphrased along the following lines: 

1. Use URIs to denote things. 
2. Use HTTP URIs so that these things can be referred to and looked up 

("dereferenced") by people and user agents. 

3. Provide useful information about the thing when its’ URI is dereferenced, 

leveraging standards such as RDF. 
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4. Include links to other related things (using their URIs) when publishing data 

on the Web. 

Since 2006, when the concept of linked data has been introduced, the amount of 

data published on the Web in linked form, has gradually increased. In May 2007 it 

comprised 12 data stores. They all published data in subject, predicate, object RDF 

triple format, accounting together for about 500 million RDF triples. In September 

2011, when the diagram (presented in Fig. 7) of the LOD cloud was last updated, 

there were about 31 billion triples. Currently, more than 53 billion triples in over 

300 data stores are available in the largest Virtuoso-based Semantic Web data 

cache12. 

LOD covers a wide range of domains, governmental data representing the largest 

portion of data that is being published online in linked form. In Table 1 we provide 

an overview of the various domains, number of data stores and amount of triples 

for the LOD cloud from Fig. 7. Cross-domain data sources concentrate information 

on all kinds of entities. This makes them a good data source for entity type-based 

entity search. With 41 data sets and more than 4 billion triples, cross-domain data 
stores are also well represented in the LOD could. These statistics don’t even in-

clude Freebase, which by itself covers information on almost 45 million entities, 

                                            

12 The Virtuoso SWDB is accessible at http://lod.openlinksw.com/sparql/ through a SPARQL endpoint. 

 

Fig. 7. Linking Open Data cloud diagram as of September 2011. By Richard Cyganiak and 

Anja Jentzsch. http://lod-cloud.net/. 
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partly gathered from other LOD sources. Typical examples of cross-domain data 

stores are DBpedia, OpenCyc [77] or YAGO [116]. DBpedia for instance, stores 

data about all kinds of entity types, be it personalities, organizations, medical condi-

tions, movies, books, music, video games and so on. In total it provides information 

on about 4 million entities. The cross-domain data sources are well inter-linked, but 

have fewer out-links. They are mostly used as references by other data stores, having 

many more in-links (as observed on the example on DBpedia in Fig. 7).  

Table 1: Domain based overview of the amount data stores, triples and RDF links that 
are set from data sources within a domain to other data sources. LOD state as of Septem-

ber 2011. Data from http://lod-cloud.net/state/. 

Domain Nr. da-

tasets 

Triples % (Out-)Links % 

Cross-domain 41 4,184,635,715 13.23 63,183,065 12.54 

Life sciences 41 3,036,336,004 9.60 191,844,090 38.06 

Geographic 31 6,145,532,484 19.43 35,812,328 7.11 

Government 49 13,315,009,400 42.09 19,343,519 3.84 

Media 25 1,841,852,061 5.82 50,440,705 10.01 

Publications 87 2,950,720,693 9.33 139,925,218 27.76 

User-generated 

content 

20 134,127,413 0.42 3,449,143 0.68 

 295 31,634,213,770  503,998,829  

 

There is no central authority to manage data published in linked form. Each data 

store is responsible for publishing, storing and managing its own data. In conse-

quence, working with such data, requires that one first searches for relevant data 

sources and possibilities to access the respective data. Fortunately, DataHub13, which 

is a data management platform offered by the Open Knowledge foundation14, pro-

vides data owners with the tools for registering the published datasets, for tagging 

them with metadata and corresponding description, and adding SPARQL endpoints 

for data access. It also allows data consumers to search for data sets based on key-

words, to download samples, even complete data dumps, or to query data if 

SPARQL endpoints are provided. 

On a logical level, in data stores, the data is usually stored in subject, predicate, 

object RDF triple format. An excerpt of some triples for movie ‘Iron Man 3’ from 

DBpedia is presented in Fig. 8. The subject is always an URI representing an entity, 

                                            

13 http://datahub.io/ 

14 The Open Knowledge foundation (https://okfn.org/) is a worldwide non-profit network of people passionate 

about openness, using advocacy, technology and training to unlock information and enable people to work 

with it to create and share knowledge 
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the predicate is an URI representing a property, and the object is either the URI of 

an entity or a literal. For the example in Fig. 8, the subject of all these triples is 

obviously the DBpedia URI of the movie ‘Iron Man 3’. Some interesting predicates 

are the <http://www.w3.org/2000/01/rdf-schema#label> (known as, and further de-

noted with rdfs:label since rdfs is a predefined prefix of 

http://www.w3.org/2000/01/rdf-schema#) property indicating the human friendly 

name of a resource, or the <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> 

(known as rdf:type again as a result of predefined prefix structure) linking an entity 

to its type. For our previous example, the movie ‘Iron Man 3’ is defined as having 

the types <http://www.w3.org/2002/07/owl#Thing>, <http://schema.org/Creative-

Work>, <http://schema.org/Movie> and <http://dbpedia.org/ontology/Film>. Is this 

entity type information useful for empowering entity search on types? Being a prop-

erty of all entities, in the following sections we discuss about the contribution of 

LOD data to entity-centric search by focusing on the example of the rdf:type prop-

erty. But our observations are valid for any other property and entity search task.  

2.1.1. Entity Type Queries using the rdf:type Property 

The semantic Web research community has invested much effort in providing enti-

ties with proper type information. This is exactly the kind of information required 

for entity search based on types: for instance, when searching for movies, one could 

get all movie URIs and their titles from DBpedia only, by getting all entities of type 

<http://dbpedia.org/ontology/Film> with the following SPARQL query15: 

 SELECT DISTINCT ?MovieTitle, ?MovieURI WHERE{ 

     ?MovieURI rdf:type dbpedia-owl:Film . 

     ?MovieURI rdfs:label ?MovieTitle . 

 } 

where rdf, rdfs and dbpedia-owl are the predefined prefixes for the rdf syntax, the rdf 

schema and the DBpedia ontology name spaces. This query returns all 77,600 movie 

entities available on DBpedia. Since DBpedia, like the other data repositories in the 

LOD is manually curated, we can assume that all these entities are indeed movies. 

Precision is in this case not an issue. However, recall is an issue, since these are not 

                                            

15 The SPARQL endpoint for DBpedia is available at http://dbpedia.org/sparql 

 

Fig. 8. RDF excerpt comprising 10 triples from DBpedia for movie Iron Man 3.  

<IMURI> is short for <http://dbpedia.org/resource/Iron_Man_3>. 
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all the movies available in the LOD cloud. Other sources, like YAGO, Freebase, 

Linked Movie DataBase16 (LinkedMDB), etc., also store movie entities. In conse-

quence, to fully answer the entity type based queries one would have to search and 

return all relevant entities from all relevant data stores. Three basic steps have to 

be performed for this: 

 First, one has to identify relevant sources and corresponding SPARQL end-
points. This is done by means of keyword search on DataHub. 

 Second, one has to run SPARQL queries on each identified endpoint. The 

goal here is to get all relevant entities based on the entity type. To make 

matters simpler, one can use the endpoint17 provided by OpenLink which 

centralizes and caches all data in the LOD cloud in one single large triple 

based Virtuoso repository. This way all data can be accessed through a single 

endpoint. However, this only solves part of the problem: running the 

SPARQL query from the previous example will return all movies from DBpe-

dia only, even if executed on the OpenLink Virtuoso cache comprising all 

triples from the LOD. The reason for this behavior is the fact that the query 

specifies that all entities of type ‘dbpedia-owl:Film’ be returned. At the same 

time, other data sources use other URIs for the movie entity type. At the 

core of the problem lies one of the basic design principles of LOD: the fact 

that each data store is responsible of publishing and maintaining its data. As 

such, each source may develop its own vocabulary and ontologies for struc-

turing the data. This flexibility comes at a price: querying the LOD as a unified 

source of data is impossible due to the lack of global or aligned structure. In 
the case of entity type-based search, this means that, for the same entity 

type, each data source may have its own data type URI. For movies for in-

stance, the URI for the ‘movie’ type on Freebase is <http://rdf.free-

base.com/ns/film.film>.  Although it represents the same type of entities as 

the DBpedia movie type, the Freebase movie type is represented by a differ-

ent URI. This is not an isolated case: later on, in this section we provide an 

in depth analysis showing the complexity of the problem and possible solu-

tions on the example of various types of entities.   

 Third, obviously, data sources in the LOD cloud may overlap in terms of 

stored entities. In the final step, one has to integrate the result obtained from 

querying all relevant data stores. This basically means identifying and elimi-

nating duplicates. Normally, this should be a simple task since all entities are 

represented through unique identifiers: URIs. Ideally one could just use the 

DISTINCT clause from SPARQL to get the set of all unique entities for the 

given entity type. However, the advantage of having independent data stores 

with a flexible vocabulary strikes again since one entity may be represented 

                                            

16 linkedmdb.org/ 

17 http://lod.openlinksw.com/sparql/ 
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with different URIs in different data stores. Known as instance matching, the 

problem of finding all URIs that refer the same real-world entity has yet to 

be solved. An in-depth analysis over this problem is provided in Section 2.3. 

2.1.2. Analyzing the Practical Utilization of rdf:type in Linked Data 

The basic hypothesis is that one can use the rdf:type property to successfully per-

form entity search based on the type. The rdf:type property, defined in the RDF 

Schema 1.1 of the W3C recommendation18  is an instance of the rdf:Property that is 

used to state that an entity is an instance of a class. For this reason, rdf:type is the 

most simple way of getting entities of a certain type: identify the type URI (a task 

that could simply be performed with the help of an inverted index with keywords as 

keys and entity type URIs as values) and get all entities having that URI as a type. But 

as we have seen on the example of movies, the same type may have different URI 

representations. To assess the dimension of this problem we performed an in-depth 

analysis on the type URIs assigned to entities of the same type.  

Presented in [59], we conducted an analysis on the well-known Billion Triple Chal-

lenge corpus (BTC) from 2012 ([50]). BTC comprises about 1.4 billion quads of the 

form (subject, predicate, object, source) crawled from major LOD data stores like Dat-

ahub, DBpedia, Freebase, YAGO and others during May and June 2012. We ex-

tracted a list of movie types from the BTC data set, by bootstrapping on a seed of 

movies from the LinkedMDB and manually inspecting the resulting types. With this 

approach we found 4,336 URIs all for the type ‘movie’. This surprisingly large number 

is mostly due to the very fine classification provided by YAGO. This way, besides 

basic types, most specific movie types e.g. Animation, FrenchFilm, or even 

1910DramaFilms are introduced. Using the same method, we found 2,919 URIs rep-

resenting the type ‘book’ and 14,190 URIs for type ‘music album’. Overall, we found 

169,469 unique URIs for movies in BTC. The number of unique movies is obviously 
smaller because of existing duplicates, but it is hard to establish manually. With the 

DBpedia movie type URI, one can reach only about 20% of the entities. A list of 

most comprising URIs for ‘movie’ type is presented in Table 2. For entities of type 

‘book’ and ‘music album’ results are similar. To be self-contained, we include them 

in the Appendix A chapter in Table 19 and Table 20 respectively. In consequence, 

with the current state of linked data and without further intervention entity search 

based on the rdf:type property doesn’t really work on a large scale. While precision 

is perfect, since the type information is manually curated, the problem is the low 

recall indirectly caused by the vocabulary flexibility. 

We did not aim for, and raise no claim for completeness for this experiment. But 

the sheer number of URIs identified for the same type, corroborated with the fact 

that one type URI reaches only a subset of entities of a given type, shows that getting 

all entities of a certain type using LOD is not trivial. Ontology alignment has been 

                                            

18 http://www.w3.org/TR/rdf-schema/#ch_type 
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proposed as a remedy, but the quality of results is still not convincing [62, 63]. How-

ever, as the results from Table 2 suggest, it would be enough to get to the few URIs 

comprising most entities of the type.  

Table 2: Top 30 most comprising URIs for the ‘movie’ entity type from various data 
stores in the BTC corpus. 

URI  Nr. % 

<http://rdf.freebase.com/ns/film.film>  118,731 70.06 

<http://schema.org/Movie>  34,455 20.33 

<http://dbpedia.org/ontology/Film>  34,455 20.33 

<http://data.linkedmdb.org/resource/movie/film>  31,141 18.38 

<http://dbpedia.org/class/yago/Movie106613686>  8,406 4.96 

<http://dbpedia.org/class/yago/English-languAgeFilms>  8,036 4.74 

<http://dbpedia.org/class/yago/Black-and-whiteFilms>  6,011 3.55 

<http://dbpedia.org/class/yago/AmericanFilms>  5,941 3.51 

<http://umbel.org/umbel/rc/Movie_CW>  5,091 3.00 

<http://dbpedia.org/class/yago/IndianFilms>  3,121 1.84 

<http://dbpedia.org/class/yago/ShortFilms>  1,693 1.00 

<http://dbpedia.org/class/yago/Hindi-languAgeFilms>  1,507 0.89 

<http://dbpedia.org/class/yago/BritishFilms>  1,368 0.81 

<http://dbpedia.org/class/yago/Spanish-languAgeFilms>  1,320 0.78 

<http://dbpedia.org/class/yago/SilentFilms>  1,307 0.77 

<http://dbpedia.org/class/yago/DramaFilms>  1,236 0.73 

<http://dbpedia.org/class/yago/IndependentFilms>  1,102 0.65 

<http://dbpedia.org/class/yago/ItalianFilms>  1,035 0.61 

<http://dbpedia.org/class/yago/FrenchFilms>  1,017 0.60 

<http://dbpedia.org/class/yago/Italian-languAgeFilms>  892 0.53 

<http://dbpedia.org/class/yago/ArgentineFilms>  883 0.52 

<http://dbpedia.org/class/yago/2007Films>  867 0.51 

<http://dbpedia.org/class/yago/ComedyFilms>  866 0.51 

<http://dbpedia.org/class/yago/2006Films>  858 0.51 

<http://dbpedia.org/class/yago/2008Films>  821 0.48 

<http://dbpedia.org/class/yago/Tamil-languAgeFilms>  811 0.48 

<http://dbpedia.org/class/yago/French-languAgeFilms>  792 0.47 

<http://dbpedia.org/class/yago/JapaneseFilms>  774 0.46 

<http://dbpedia.org/class/yago/2005Films>  774 0.46 

<http://dbpedia.org/class/yago/2009Films>  774 0.46 
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For instance, when starting from the DBpedia URI for the ‘movie’ type, connecting 

that URI to its’ counterpart from Freebase and LinkedMDB would already account 

for more than 90% of entities. Can one identify and connect different URIs repre-

senting the same type to ultimately improve entity search on types in LOD? Ontol-

ogy alignment doesn’t seem to work.  However, another possible approach is to 

perform type alignment by means of witnesses, with the help of the owl:sameAs 

property: For instance, starting from the type dbpedia-owl:Film, one would identify 

movie entities from DBpedia like the Iron Man 3 movie with URI <http://dbpe-

dia.org/resource/Iron_Man_3>. This entity is represented in Freebase through URI 

<http://rdf.freebase.com/ns/m.0bc1yhb>. This fact is stored amongst the DBpedia 

data of movie Iron Man 3 through triple: 

 

Following on the type of entity URI <http://rdf.freebase.com/ns/m.0bc1yhb> in 

Freebase, one finds five type URIs presented in Table 3. Out of these, URI 

<http://rdf.freebase.com/ns/film.film> grants access to 70% of the movie entities in 

the BTC corpus. However, connecting the DBpedia URI to any other of the five 

URIs, would have disastrous effects on the results: it would include all kinds of enti-

ties be it movies, music, video games or books, that have a common topic or have 

been awarded some prize. Filtering this type URI only, without manual intervention, 

is possible if there is enough evidence, that the URI for ‘movie’ type from DBpedia 

is the same as the one from Freebase and less similar to the other Freebase type 

URIs. A large number of witnesses confirming this connection is strong evidence 

enough. Therefore, it is crucial to have a high number of, in this particular case movie 

URIs, from one source linked through owl:sameAs predicates to their counterparts 

from other data stores. Unfortunately, as discussed in [33], today owl:sameAs link-

age is not nearly as extensive as one would hope. Many links are missing and from 
the ones available, a large part are trivial links like for instance the internal links of 

DBpedia linking URIs across different languages. 

Known under the problem of entity reconciliation or instance matching, the problem 

of matching the same entity in different data sets has been extensively studied ([15, 

61, 64, 89, 118, 124]) and seems to have reached a level of maturity. In [57] we pay 

closer attention to systems that promise to create high quality owl:sameAs links 

automatically. This has two advantages: On the one side it allows us to connect all 

URIs of a certain type, and in the following step it allows to remove duplicate URIs 

Table 3: Type URIs for entity <http://rdf.freebase.com/ns/m.0bc1yhb> from Freebase.  

<http://rdf.freebase.com/ns/film.film> 

<http://rdf.freebase.com/ns/common.topic> 

<http://rdf.freebase.com/ns/award.award_nominated_work> 

<http://rdf.freebase.com/ns/award.award_nominee> 

<http://rdf.freebase.com/ns/award.award_winning_work> 
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of the same real world entity, reducing the result set to one URI per unique entity. 

But, as we will discuss in more detail in Section 2.3, instance matching systems still 

struggle when it comes to high precision instance matching, making them useless for 

type alignment tasks. 

Considering all this, we believe that rdf:type is a simple and effective way of getting 

all entities of a given type from one data store. But this represents only part of the 

entities to be found in the LOD cloud. If multiple stores are targeted, or if the whole 

LOD is to be used as a data sources, the flexibility of each data store being allowed 

to have its own vocabulary strikes. The same entity and entity type, have different 

URI representations in different stores. The built in mechanism that should help 

solve this problem is based on the owl:sameAs and the owl:equivalentClass proper-

ties. owl:sameAs matches instances of the same real world entity, and owl:equiva-

lentClass matches URIs of the same class, in different data sources. Unfortunately, 

only a fraction of the data is linked with these properties. There are two main pos-

sible approaches at this point:  

 One approach is to enforce a single vocabulary, a global schema that is 
centrally managed, and used by all data providers and publishers, so that 

there is only one type URI per type. This is the approach followed by Web 

search engine providers with their proposal of schema.org. 

 The other approach, followed by the semantic Web community is to keep 

the schema flexibility, but to improve on instance matching systems that 

automatically create high quality links connecting data across multiple 

stores. The evolution of the systems presented in the Ontology Alignment 
Evaluation Initiative19 (OAEI) with its Instance Matching20 (IM) tracks stand 

as proof of the efforts that are being made in this direction. 

These two approaches are discussed in more detail in the following sections.  

2.2. Schema.org 

Schema.org is built on the idea of a global vocabulary that is centrally managed by 

some authority, and that data producers and publishers use to annotate their data 

with. But the idea of semantically annotating data on the Web started much earlier. 

The first standardized concept that implemented the approach of open data anno-

tations is called microformats21. 

Microformats started as a project in 2005, with the goal to integrate semantic 

information into HTML code for making it machine readable. For this purpose mi-

croformats use existing HTML tags e.g. class, indicating the class or format name, rel 

                                            

19 http://oaei.ontologymatching.org/ 

20 http://www.instancematching.org/oaei/ 

21 http://microformats.org/ 
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(relationship) providing the description of the target address in an anchor-element 

and rev (reverse relationship) providing the description of the referenced document. 

Out of these, class is by far the most useful tag for microformats. As the name 

suggests, microformats are organized in formats. Each format covers one specific 

topic. Currently, there are 35 different formats22. Most of them cover locations, 

products or social annotations. A classic example of microformats (presented in Fig. 

9) is the annotation of an address, with the help of the adr format specified with the 

HTML class tag. There are however, disadvantages to using microformats. They re-

quire the implementation of additional markup throughout the websites. Further-

more, since there are a limited set of data types supported by microformats, the 

data type may not even be fully supported. 

Another technology for annotating Web data is Resource Description Framework 

in Attributes (RDFa). It is a W3C specification23 for integrating RDF data into several 

web-formats, such as HTML, XHTML or XML. It was introduced in 2008 and refined 
in 2012 to version RDFa 1.1 which is now fully supported even by HTML7. RDFa is 

built on top of RDF, the well-known semantic web basic technology and it represents 

the vision of the semantic web community on how to semantically annotate data in 

Web pages. An example of an RDFa annotation for a person using schema.org as a 

source for the ‘person’ vocabulary is presented in Fig. 10. In contrast to microfor-

mats, RDFa uses vocabularies that allow users to create their own schemata. RDFa 

is quite flexible, offering for instance the possibility to combine multiple vocabularies, 

for mixing types of entities based on the needs. While it offers much more flexibility, 

RDFa was originally too complex. For this reason, in 2009, another technology de-

signed as a simple subset of RDFa and microformats was proposed. Called micro-

data, this technology is primarily focusing on the core features of RDFa. 

                                            

22 http://microformats.org/wiki/Main_Page#Specifications 

23 http://www.w3.org/TR/rdfa-syntax/ 

 

Fig. 9. Example of microformats in HTML code. 

 

Fig. 10. Example of RDFa in HTML code with schema.org vocabulary. 
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Microdata24 was introduced in 2009 as a part of HTML5 specifications. It uses 

hierarchical vocabularies as a data model to provide the semantics, or meaning of an 

item. It also allows Web developers to design a custom vocabulary or use vocabu-

laries available on the Web. It was built for HTML5 and uses the following HTML5 

tags for semantic annotations: 

 itemscope – Indicates the annotation of the item. The descendants of this 
element contain information about it. 

 itemtype – A valid URL of a vocabulary that describes the item and its 

properties context. 

 itemid – Indicates a unique identifier of the item. 

 itemprop – Indicates that its containing tag holds the value of the specified 
item property. The properties name and value context are described by 

the items vocabulary. Properties values usually consist of string values, but 

can also use URLs using the a element and its href attribute, the img ele-

ment and its src attribute, or other elements that link to or embed external 

resources. 

 itemref – Properties that are not descendants of the element with the item-

scope attribute can be associated with the item using this attribute. It pro-
vides a list of element ids (not itemids) with additional properties else-

where in the document. 

On the example of an event annotation with schema.org vocabulary, in Fig. 11 we 

show how these tags are used in microdata.  

All three technologies have advantages and disadvantages. Microformats intro-

duces the least complexity but it is also the least powerful. RDFa 1.1 is the most 

flexible but the most complex. Microdata seems to offer a tradeoff although some 

constructs like an item having multiple types (a business can be both an ‘Au-

toPartsStore’ and a ‘RepairShop’) are difficult to express.   

At the same time when these technologies were being introduced, web search 

companies were struggling to get past the 10 blue links, they had offered for the last 

                                            

24 http://www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html#microdata 

 

Fig. 11. Example of microdata in HTML code with schema.org vocabulary. 
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decade, to provide for better user experience. Proposed in 2008, Yahoo! Search 

Monkey was the first service which allowed web site owners to use structured data 

to make Yahoo! Search results more useful and visually appealing, and drive more 

relevant traffic to their sites. Yahoo! Search Monkey relied on both microformats 

and RDFa technologies for data acquisition. Following on Yahoo!’s initiative, in mid-

2009 Google introduced Rich Snippets, a search result presentation technique de-

signed to summarize the content of a page making it easier for users to understand 

what the page is about. An example of a rich snippet generated for the IMDb page 

of movie ‘Iron Man 3’ is presented in Fig. 12. Like Yahoo’s tool also Google’s snippets 

relied on the Microformats, RDFa and Microdata data annotations embedded in 

HTML code. 

The benefits of annotated data became clear to search engine companies very 

soon. However, neither Microformats nor RDFa or Microdata gained real traction 

amongst web site owners. Furthermore, the vocabularies used were heavily frag-

mented: different sources may use different vocabulary to describe the same data. 

This hindered the process of automatically interpreting or querying data as a whole. 
To increase the acceptance of such technologies, and solve the problem of frag-

mented vocabularies, in 2011 Bing, Yahoo and Google joined forces. They launched 

the schema.org initiative to “create and support a common set of schemas for struc-

tured data markup on web pages.”25,26,27 Schema.org is a set of extensible schemata, 

shared vocabularies which webmasters can use to mark up their pages in ways that 

can be understood by the major search engines. The main incentive for page owners 

is a better presentation of content in the web search result list. This way, the Web 

page has a higher chance of being found by users interested in that very specific 

content. For search engines, motivating page owners to annotate their data with 

schema.org vocabulary has the advantage that complex queries with Web data are 

possible, ultimately replacing keyword driven, with semantic enabled search. For en-

tity centric search, schema.org presents the advantage that the structure is centrally 

managed and data can be queried globally without complicated alignment operations 

like in the case of LOD. 

                                            

25 http://blogs.bing.com/search/2011/06/02/introducing-schema-org-bing-google-and-yahoo-unite-to-build-the-

web-of-objects/ 

26 http://googleblog.blogspot.de/2011/06/introducing-schemaorg-search-engines.html 

27 http://www.ysearchblog.com/2011/06/02/introducing-schema-org-a-collaboration-on-structured-data/ 

 

Fig. 12. Google rich snippet for movie ‘Iron Man 3’ for IMDb page. 
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But the fact that the schemata are managed by a central authority, a board of 

members representing the major search engine companies, has also attracted criti-

cism from the semantic web community. To show flexibility, schema.org is continu-

ously being updated and anybody can suggest a new schema or extend an existing 

one. For instance, in early-2013 there were about 300 schemata on schema.org. One 

year later more than 500 schemata were available. Furthermore, experts from vari-

ous fields were actively engaged in developing schemata. For instance, schemata re-

lated to medicine have been developed on the model of the Medical Subject Head-

ings (MeSH)28, and with support from the US National Library of Medicine. Schemata 

related to movies have been developed with the help of IMDb who was afterwards 

amongst the early adopters of schema.org.  

Overall, the underlying technology has reached maturity and schema.org is used 

as the de-facto vocabulary for microdata markup, which is already used by all the 

major search engine. It covers a large number of hierarchically organized entity 

types29, extensively described with an average of about 33 attributes, and a maximum 

of 71 attributes (for the ExercisePlan schema30). Since the main result of using 
schema.org is annotating and structuring entities on the Web with a global and con-

trolled vocabulary, schema.org is interesting for any type of entity-centric search. 

For instance, for type-based search one just needs to know the schema.org URL of 

an entity type e.g. http://schema.org/Movie for ‘Movie’ and to retrieve all annotations 

from a schema.org aware index similar to the one maintained by Digital Enterprise 

Research Institute (DERI) at sindice.com. The precision is still high, because data is 

annotated by people, and there are no vocabulary issues affecting recall like in the 

case of LOD. So is schema.org the technology that enables entity search on the 

Web? It certainly seems so. But is schema.org being used? Are there enough Web 

pages with schema.org annotations to justify its use for entity type search built on 

schema.org? In the following sub-section we analyze the web-scale acceptance of 

schema.org.  

2.2.1. The Acceptance of Schema.org 

There have been other studies analyzing the acceptance of various vocabularies for 

annotating data on the Web like for instance the work done by Muelheisen and Bizer 

in [86] or Mika and Potter in [83]. However, our work presented in [56] is the first 

study that focuses on schema.org. 

To assess the acceptance of schema.org we analyzed ClueWeb12, a publicly avail- 

able corpus comprising English sites only. ClueWeb12 is part of the Lemur Project31 

                                            

28 http://www.nlm.nih.gov/mesh/ 

29 There were 529 schemata available on schema.org in November 2013 

30 https://schema.org/ExercisePlan 

31 http://lemurproject.org/ 



2.2 Schema.org 25  

 

initiated in 2000 by the Center for Intelligent Information Retrieval (CIIR) at the 

University of Massachusetts Amherst and the Language Technology Institute (LTI) 

at the Carnegie Mellon University. It comprises 733 million English Web pages, 

crawled between February 10th 2012 and May 10th 2012. These pages come from 

about 51 million domains. Considering that the size of the Web is currently esti-

mated at about 60 billion websites32, ClueWeb2012 comprises about 1,5% of the 

indexed Web, a reasonable size for a Web scale analysis. 

There are also other options for large Web corpora like the Common Crawls 

Corpus33, which comprises about 3 billion pages crawled from about 40 million do-

mains. Common Crawls was also crawled in the first half of 2012. Unfortunately, 

there is not too much information about the kind of Web pages it comprises or the 

rationale behind the crawling process. For this reason, ClueWeb12 is usually pre-

ferred for scientific analysis and has been also our first choice.  

ClueWeb12 comprises pages of broad interest: the initial seeds for the crawl con-

sisted of 3 million websites with the highest PageRank from ClueWeb09, a previous 

Web scale crawl. To maintain a certain level of quality, several filters were applied 
to the crawled pages: first, websites blacklisted for malware, phishing, spyware, virus, 

file hosting, file sharing or pornographic content activities were all removed. Second, 

all non-English pages have been removed. Finally, pages larger than 10MB or con-

taining more than 1 million terms were also removed. All other pages were saved 

in the web archive file format (.warc), split into chunks of 1GB and comprising sev-

eral thousands of compressed Web pages each. In total, ClueWeb12 requires about 

6TB hard-drive space when compressed, and about 60TB when uncompressed. 

The analysis has been performed on a small enterprise mid-range server with 2 x 

8 core x 3.1-3.8 GHz CPU running up to 32 parallel processes with hyper threading, 

384 GB of DDR3 RAM and 9 x 480 GB SSD drives. Since there was not enough 

space to accommodate the full, uncompressed size of ClueWeb12, the analysis pro-

cess was performed in small iterations focused on each archive file: Basically, each 

file was loaded into RAM, uncompressed, analyzed for microformats, RDFa, and mi-

crodata annotations, and then removed. Every annotation found was also persis-

tently stored on the SSD based hard drive for later use. Since archives are independ-

ent from one another, the process could be parallelized up to the hardware limit 

and took about 12 days to complete.   

Our analysis shows that about a year after its introduction, only 1.56% of the web 

pages from ClueWeb12 used schema.org to annotate data. The numbers of pages 

annotated with schema.org using the three mainstream data annotation techniques 

found in the ClueWeb12 documents are presented in Table 4. The use of different 

standards reflects the chronology of their adoption: microformats are the most 

                                            

32 http://www.worldwidewebsize.com/ 

33 http://commoncrawl.org/ 
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spread followed by RDFa, microdata and schema.org. It’s interesting to notice that 

while microdata was introduced just a year after RDFa, there is a noticeable differ-

ence between their usage rates. The reason for this behavior is that when it was 

introduced, RDFa was presented as the prime technology for semantic annotation. 

Many content providers adopted it. Further developments brought by Google in 

2009 have been regarded as yet another annotation method. It was only in mid-2011 

when microdata became the main annotation technology for the newly proposed 

schema.org that microdata started gaining momentum. In fact, 12/15 million docu-

ments annotated with microdata (representing approximatively 80%) are schema.org 

annotations. 

Table 4: Distribution of annotations by technology in ClueWeb12. 

Data Found URLs 

Microformats 97,240,541 (12.44%) 

RDFa 59,234,836 (7.58%) 

Microdata 15,210,614 (1.95) 

schema.org 12,166,333 (1.56%) 

 

Out of the 296 schemas available in mid-2012 when ClueWeb12 was crawled, 244 

schemas have been used in the annotations. To retrieve the state of schema.org at 

that time we used the Internet Archive34. The number of annotations per schemas 

(Table 5) follows a power law distribution with just 10 highest ranking schemas 

being used for 80% of the annotations and 17 schemas making for already 90% of all 

annotations. From the low occurring schemas in the long tail, 127 schemas occur 

less than 1000 times and 96 schemas occur even less than 100 times. 

Schemas on schema.org are quite extensive. They include on average 34 attrib-

utes. "Thing" is with 6 attributes the smallest schema while "ExercisePlan" with 71 

attributes is the most extensive. The annotations however are by far not as exten-

sive as the structure allows. On average over all annotations, only 4.7 attributes 

were used. This accounts for about 10% of the attributes available in the corre-

sponding schemas despite remaining data and existing matching attributes. It seems 

users are satisfied with just annotating some of the attributes. Most probably, this 

behavior is driven by the fact that rich snippets can only present a few attributes. In 

consequence users annotate only those few attributes that they consider should be 

included in the rich snippet. This way, from a user perspective, both the effort of an- 

notating additional information and the risk that the rich snippet would present a 

random selection out of a broader number of annotated attributes are minimized. 

                                            

34 web.archive.org/web/20120519231229/www.schema.org/docs/ full.html 
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In conclusion, relatively to the number of Web pages in ClueWeb12, there are 

not too many annotations. The existing ones are also not very extensive. Therefore, 

an entity search system relying on schema.org will suffer from massive recall prob-

lems returning just a fraction of all relevant entities. Still, the absolute number of 

annotations per schema is quite large. Furthermore, all attributes of all schemata 

found in ClueWeb12 have been covered, in different annotations. Hence, we have 

reason to believe that automatically recognizing and maybe annotating unstructured 

data with schema.org schemata is possible. Can we learn models from the annotated 

data to empower high quality annotations? We discuss such a possibility in the fol-

lowing sub-section.  

2.2.2. Learning to Annotate Unstructured Data with Schema.org 

Unfortunately, as we have seen, schema.org annotations are not yet used broadly. 

The main reason invoked insistently on technology blogs on the Web is that the 

Table 5: Top-20 schema.org annotations from the ClueWeb12 corpus. 

Schemata Occur-

rences 

Average Nr. of 

Attributes 

Percentage 

(Schema.org) 

http://schema.org/Blog 5,536,592 5.56 19.57% 

http://schema.org/PostalAddress 3,486,397 3.62 12.32% 

http://schema.org/Product 2,983,587 2.28 10.54% 

http://schema.org/LocalBusiness 2,720,790 3.29 9.62% 

http://schema.org/Person 2,246,303 4.97 7.94% 

http://schema.org/MusicRecording 1,580,764 2.77 5.59% 

http://schema.org/Offer 1,564,257 1.32 5.53% 

http://schema.org/Article 1,127,413 1.04 3.99% 

http://schema.org/NewsArticle 823,572 3.81 2.91% 

http://schema.org/BlogPosting 767,382 3.32 2.71% 

http://schema.org/WebPage 659,964 4.11 2.33% 

http://schema.org/Review 470,343 3.20 1.66% 

http://schema.org/Organization 407,557 1.35 1.44% 

http://schema.org/Event 400,721 2.69 1.42% 

http://schema.org/VideoObject 396,993 0.47 1.40% 

http://schema.org/Place 380,055 2.50 1.34% 

http://schema.org/AggregateRating 342,864 1.66 1.21% 

http://schema.org/CreativeWork 232,585 2.30 0.82% 

http://schema.org/MusicGroup 223,363 1.15 0.78% 

http://schema.org/JobPosting 168,542 4.38 0.60% 
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actual process of annotating Web data with schema.org is quite demanding35. In par-

ticular, the structure is centrally managed by schema.org and not at the liberty of 

annotators. This means that when annotating pages one has to: 

a) repeatedly switch between the Web page to annotate and schema.org,  

b) to browse through hundreds of schemas with tens of attributes each trying 

to find those schemas and attributes that best match the data on the Web 

page, 

c) and finally to write the microdata annotation with corresponding sche-

ma.org URL resources into the HTML code of the page.  

With such a complicated process it’s no wonder that 1.1% of all found annotations 

are erroneous. Most frequent errors were bad resource identifiers caused by mis-

spelled schemas or attributes or by schemas and attribute names incorrectly re-

ferred through synonyms. 

But given the large number of annotations found in ClueWeb12, one could exploit 

these annotations to extend the coverage of schema.org. This would solve the recall 

problem entity type search with schema.org support. But the downside is that au-
tomatic methods may introduce “false negatives” (data that is being annotated in-

correctly). The goal is in this case to increase recall, but without losing too much 

precision. The idea is to automatically match schemata form schema.org to relevant 

parts of unstructured data from web pages. If possible, such a system could even 

automatically map schema attributes to corresponding values from the text. All this 

is feasible if we are able to match schemata to pieces of page content. Imagine a 

system with the following basic workflow: given a Web page, it finds matches be-

tween schemata and pieces of page content, using models that have been trained 

with machine learning techniques on data annotated in ClueWeb12. Theoretically, 

any selection comprising consecutive words from the page content is a possible can-

didate for the matching. But considering all possible selections of page content is not 

feasible. Fortunately, the layout expressed through HTML elements says much about 

how information is semantically connected. With the help of the Document Object 

Model (DOM) API the HTML page is represented as a logical structure that connects 

HTML elements to page content in a hierarchical DOM tree node structure. These 

nodes envelop the pieces of content that are matched to the schemas. The matching 

method follows a greedy strategy, finding the smallest DOM nodes that best match 

a certain schema. Starting from the most fine-granular nodes (nodes are processed 

in the reversed order of the depth-first search) the content of each node is checked 

for possible match with all schemata from schema.org. The process continue until 

all nodes have been considered. 

The fundamental task that needs to be solved first is matching schemata to un-

structured data.  

                                            

35 See for example http://readwrite.com/2011/06/07/is_schemaorg_really_a_google_land_grab 
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Matching Schemata to Unstructured Data 

From a sequence of words (the content of a DOM node) and the list of schemas 

from schema.org, the matching process finds those schemas that “best” match the 

content. More formally, given Wn={w1, w2, …, wk} the sequence of words represent-

ing the content of node n, and S, the set of URIs for schemata from schema.org, the 

schemata that best match Wn are:  

 𝑆𝑊𝑛
=  {𝑠𝑖 | 𝑠𝑖  ∈  𝑆 ⋀ 𝑚𝑎𝑡𝑐ℎ(𝑊𝑛, 𝑠𝑖)  ≥  𝜃} (1)  

where 𝜃 is a quality regulating parameter (for our experiments 𝜃 was set to 0.5), 

and match:{Words × URIs} → [-1,1] is the function for computing the confidence 

that a certain schema matches the given set of words. The expression of this function 

depends on the method that is chosen to perform the matching. There are various 

such methods. For instance, given that schemata published on schema.org describe 
various types of entities, one of the first approaches that come to one's mind for 

binding these schemata to unstructured data is entity recognition and named entity 

recognition. This has proven to work well for some entity types like products, per-

sons, organizations or diseases [128]. However, considering the popular entities an-

notated on the ClueWeb12 corpus (Table 5), most of them describe more abstract 

entities e.g. “Blog”, “Review”, “Offer”, “Article”, “BlogPosting”, etc. In fact, out of 

the top-20 entity types, entity recognitions systems like OpenNLP36  or Standford-

NER [39] recognize less than half of them. Given an observation Wn, and the anno-

tations extracted from ClueWeb12 as a training set comprising a large number of 

observations whose category of membership is known (the annotated schema) this 

becomes a problem of identifying the class for observation Wn. Machine learning 

methods like Naïve Bayes classification or Support Vector Machines have proven 

successful for text classification tasks even for more abstract entity types ([55, 58]).  

Naïve Bayes classifiers rely on probabilities to estimate the class for a given obser-

vation. It compares the “positive” probability that some word sequence is the ob-

servation for some schema to the “negative” probability that the same word se-

quence is an observation for other schemas. In this case the matching function is:  

 𝑚𝑎𝑡𝑐ℎ𝐵𝑎𝑦𝑒𝑠(𝑊𝑛, 𝑠) = P(𝑠|𝑊𝑛) −  P(𝑠̅|𝑊𝑛) (2)  

But neither of the two probabilities can be computed directly from the training set. 

With the help of Bayes’s Theorem P(s|Wn) can be rewritten in computable form as 

P(s|Wn) = 
P(𝑊𝑛|𝑠)∗P(𝑠)

P(𝑊𝑛)
. Since Wn is a sequence of words that may get pretty long 

(Wn={w1, w2, …, wn}), and this exact same sequence may occur rarely in the training 

corpus, to achieve statistically significant data samples “naive” statistical independ-

ence between the words of Wn is assumed. The probability of Wn being an observa-

tion for schema s becomes: P(s|Wn) = 
∏ P(wj|𝑠)j=1 ∗P(𝑠)

∏ P(wj)j=1
, and all elements of this formula 
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can be computed based on the training set: P(s) can be computed as the relative 

number of annotations for schema s, P(wj|𝑠) the number of annotations for schema 

s that include wj relative to the total number of annotations for s, and P(wj) as the 

relative number of annotations including 𝑤𝑗 . The negative probability 𝑃(𝑠̅|𝑊𝑛) is 
computed analogously and the matching function on the Bayes classifier can be re-

written as: 

 𝑚𝑎𝑡𝑐ℎ𝐵𝑎𝑦𝑒𝑠(𝑊𝑛, 𝑠) = ∏ P(wj|s)
j=1

∗ P(s) − ∏ P(wj|s̅)
j=1

∗ P(s̅) (3)  

Being common to all matching involving Wn, ∏ P(wj)j=1  can safely be reduced with-

out negative influence on the result. Probabilities for all words from the training set 

comprising annotations from ClueWeb12 (excluding stop words) build the statistical 

language models for all schemas, which are of course efficiently pre-computed be-

fore performing the actual Web site annotations. 

Support Vector Machines use a different approach for classification. For each 
schema, a training set is built. It comprises annotations of the schema (“positive 

annotations”) and annotations of other schemas (“negative annotations”) in equal 

proportions. Each training set is represented in a multidimensional space (the Vector 

Space Model) with terms from all annotations as the space axes and annotations as 

points in space. In this representation, SVM finds the hyperplane that best separates 

the positive from the negative annotations for each schema. In the classification pro-

cess, given observation Wn, and a schema s, SVM represents Wn in the multidimen-

sional term space and determines the side Wn is positioned in with respect to the 

hyperplane of s. If it’s the positive side then there is a match. The normalized distance 

from Wn to the hyperplane reveals the confidence of the assignment. The closer Wn 

is to the hyperplane of s, the less reliable the assignment. In this case, the match 

function is: 

 𝑚𝑎𝑡𝑐ℎ𝑆𝑉𝑀(𝑊𝑛, 𝑠) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑊𝑛, 𝐻𝑠) (4)  

Evaluation 

For evaluating the schema matching functionality we prepared two data sets. Each 

has about 60,000 annotated web pages randomly harvested from ClueWeb12 com-

prising annotations with about 110 different schemas each. One of them is used as 

a training corpus for the classification methods. The other one is used as a test set. 

The test set is stripped of all annotations and provided to the system. We compare 

the pages annotated by the system for both Naïve Bayes and SVM, to the pages from 

the original test set and measure the schema matching effectiveness in terms of pre-

cision and recall.  

On inspection over the results, about 5% of the schemas were not detected at all. 

The reason for this behavior is the fact that these schemas are present in the test 

set but they have no or almost no occurrences (up to 10) in the training set. In-
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creasing the size of the training set helps reducing the number of undetected sche-

mas. In fact, initial experiments with 10,000 and 30,000 web pages as training sets, 

with smaller schema annotation coverage, showed higher numbers of undetected 

schemas. 

Overall, on the 110 schema annotations the system achieves on average 0.59 pre-

cision and 0.51 recall for Naïve Bayes and 0.74 precision and 0.76 recall for SVM, 

Simply matching schemas at random, as a comparison method, results in precision 

and recall lower than 0.01. The result values vary strongly from schema to schema. 

In Table 6 we show the results for 15 schemas. The goal of the schema matching 

system is to improve recall while maintaining precision under control. For this rea-

son, the 15 schemas presented in Table 6 are chosen to cover the whole spectrum 

of F2-measure values, given that the F2-measure weights recall twice as much as pre-

cision. 

No correlation between the number of occurrences in the training set and results 

could be observed. Having hundreds of schema annotations seems to lead to results 

similar to having tens of thousands of annotations. A few schemas, especially in the 
case of Naïve Bayes, have catastrophic precision and recall values (less than 0.01), 

despite occurring more than 4,000 times in the training set. These are schemas with 

very broad meaning e.g. “WebPage” or “Thing”. Overall, SVM does better than Na-

ïve Bayes. But it is interesting to notice that for many schemas the two approaches 

seem to complement each other: schemas where the Bayes achieves bad results are 

handled much better by SVM and vice versa. Taking this into consideration, it is 

Table 6: Precision and recall values for the matching of schemata with Bayes and SVM. 
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probable that approaches relying boosting meta-algorithms like the well know Ada-

Boost [40] will provide even better results. But for the moment, such a system is 

able to match schemata correctly on average in 2 out of 3 cases. However, the 

overall quality of the results doesn’t encourage us to believe in the feasibility of a 

fully automatic system extending the coverage of schema.org. Instead we believe 

that interactive user support is necessary. Following on this idea, in [56] we present 

SASS (Schema.org Annotation Support System) an approach that goes beyond the 

GUI tools offered by Google’s Structured Data Markup Helper or state-of-the-art 

systems like presented in [67] to offer users the necessary support for annotating 

data with schema.org.  

In conclusion, until schema.org gains traction, its contribution to entity search is 

minor. Even so, like in the case of LOD, using annotated data for entity search re-

quires that duplicate entities can be identified. There are quite a few systems which 

have achieved remarkable results for this classical instance matching task ([89, 133]), 

subject we discuss in more detail in the following section. 

2.3. Instance Matching 

The problem of finding identity links (owl:sameAs) between identifiers of the same 

entity in various data stores has been heavily researched (see [15, 61, 64, 89, 118, 

124]). Various systems have been proposed and the reported results are, with pre-

cision and recall of over 0.9 very promising. As such, we are encouraged to believe 

that the problem of instance matching can be solved with any of these “out-of-the-

box” systems. There is plenty to choose from, so we started looking for an instance 

matching approach to integrate into our entity retrieval system.   

At their core, instance matching systems build on one or more of the following 

techniques: probabilistic matching, logic-based matching, contextual matching, or 

heuristic matching based on natural language processing (NLP). Each approach 

shows strengths and weaknesses. But these particularities are hard to assess, since 

each system was evaluated on different data samples. The choice of data for the 

evaluation has a big influence on the results. For instance, there is a large number of 

class equivalence links between DBpedia and YAGO. If these two data sources build 

a large portion of the evaluation data then approaches like the one presented in [15] 

are favored. The verbose nature of the URIs also helps shallow NLP techniques 

favoring for in-stance the system presented in [89]. The situation is different for 

other selections like LinkedMDB and YAGO since the URIs provided in LinkedMDB 

are more cryptic and links to and from YAGO are rare.  

Of course, instance-matching approaches have to be able to work with all kinds 
of entities from multiple data-stores. Again, this may boost the performance of some 

systems, since different aspects of an entity can be learned iteratively from various 

stores. On the other hand it can be detrimental to the overall data quality, since the 

more entities and entity types are available, the more probable it becomes for sys-
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tems to generate incorrect identity links. Take for instance LINDA [15] which heav-

ily exploits transitive links to support the inter-linking process. When it was evalu-

ated on the Billion Triple Challenge corpus comprising entities from various stores 

the respective precision was about 0.8. For relaxed similarity constraints the preci-

sion even drops to 0.66. But with every third identity link being incorrect, this level 

of quality does not seem satisfactory. It will lead to wrong type connections in the 

LOD heavily affecting the precision of retrieved entities and it will falsely remove 

entities it wrongly identifies as duplicates. In contrast, SLINT+ [89] reports an aver-

age precision of 0.96 on DBpedia and Freebase data.   

But does this really mean that SLINT+ performs better? The respective precision 

was achieved on a biased set, representing a highly inter-linked extract from DBpedia 

and Freebase! It is therefore impossible to directly compare the performance of the 

two systems. To make systems comparable to one another, the Ontology Alignment 

Evaluation Initiative (OAEI) organizes a yearly evaluation event including an Instance 

Matching track. For the last year’s evaluation there were evaluation tests involving 

data value differences, structural heterogeneity and language heterogeneity. With 
small data value and structure alterations and involving a small extract (1744 triples 

and 430 URIs) from a single high quality data source (DBpedia), we will show that 

the tests do not accurately reflect the problems encountered in real-world data. 

Actually, judging by the 2013’s OAEI evaluation results (showing again a sustained 

precision of over 0.9), instance matching systems seem to work very well. But con-

sidering the modest precision achieved by systems like LINDA on real-world data, 

this raises the question: Is instance matching ready for reliable data inter-linking? To 

answer this question, we perform extensive real-world experiments on instance 

matching using a system which has proven very successful in OAEI tests. Published 

in [57], ours is the first study that provides an in depth analysis over how effective 

instance matching systems are on real-world data. 

Putting Instance Matching to the Test 

Instance matching is about finding and reconciling instances of the same entity in 

heterogeneous data. It is of special interest to LOD because the same entity may be 

identified with different URIs in different data stores and the owl:samesAs property 

useful for interlinking URIs of the same entity is not as wide-spread as needed.  

In the context of LOD, given multiple sets of URIs D1, D2, …, Dn, with each set 

comprising all unique URIs of a data store, matching two instances of an entity can 

formally be defined as a function match:URI×URI→{false, true} with: 

 
𝑚𝑎𝑡𝑐ℎ(𝑈𝑅𝐼𝑖 , 𝑈𝑅𝐼𝑗): = {

𝑡𝑟𝑢𝑒, 𝑖𝑓 𝑠𝑖𝑚(𝑈𝑅𝐼𝑖 , 𝑈𝑅𝐼𝑗) >  𝜃

𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         
𝑤𝑖𝑡ℎ 𝑈𝑅𝐼𝑖

∈ 𝐷𝑖  , 𝑈𝑅𝐼𝑗 ∈ 𝐷𝑗  

(5)  

where 1 ≤ 𝑖, 𝑗 ≤ 𝑛, and sim() is a system dependent, complex similarity metric in-

volving structural, value-based, contextual and other similarity criteria, and 𝜃 is a 
parameter regulating the necessary quality level for a match.  
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Based on this function, instance matching systems build an equivalence class for 

each entity. An equivalence class comprises all URIs used by any source to refer to 

some corresponding unique entity. For instance, considering only DBpedia, Free-

base, YAGO and LinkedMDB, the equivalence class for the entity “Martin Scorsese” 

is: 

{http://dbpedia.org/resource/Martin_Scorsese,  

  http://yago-knowledge.org/resource/Martin_Scorsese,  

  http://rdf.freebase.com/ns/m.04sry,  

  http://data.linkedmdb.org/resource/producer/9726,  

  http://data.linkedmdb.org/resource/actor/29575,  

  http://data.linkedmdb.org/resource/editor/2321}. 

It’s worth noticing that in contrast to general purpose knowledge bases like Free-

base or DBpedia, specialized data stores like LinkedMDB have finer granularity, dif-

ferentiating between Martin Scorsese as actor, editor, or producer. According to 

the owl:sameAs property definition in the OWL standard, all URIs referring to the 

same real world object should be connected through owl:sameAs. In consequence, 
all six URIs from the previous example should be linked by owl:sameAs relations. 

Of course one could argue that finer, context-based identity is required and that 

“Martin Scorsese, the producer” may not be the same as “Martin Scorsese, the ac-

tor”. For further discussions regarding context-based similarity and identity see [48]. 

Here we adopt the definition as provided by the OWL standard for the owl:sameAs 

property. 

Instance matching is an iterative process. Once some of the instances are matched 

either manually or by some system and owl:sameAs links have been established, 

more identity links can be found by exploiting the transitivity inherent in identities: 

Given that URIA and URIB represent the same real world object, the same applying 

for URIB and URIC implies that also URIA and URIC represent the same real world 

entity. Consequently, an owl:sameAs link between URIA and URIC can be created. 

However, the actual process of discovering sameAs links is based on some similarity 

function and not on identity. Similarity functions, however, are usually not transitive!  

Let us give a simplified example where the matching function relies on the Le-

venshtein distance on the rdfs:label property as similarity metric. Consider that a 

URI with rdfs:label “Scorsese, Martin” referring to the well-known movie producer, 

is matched with a URI with rdfs:label “Scorsese, Cartin” (which could be a typo). 

This last URI matches a URI with rdfs:label “Scorsese, Chartin” and the match pro-

cess goes on up to a URI with rdfs:label “Scorsese, Charles”. Charles Scorsese is an 

actor known for his role in Goodfellas and actually Martin’s father. This problem is 

well known in the area of single link clustering: similarity clustering may lead to 

chains of URIs where neighboring URIs in the chain are similar, but for long enough 

chains the ends of the chain have almost nothing in common. Linking the URIs of 

Martin and Charles Scorsese with owl:sameAs would obviously be incorrect. Of 

course this example is constructed, but the danger of transitively matching unrelated 
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instances in the context of large amounts of data is real. In consequence, evaluation 

data involving triples from multiple stores is necessary for exposing such weak-

nesses.  

From the instance matching systems we found that only LINDA specifically ad-

dresses the problem of transitivity and selects only those matches consistent with 

transitivity as follows: on the example in Fig. 13, considering that sim(URIA, URIB) > 

sim(URIB, URIC), the equivalence class of URIA comprises only URIB and vice versa, i.e. 

both URIs refer the same entity and all properties valid for URIA are also valid for 

URIB and all properties valid for URIB are also valid for URIA. To express this we can 

denote the entity referred by URIA and URIB through URIAB. Even though URIA and 

URIC don’t show a large enough similarity, they are considered to refer the same 

entity if match(URIAB, URIC) is true. Then, URIC will also be added to the equivalence 

class. The process of finding identity links continues iteratively up to convergence. 

Borrowing from hierarchical clustering, also the complete-linkage criteria could 

for instance be easily adopted to enforce transitivity. Assume after pairwise com-

paring all URIs we find three URIs matching in a chain like presented in Fig. 13. Any 

set of n linked URIs satisfies the complete-linkage criteria, iff all n URIs match in a 

pairwise. Obviously this is not the case for chains. In consequence, chains are broken 

up by removing the weaker links. In the case of links of equal strength one of them 

is broken at random. Consider sim(URIA, URIB) > sim(URIB, URIC). Since match(URIA, 

URIC) is false, the link between URIB and URIC has to be removed. As a rule, the list 

of URIs being weakly linked to an URIx is: 

 

𝑊𝐿𝑈𝑅𝐼𝑥
= {𝑈𝑅𝐼𝑦|∃ 𝑧: 𝑚𝑎𝑡𝑐ℎ(𝑈𝑅𝐼𝑥, 𝑈𝑅𝐼𝑧) = 𝑡𝑟𝑢𝑒  

∧  𝑚𝑎𝑡𝑐ℎ(𝑈𝑅𝐼𝑦, 𝑈𝑅𝐼𝑧) = 𝑓𝑎𝑙𝑠𝑒  

∧ 𝑠𝑖𝑚(𝑈𝑅𝐼𝑥, 𝑈𝑅𝐼𝑧) ≥ 𝑠𝑖𝑚(𝑈𝑅𝐼𝑥, 𝑈𝑅𝐼𝑦)}. 

(6)  

After all weak links are broken for all URIs, the equivalence class of an URI is given 

by a function E:URI→{URIs} where:  

 𝐸(𝑈𝑅𝐼𝑘): = {𝑈𝑅𝐼𝑙|𝑚𝑎𝑡𝑐ℎ(𝑈𝑅𝐼𝑘, 𝑈𝑅𝐼𝑙)} (7)  

Instance Matching - State of the Art 

Instance matching is crucial for several applications like data integration, identity 

recognition and more important, for entity type alignment. Recognizing the lack of 

evaluation data, OAEI provided a reference benchmark for ontology alignment since 

 

Fig. 13. Three URIs matching in a chain (URIA and URIC don’t match). The similarity 

between URIA and URIB is stronger than the similarity between URIB and URIC. 

 

URIA URIB URIC

URIAB
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2004. Probably fostered by advances in Linked Data, four years later, [3] is one of 

the first publications to address this problem for instance matching. The authors 

discuss the particularities of instance matching and name main challenges. Based on 

these challenges, they design a benchmark with movie data from IMDb that empha-

sizes on data value differences, structure and logical heterogeneity. Finally, they com-

pare the results for two instance matching algorithms to show the applicability of 

the data set.  

In 2009, OAEI introduced an instance matching track and provided first generated 

benchmarks37: one comprising three datasets with instances from the domain of sci-

entific publications built on Digital Bibliography & Library Project (DBLP), one with 

three datasets covering several topics, structured according to different ontologies 

from DBpedia and one generated benchmark obtained by modifying a dataset ac-

cording to the data value, structure and logical heterogeneity criteria introduced in 

[3]. Evaluation data has gradually improved and last year’s benchmark comprised five 

test cases: One for value transformation, where the value of five properties was 

changed by randomly deleting or adding characters; one for structure transfor-
mation, where the length of property paths between resources and values has been 

changed; a languages test where comments and labels were provided in French in-

stead of English; one set combining value and structure transformation using French 

text and one where besides the value, structure and language challenges, some en-

tities have none or multiple counterparts (a cardinality test). The data for the tests 

was extracted from DBpedia: it comprised 1744 triples, 430 URIs and only 11 pred-

icates. It involves only one type of entity: personalities from the field of computer 

science like Alan Turing, Donald E. Knuth, or Grace Hopper and is limited to triples 

having such personalities as a subject. Four instance matching systems have been 

evaluated on this benchmark. Out of the four, SLINT+ [89] and RiMOM [118, 119, 

133] achieved outstanding results with an average precision and recall over all test 

of more than 0.9. 

While these results are quite promising, similar systems have proven weaker per-

formance on real-world larger in size and involving multiple data stores. To assess 

the performance of such systems with real-world data, we built an evaluation set 

comprising 90,000 entities, from four domains, extracted from five data stores. In 

contrast to the OAEI test cases, all domains were included in all tests rendering 

cross-domain false positive matches (e.g. person being matched to movie) possible. 

The data stores were all-purpose knowledge bases like DBpedia and Freebase as 

well as domain focused stores like LinkedMBD and DrugBase. Some sources have 

cryptic URI naming conventions while some are more explicit. Also the granularity 

of properties varies between sources. We believe this is a more appropriate way of 

measuring the success of instance matching algorithms. 

                                            

37 http://oaei.ontologymatching.org/2009/instances/ 
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Evaluation 

For evaluating instance matching systems we rely on real-world data comprising en-

tities of types Person, Film, Drug and Organization. The data was extracted from 

five stores: Freebase, DBpedia, LinkedMDB, DrugBase and NewYork Times. A de-

tailed description of the data set is presented in Table 7. Instance matching systems 

are quite resource demanding ([15, 89]). For this reason, the evaluation data has a 

manageable size of about 90 thousand entities. This translates to about 4.9 million 

triple representing all relations having one of the selected entities as a subject. Such 

volume can be matched in a matter of minutes on commodity hardware. A similar 

number of entities was selected from each data store. The size difference between 

entity types was considered, too: overall, the data set comprises about 35 thousand 

entities of type person, 30 thousand entities of type film, about 15 thousand drug 

entities, and about 8 thousand organizations. To emphasize data value problems, 

entities were selected after alphabetically ordering them on their labels. This way, 

almost all entities have labels starting with the letter ‘A’. Due to the small number 

of entities, DrugBase and NewYork Times have been selected in full. The number 
of properties per entity type is, with a maximum of 2,537 unique properties for 

persons, notably higher than in the OAEI tests. This stresses out structure hetero-

geneity of real-world data. The ontology differences between data sources, different 

aggregation levels introduced by LinkedMDB, or the fact that persons are being 

matched with actors add to the challenges this data set poses. Furthermore, in con-

trast to OAEI tests, having data form multiple stores increases the risk of building 

wrong transitive links. At the same time, the fact that multiple domains are com-

pared, the possibility of creating bad links between entities of different types also 

exists. Finally, the selected data is not heavily interlinked. There are 5,855 

owl:sameAs links between entities in our data set. 5,264 of them are between DBpe-

dia and Freebase entities, 548 between DBpedia and LinkedMDB entities and 43 

between entities from DBpedia and the NewYork Times.  

To assess the quality of instance matching systems, we performed instance match-

ing on the data presented in the previous chapter and measured sampled precision. 

Table 7: Number of entities and properties per data store and entity type. 

Types Freebase DBpedia LMDB NYT DrugBase 

#entities / properties 

Person 10,000 / 1,006 10,000 / 2,537 10,000 / 10 4,979 / 11 0 

Film 10,000 /    465 10,000 /    565 10,000 / 48 0 0 

Drug   5,000 /    435   5,000 /    247 0 0 6,712 / 36 

Org.    5,000 /    641 0 0 3,044 / 11 0 

#entities      30,000      25,000   20,000    8,023      6,712     

#triples 1,749,433 2,461,263 264,902 90,850 314,108 
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We computed the transitive closure of the resulting owl:sameAs links and measured 

the quality of the newly created links. We paid special attention to the resulting 

equivalence classes as well as to entities of different types that have been matched. 

All tests were performed for high to low similarity thresholds. Since one of the 

characteristics of the data set was that it is not highly interlinked, there were not 

enough owl:sameAs links available to also measure recall. 

The instance matching system is a black box from our perspective. Any domain 

independent system can be used. SLINT+ is one of the systems to achieve excep-

tional results in instance matching tasks. It is training-free and domain-independent. 

It builds on thorough predicate alignment and selection, shallow NLP and correlation 

based instance matching. It has already been successfully tested on selections from 

DBpedia and Freebase and it is available online for download38.  

For a similarity threshold of 0.95, SLINT+ creates 8,020 owl:sameAs links (see 

Table 8). 33 of them link drugs or movies to persons. They are obviously wrong. 

Overall, we observed a sampled precision of 0.91 for this threshold. The lower the 

similarity threshold, the more links are found. For a similarity threshold of 0.25, 

25,113 links are found. Even for such a low similarity threshold the precision is with 

a value of 0.67 quite impressive. According to the OWL standard, owl:sameAs links 

are transitive. Like most instance matching systems, SLINT+ ignores this aspect, 

probably because few bad links may lead to an explosion of bad links through tran-

sitivity. On the other hand completely ignoring transitive links is dangerous since any 

query engine using the links created by SLINT+ may transitively link sources to solve 

join queries. Computing the transitive closure of the owl:sameAs relations discov-

ered by SLINT+ for a threshold of 0.95 we obtained an additional 2,055 links. How-

ever, the precision measured for these transitive links is only 0.20.  

But how is this possible? Due to the non-transitive nature of the similarity func-

tion, long chains of entities belonging to the same equivalence class may be created. 

The longer the chain, the higher the probability that URIs that are far apart in the 

                                            

38 http://ri-www.nii.ac.jp/SLINT/index.html 

Table 8: The number of owl:sameAs links, the number of owl:sameAs links between en-

tities of different types, and the precision of the links created with SLINT+ and by com-

puting the transitive closure of links created by SLINT+, respectively. 

θ 

 

SLINT+ clTR 

#sameAs Inter-domain Prec. #sameAs Inter-domain Prec. 

0.95 8,020 33 0.91 2,055 89 0.20 

0.75 16,739 119 0.71 5,498 216 0.15 

0.50 17,436 230 0.76 7,038 396 0.09 

0.25 25,113 1,734 0.67 14,879 2,408 0.02 
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chain refer different entities. Even for high precision oriented similarity thresholds 

like 0.95, SLINT+ produces 11 equivalence classes with more than 10 URIs each. 

Actually, the largest equivalence class has 23 URIs, while for lower similarity thresh-

olds there are equivalence classes with 38 URIs (see Table 9). One false owl:sameAs 

link connecting two smaller equivalence classes in such a large class creates a huge 

explosion of false links. Assuming two equivalence classes each having 10 URIs, one 

false link created by SLINT+ connecting the two classes may generate up to 100 

incorrect links (all pairwise combinations developing between the two classes: 𝐶2
20- 

2 ∙ 𝐶2
10). Considering the high precision for 8,020 links but the low precision for all 

transitive links, the real, overall precision achieved by SLINT+ for a threshold of 0.95 

is 
8,020∗0.91+2,055∗0.20

8,020+2,055
= 0.77 and thus quite comparable to LINDA and not accepta-

ble of connecting type URIs in LOD.  

Not knowing all owl:sameAs links for all entities from our data set it is impossible 

to accurately measure recall. However, if we take into consideration that 25,113 

entities were found with a precision of 0.67 and that an additional 14,879 were found 
with a precision of 0.02, we can assume that the data set should have, when correctly 

interlinked, at least 17,123 links (25,113 * 0.67 + 14,879 * 0.02). Assuming that 8,020 

* 0.91 + 2,055 * 0.20 = 7,709 correct links have been discovered for a threshold of 

0.95, this translates into a recall of at best 0.45. This is much lower than the results 

observed on the OAEI benchmark. We observed similar results for other instance 

matching systems too. In Table 10 we present the precision values obtained by 

PARIS [115], another leading instance matching system. 
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Table 9: Number of equivalence classes per number of URIs in the equivalence class, 
for various similarity thresholds. 

#URIs per class # equivalence classes 

θ=0.95 θ=0.75 θ=0.5 θ=0.25 

2 4,168 5,054 7,008 8,180 

3 529 1,160 2,023 2,781 

4 54 222 315 648 

5 15 110 136 303 

6 7 49 67 167 

7 1 24 38 89 

8 4 22 22 52 

9 5 12 17 43 

10 2 11 12 27 

11 2 4 8 13 

12 2 8 9 9 

13 0 1 3 12 

14 0 3 1 7 

15 1 6 4 6 

16 1 1 3 5 

17 0 1 3 7 

18 1 1 2 4 

19 1 1 2 1 

20 1 2 2 4 

21 1 1 2 2 

22 0 1 2 3 

23 1 1 1 2 

24 0 0 2 1 

27 0 1 0 1 

29 0 1 1 1 

31 0 0 0 1 

38 0 0 1 1 
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To sum up, on first sight, the results for today’s instance matching systems seem 

quite impressive. But if the problem of transitivity is not properly considered, even 

for very high similarity thresholds the precision on links obtained through transitivity 

is catastrophic. This has a high impact on the overall quality of the created links, 

making instance matching useless for LOD type alignment purposes as well as entity 

duplicate detection. 

2.4. Conclusions 

Entity search on structured data is a trivial task. LOD and schema.org are the prime 

candidates that come to mind when it comes to structured Web data. However, 

some particularities of these data sources make entity centric search on LOD and 

schema.org more difficult than anticipated:  

 For LOD, access to entity data is provided through URIs. Unfortunately, 
URIs are not unique within the LOD. For this reason it is difficult to retrieve 

entities from the LOD as a hole. Our analysis on the example of entity type 

queries shows that without proper type alignment, for a given type, the user 

ultimately receives but a small fraction of the entities. Assuming that type 

alignment is possible for example through ontology alignment or type wit-

nesses, another problem is reconciliation the resulting entities: coming from 

different data sources which may overlap in terms of entities, duplicates rep-

resented with different URIs may exist. They have to be detected and elimi-

nated. Unfortunately, although it was recently claimed to be a solved prob-

lem, instance matching still faces major issues in that respect.  

 Schema.org did not gain any traction. Machine learning techniques have long 
been used to compensate the lack of human input in tasks like automatic text 

classification. One could imagine a solution to extend the coverage of 

schema.org by learning from existing annotations. However, our experi-

ments show that human input is still required in order to provide for a higher 

level of quality. Furthermore, like in the case of LOD, in order to put to-

gether a set of resulting entities, one has to eliminate duplicates. But without 

Table 10: The number of owl:sameAs links created with PARIS, the corresponding pre-

cision value, and the links obtained by computing the transitive closure of links created 

by PARIS, respectively. 

θ 

 

PARIS clTR 

#sameAs Prec. #sameAs Prec. 

0.95 24,771 0.93 2,194 0.54 

0.75 29,098 0.84 3,401 0.54 

0.50 34,077 0.78 5,427 0.38 

0.25 36,423 0.64 6,523 0.25 
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reliable instance matching, this task represents an important source of er-

rors. 

In consequence, until LOD is more strongly interlinked and the various vocabu-

laries are better integrated, entity search on LOD should be limited to single data 

stores. Since data stores offer internal data consistency (URIs should be unique 

within one data store), and types are curated manually, this will result in high preci-

sion (ideally 100%), but probably low recall results for type based search. Schema.org 

could be interesting for entity search, if it reaches web scale. As we have shown in 

[56] machine learning is quite useful in that respect if used together with user feed-

back. But even so, the use of schema.org will always be hindered by instance match-

ing issues that are even more difficult to solve that in the case of LOD because there 

are no owl:sameAs links and multiple instances of the same entity are not connected 

in any way between different Web sites.  

Overall, we believe the approach followed by the Knowledge Vault to integrate 

data from all available Web sources including unstructured data to build a Web-scale 

knowledge base is a more promising approach. Each fact is associated with confi-
dence values, allowing for questionable facts to be manually checked in a crowd-

source fashion. Building on state-of-the-art OpenIE systems, in this thesis we follow 

a similar approach to prepare Web data for entity-centric search. A detailed de-

scription of the system is presented in Chapter 5.
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Entity Search Based on the Entity Type 

Entity type queries are the most basic form of entity-centric search. The users state 

the entity kind and the system has to retrieve all entities of the given type. Running 

such queries on structured data is trivial. Initiatives like the LOD or schema.org aim 

to provide for a machine readable source of structured information that captures as 

much Web data as possible. But as we have seen in the previous chapter, both ap-

proaches have shortcomings. Furthermore, they both rely on ontologies to struc-

ture data. At the top level, their ontologies have few, abstract and all-encompassing 

entity types. For instance the top level in the DBpedia and the schema.org ontologies 

comprises just one entity type: ‘Thing’. Each type is narrowed down in hierarchical 

fashion (see Fig. 14) to a more detailed entity type in the next level. According to 
the theory established by Eleanor Rosch [81, 103–106], one can distinguish between 

three concept levels and therefore three entity types: the superordinate level or the 

level of categories of entities e.g. ‘furniture’, ‘vehicle’, ‘communication device’; the 

basic level e.g. ‘chair’, ‘car’, ‘cell phone’; and the subordinate level further specifying 

the categories of entities below the basic level e.g. ‘kitchen chair’, ‘sports car’ or 

‘business cell phone’. Connecting this hierarchical representation to the principle of 

economy and informativeness trade off introduced by Loyd K. Komatsu in [69] for 

concept hierarchies, there are few entity types at the superordinate level (increasing 

economy). They are general entity types that group together entities having few 

things in common (decreasing informativeness). At the subordinate level, entities of 

the same type show similar characteristics, (increased informativeness). However, 

at this level there are much more entity types (decreasing economy).  

Indeed, if we pay closer attention to the hierarchical structure of schemata on 

schema.org, the 406 schemata are organized on 5 levels. About 84% of the schemata 

(levels 4 and 5 in Fig. 15) are subordinate entity types. They comprise very specific 

 

Fig. 14. Excerpt from the schema.org hierarchy. 
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entity types like ‘medical scholarly article’ or ‘day spa’. But despite the fact that 

schema.org is strongly oriented towards structuring product data for enabling prod-

uct aware rich snippets, its structure provides no subordinate level entity types for 

any of our previous examples i.e. ‘kitchen chair’, ‘sports car’ or ‘business cell phone’. 

And this is not an isolated case. The large number of possible subordinate entity 

types, makes it is impossible to include all or most such entity types in the ontology.  

But is there a need to support subordinate entity types? To answer this question, 

in [53] we studied the AOL Web search query logs (comprising logs of all searches 

done by 650,000 AOL users over the course of three months in 2006), with regard 

to our sample domain of cell phones. In particular, we extracted 21,650 cell phone 

relevant entries through the use of regular expressions. After manual inspection we 

classified all queries into six base categories (see Fig. 16). The resulting categories 

deal with: 

 Products: represents about 22% of the queries. It contains queries related 
to brands, product prices, product features, specifications, and types e.g., 

‘Motorola Razr’, ‘cell phone battery’, or ‘cell phone for kids’. 

 Telecom & Pricing Plans: for example ’Verizon cell phones’ or ‘compare 

cell phone plans’. This category represents about 30% of the cell phone 

related queries. 

 Accessories: represents 17% of the queries, and refers to products for cell 
phones e.g., ‘sexy phone wallpaper’ or ‘ringtones’. 

 

Fig. 15. The distribution of schemata from schema.org on hierarchy levels. 

Level 1 Level 4Level 3 Level 5Level 2
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 Phonebook: 13% in size refers to cell phone numbers, or reverse phone-

book lookups, e.g., ‘cell phone number lookup’. 

 Unspecific Queries: about 15% of all queries representing too general que-
ries, usually simply ‘cell phones’. 

 Other: about 3% containing more exotic queries like ‘help finding lost cell 

phone’, or ‘cell phone health risk’. 

Focusing on the category with references to products, we observed that the ma-

jority of queries are either concerned with a specific brand (e.g., ‘Motorola’ or ‘Sony 

Ericson phone’) or the price (e.g., ‘Nokia 5300 price’). Still, the amount of queries 

on subordinate entity types e.g., ‘cell phone for kids’, ‘cell phone for seniors’, ‘busi-

ness cell phone’, ‘fashion cell phone’, ‘camera cell phone’, etc. is about 30% of all 
product queries for the ‘cell phone’ domain. 

To summarize, on one side, the principle of economy and informativeness trade off 

strikes and sources for structured data on the Web can only provide for partial 

coverage of the sheer number of subordinate entity types, but on the other side, 

users do search for such entity types in volumes that cannot be neglected. 

Another relevant finding is that some of the subordinate entity types represent 

simple attribute/value constraints over basic entity types. For instance the entity 

type ‘science fiction movie’ is composed out of the basic type ‘movie’ and the ‘sci-

ence fiction’ genre constraint. If genre information is available, such a type can be 

constructed with the help of the ‘movie’ basic type. But things can get complicated 

pretty fast: such types can span over multiple attributes, without a clear definition 

of the weights of each attribute. For instance, the ‘business’ aspect of a ‘cell phone’ 

as an entity type is most certainly related to technical capabilities like the ‘organ-

izer/calendar’, the ‘email client’, the ‘battery life’ or the ‘qwerty keyboard’. But while 

 

Fig. 16. Types of queries relevant to the ‘cell phone’ domain from the AOL query log. 

Telecom. & Price Plans
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users agree on which cell phones are fit for business use and which not, it is practi-

cally impossible to automatically construct the ‘business cell phone’ entity type from 

a structured data source comprising for instance technical specifications of ‘cell 

phones’ alone. We argue that a more sophisticated method mining entity types from 

both structured and unstructured data from the Web is required for solving this 

problem. In the following section we provide an elaborate description of a system 

that is able to cope even with such difficult entity types. 

3.1. Mining Entity Types from the Web 

In this section we analyze the possibility of using besides structured, also unstruc-

tured data to improve results. The main assumption is that recall can be improved 

by bridging structured data with the massive amount of unstructured data available 

on the Web. Furthermore, this allows for a more flexible approach in terms of un-

known entity types: in the case of subordinate entity types, the problem for LOD 

and schema.org data is that most such types were not present in the underlying 

ontologies or vocabularies. With the integration of unstructured data, we expect 

that such types are also being used and appear in unstructured data.  

Entity-type queries are simple and concise keywords. They bear information that 

is easy to understand for people due to common sense and background knowledge. 

But machines require complicated methods and large amounts of data to mine this 

implicit information from. This is especially important for supporting subordinate 

entity types, where concepts imply additional constraints over a basic entity type. In 

this chapter, we introduced the basic problem of supporting queries on implicit in-

formation on the example of the cell phone domain, where discussion boards regu-

larly refer to flowery subordinate entity types like ‘ideal for social networkers’, ‘per-

fect for fashionistas’, ‘tough as nails’, or ‘multimedia marvels’. But this is a general 

problem in entity centric search: recent results have been observed also in other 

domains like the predominant tagging of explicit media features, in contrast to the 

high number of queries on implicit (usage-based) features in online image reposito-

ries or music stores (see [12]). Therefore, being able to transform implicit infor-

mation needs into explicit terms for querying is generally of vital importance for 

supporting entity type queries. 

The challenge of implicit information needs has been discussed before and is di-

rectly addressed by some retrieval paradigms. However, experiments on real world 

data have shown that classical IR techniques like the vector space retrieval model 

(VSM [108]) and latent semantics (LSI [32]) don’t achieve satisfying results [29]. On 

the other hand, query expansions, i.e. augmenting user queries with relevant seman-
tically related terms, show promising results, if only the expansion terms are chosen 

in a sophisticated manner. While first approaches only focused on synonymy and 

term disambiguation, today, domain knowledge is incorporated. Expansion algo-

rithms range from using simple lexical databases [125] like WordNet  [84], ex-

isting domain ontologies [113] like the MeSH controlled vocabulary (a thesaurus 
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used for indexing medicine related articles), to extracting language models e.g., prob-

abilistic models based on term co-occurrence [97] directly from text.  

The main challenge here to find those terms implied by the query entity type, 

which are appropriate for expansion. For instance, following on our running example 

from the domain of cell phones, a clear semantic connection between the ‘business 

cell phone’ concept and technical features like ‘email clients’, ‘organizer’, ‘calendar’, 

‘notepad’ and ‘file browser’ could be established. Revisited in this section in detail, 

in [53] (extended in [54]) we present a novel query expansion method, which is able 

to solve the expansion problem for entity centric search based on entity types. With 

recall in mind, at its core, our approach builds on a self-supervised learning technique 

using both structured and unstructured data. But before going into more detail, in 

the following section we will lay the foundation of our approach providing a formal 

description of the problem at hand.  

3.1.1. Task Definition 

We rely on shallow semantics, a few simple, yet suitable, heuristics taking advantage 

of entity-related data available online in both structured and unstructured form. By 

unstructured data we mean entity related documents on the Web. In the best case 

these should be articles describing one entity each. For structured data sources we 

already met LOD and schema.org. The plan is to connect structured and unstruc-

tured data, for a complete view of entities, to ultimately boost recall. But, connecting 

linked data to Web documents, a process similar to the approach of matching sche-

mata to pieces of text is, as we have shown in Section 2.2, an error prone process. 

Introducing errors at such an early stage, in the source data, would have severe 

impact on the end results and has to be avoided at all costs. Regarding schema.org, 

if it would be adopted on large scale, we wouldn’t have this problem in the first 

place. Unfortunately, as previously shown, there is not too much annotated data.  

However, looking at Web pages presenting various entities like for instance the 

description of some product, a cell phone, one can observe that more often than 

not, tables comprising information in structured form complement the textual de-

scription of the entities. Such tables are easy to recognize due to the HTML tag 

making it easy to extract. Web scale table extraction systems like the one presented 

in [24] confirm the success of this approach and large Web tables’ corpora, com-

prising more than 147 million tables, are already available for public access39. In con-

sequence, for this approach, we consider unstructured data in form of some textual 

description of an entity and structured data in form of tables corresponding to the 

same entity. The entities represent in this way the common ground between its 

unstructured and structured data.  

                                            

39 http://webdatacommons.org/webtables/ 



48 Entity Search Based on the Entity Type  

The task at hand is to support subordinate entity type search with a focus on 

recall, while keeping precision under control. Information in subordinate entity type 

search is implied through concepts. Although many real world queries use concep-

tual information, it is difficult to define what a concept actually is, and how it can be 

reliably spotted in queries. Psychology defines concepts as a cognitive unit of mean-

ing, typically associated with a single meaning of a term [87]. Any term can therefore 

be the representation of a concept. The major importance of specific concepts in 

practical life comes with the generally consensual notions humans connect with 

some concepts: each concept carries connotations that immediately create an intu-

ition about what is meant, and thus enable efficient communication. For example 

asking about a ‘cell phone for kids’ will immediately bring up ideas like robustness, 

ease of use, fun colors, security features, and parental control pricing plans. Explicitly 

adding exactly these connotations to a query is what makes applying a semantic 

query expansion technique so promising for good retrieval quality. However, lacking 

a clear definition, detecting conceptual features in queries is a serious problem. 

Whereas for explicit features like ‘weight’, ‘size‘, or ‘display type’, new developments 
in declarative query languages already allow a mapping of previously unknown attrib-

utes to actually existing attributes in the underlying data (e.g., using malleable sche-

mas [135]), the recognition of implicit conceptual features40 like ‘for kids’, ‘portability’ 

or ‘design’ is much harder. Still, even if implicit conceptual features cannot be clearly 

defined and the exact disambiguation is beyond the scope of this thesis, detecting 

queries on entity types with implicit conceptual features is important for dealing with 

subordinate entity types. 

With structured and unstructured data in mind, implicit features obviously can 

never be attribute names of structured data (otherwise they are simple, explicit 

constraints on entity types like ‘science fiction movie’). Also in the respective set of 

values they should rarely occur for the same reason. Similarly, in unstructured text 

documents an implicit concept should occur not too often, either. But since texts 

are the usual way to communicate connotations and tie concepts to entities, any 

important implicit concept definitely should occur at least sometimes. In the follow-

ing we consider that any noun (<N>) and nominal phrase (<NP>) from the query, 

is an implicit conceptual feature if it complies with Observation 1. 

Observation 1: Implicit Conceptual Feature 

Let x be any query term, S be the collection of structured data, fS(x) be the per-

centage of entities for which x occurs in values of structured data, D the set of 

documents presenting entities and f
D
(x) the percentage of documents grouped by 

entities explicitly mentioning x. 

                                            

40 We call such features implicit conceptual features because their main merit is that of implying and transmitting 

information to the user. It is exactly this implied information (product features in our running example), which 

has to be mined and made explicit to reach the relevant entities. 
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An implicit conceptual feature q is any query term for which 0 ≤ fS(q) ≤ r and s ≤ 
f
D
(q) ≤ t, where r, s and t are domain specific parameters. 

For our cell phone example and the later experiments, we tried different values 

for r, s, and t. We found that occurrences under 5% in structured data and occur-

rences in between 2% and 10% of unstructured reviews are sufficient for detecting 

most implicit conceptual features without generating too many false positives. These 

parameters are collection/domain-specific, minor adjustments being necessary for 

other data collections and domains. Such adjustments may be for example per-

formed on the run, by manually inspecting frequently posed queries from the query 

log. 

Entity-related data available online comprises both structured and unstructured 

data. This only seems to complicate the problem to solve. But for our retrieval task 

this is not a problem, but rather a feature. This is on one hand because most con-

cepts will only be explicitly tied to entities in unstructured texts, thus descriptive 

vocabularies can be derived by co-occurrence analysis. But also because many con-

cepts are to some degree affected by certain structural characteristics, thus the sta-

tistical analysis and exploitation of value distributions can point to similar entities 

(e.g., ‘portable’ items will definitely show a bias towards smaller sizes and lighter 

weight). In fact, starting with a seed vocabulary for some relevant entities, and learn-

ing their structured characteristics to find similar entities, which in turn are used to 

expand the vocabulary and learn even more about the structural bias, will lead to a 

boosting like, cyclic improvement of a model that subsequently can be used for ef-

fective querying. 

In summary, for implementing the query expansion of some initial implicit query 

term our approach requires the extraction of terms relevant to the intended con-

cept from the underlying data, and thus has to bridge the gap between structured 

and unstructured information. The retrieval task can be formalized as follows: 

Problem Statement: Query Expansion for Implicit Features 

Given: A relational database S containing data with respect to entities P
1
, ..., P

N
. 

For each entity P
i
, there also are text documents D

i,1
, ..., D

i,n(i) describing Pi. 

Task: Given a user query Q containing an implicit conceptual feature q, derive an 

expanded query Q’:= q ∪ {q
1
, q

2
, ..., q

k
}, where q

1
, q

2
, ..., q

k are terms from S and D 

which explicitly describe q (with corresponding weights w
1
, ..., w

k
). 

3.1.2. The Query Expansion Process 

The problem of querying for implicit conceptual features is typically solved by using 

a query expansion technique. The key task however, is the selection of the right 

terms for expanding the query. An intuitive approach would be to consider for the 

expansion all the terms occurring together with the queried concept in the entity 

data. But the number of such terms is quite high, and although the query expanded 
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in this manner leads to high recall, the precision is catastrophic with almost any 

product qualifying as a result. In consequence, to avoid such behavior, we first 

choose a set of candidates that appear together with the query in entity data, then 

we calculate the weight of each candidate term based on a function similar to the 

term co-occurrence and finally we select only those terms with the highest weights. 

Choosing the Candidate Terms for Query Expansion 

Each entity is described through one or more text documents and one or more 

Web tables. Of course any term appearing in documents or the tables could be of 

interest for the expansion. But particularly in the case of the documents, it’s obvious 

that many of the terms have no relation with the query. Actually, in the case of our 

‘business cell phone’ example, concepts mostly relate to some product features. 

Thus any term expressing a feature and co-occurring with the queried concept in 

the entity data is considered a candidate for the query expansion. Two steps have 

to be performed for choosing the candidate terms: first, select the query relevant entity 

data (data in which the queried concept appears) and second extract the entity features 

from the selected data. 

a) Selecting the query relevant entity data. A document is likely to be relevant if 

the query is mentioned in it. But not the same can be said about the structured data. 

For products, we found numerous cases where a product manufacturer would in-

clude some task based concept in the product name, model or series, although the 

product is not a good candidate for the concept. However, if the query is explicitly 

mentioned in a document, then the technical specification of the corresponding 

product is also relevant with respect to the query.  

The process of selecting query relevant data works as follows: documents con-

taining the query are selected and considered relevant. Then the entities described 

by those documents are selected as well together with the corresponding structured 

data. This way, relevant documents, entities and structured data are selected. In a 

second pass, in a boosting fashion, unstructured data being similar (by means of clas-

sic string similarity functions, specified later) to documents already found as relevant, 

are also added to group in transitive fashion along with the corresponding entities 

and their structured data. All data is separated this way in two classes: class c rep-

resenting data - documents (Dc) and tuples from the structured data (Sc) - being 

highly relevant with respect to the query and 𝑐̅  representing the remainder of the 
data. In technical terms, in order to distinguish between relevant and irrelevant doc-

uments we represent each document as a vector according to the vector space 

model: terms of all documents represent axes of the space and projections of doc-

uments on each axis are computed with the help of the Term Frequency-Inverse 

Document Frequency (TF-IDF) measure [44]. The similarity between two docu-

ments is computed according to the well-known cosine metric (further denoted as 

cos) [108].  

This being said, we can proceed to elaborating on Dc and Sc: 
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 𝐷𝑐 = {𝑑𝑖|𝑑𝑖 ∈ 𝐷 ∧ ∃𝑑𝑗 ∈ 𝐷′
𝑐 s. t. 𝑐𝑜𝑠( 𝑑𝑖, 𝑑𝑗) ≥ 𝜃} (8)  

where 𝜃 is a collection specific parameter regulating the precision of c, and cos rep-

resents the cosine similarity measure; 

 𝐷′𝑐 = {𝑑𝑗|𝑑𝑗 ∈ 𝐷 ∧ 𝑑𝑗  contains 𝑞} (9)  

𝑃𝑐 is the set of entities whose textual descriptions have been found as relevant to 

the query and 𝑆𝑐 are the corresponding structured data: 

 𝑃𝑐 = {𝑝𝑖|𝑝𝑖 ∈ 𝑃 ∧ ∃𝑑 ∈ 𝐷𝑐  𝑤𝑖𝑡ℎ 𝑑 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑖𝑛𝑔 𝑝𝑖} (10) 

 𝑆𝑐 = {𝑠𝑖|𝑠𝑖 ∈ 𝑆 ∧ ∃𝑝𝑖 ∈ 𝑃𝑐  s. t. 𝑠𝑖 𝑡𝑒𝑐ℎ. 𝑠𝑝𝑒𝑐𝑠. 𝑜𝑓 𝑝𝑖} (11) 

Accordingly 𝑐̅ comprises 𝐷𝑐̅ = 𝐷 − 𝐷𝑐 and 𝑆𝑐̅ = 𝑆 −  𝑆𝑐. 

b) Extracting entity features. In the case of unstructured data product features 

are usually represented through nouns and nominal phrases [60]. Some adjectives 

can also imply product features e.g., ‘heavy’ may imply the ‘weight’, but these are 

rather infrequent cases. Consequently, in order to extract the candidate terms, we 

applied standard natural language processing (NLP) techniques like part-of-speech 

tagging (POS) and chunking. Word inflections have been eliminated by means of 

stemming.  

In structured data, entities are described through table attributes and the corre-

sponding values. While all attributes are entity features, from the values we only 

considered the ones corresponding to categorical attributes. Obviously all values in 

define a certain aspect of the entity but the categorical attributes bear most of the 

differentiating force. Typical examples of such values are ‘nokia’, ‘apple’, etc., for the 

‘brand’ attribute, or ’candy bar’, ‘clam shell’ for the ‘form factor’ attribute. Numerical 

values like in the case of the ‘price’ or ‘weight’, have dynamically been reduced to 

the ordinal values ‘low’, ‘average’ and ‘high’. We established the ‘average’ interval of 

the values for an attribute as being between [average of the values – one standard 

deviation, and average of the values + one standard deviation]. We then set the ‘low’ 

and ‘high’ intervals accordingly. Although they are not candidate terms, and will not 

be included amongst the query expansion terms, these ordinal values allow us to 

establish the weight of their corresponding attribute. In this manner we can for ex-

ample find out that the ‘weight’ is an important factor since most of the devices 

which are explicitly relevant toward the conceptual query, fall into just one of these 

intervals (say ‘low weight’), while the remaining products are spread amongst, or fall 

into the other two intervals. 

Finally, after establishing what entity features and query relevant data stand for, we 

can formally define the set of candidate terms: 

Definition 1: Candidate Terms (CT) 

Let CTD and CTS be the set of query expansion candidate terms from documents 
and structured data respectively, with: 
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𝐶𝑇𝐷 = {𝑡𝑖|(𝑃𝑂𝑆(𝑡𝑖) =< 𝑁 > ∨ 𝑃𝑂𝑆(𝑡𝑖) =< 𝑁𝑃 >) ∧ (𝑡𝑖 ⊆ 𝑑, with 𝑑 ∈ 𝐷𝑐)} and 

𝐶𝑇𝑆 = {𝑡𝑖|𝑡𝑖 𝑡𝑎𝑏𝑙𝑒 𝑎𝑡𝑡𝑟. 𝑓𝑟𝑜𝑚 𝑆}  ∪ {𝑣𝑡𝑖
|(∃𝑣𝑡𝑖

 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑡𝑡𝑟. 𝑡𝑖  𝑖𝑛 𝑆𝑐) ∧   

             ∧ (𝑡𝑖 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑎𝑡𝑡𝑟. )} 

where, POS (ti) represents the part of speech of term ti, and <N> and <NP>  tags 

represent the noun and respectively nominal phrase parts of speech. 

We define the set of candidate terms as: 𝐶𝑇 = 𝐶𝑇𝐷 ∪ 𝐶𝑇𝑆. 

Calculating the Weight of Candidate Terms 

Associating the candidate terms with the right weights is crucial for the entire pro-

cess. The weight of a term must reflect the term’s contribution to describing the 

queried concept. We estimate the weight of a candidate term by relying on a docu-

ment classification approach introduced in [131]. The basic idea is to give higher 

weight to candidate terms appearing quite often in data from c and not that often in 

data from 𝑐̅.  

NB: For the candidate terms which were extracted from structured data, the weight 

of an attribute is calculated by considering also the corresponding attribute values. 

cti is being extended in this case to the attribute-value pair. To clarify, the weight of 

the ‘price’ attribute, which may be selected as a candidate term, will be calculated 

as the maximum out of three weights, one for ‘low price’ one for ‘average price’ and 

one for ‘high price’. Of course in the case of numerical attributes, this is only possible 

if the values have previously been transformed to ordinals based on their average 

values and standard deviation (as previously discussed in this section).  

The key factor in the weighting function is that the weight of each term is normal-

ized with respect to typical terms (the most frequent entity features) from both c 

Definition 2: Weighting Function (W) 

Let 𝑐𝑡𝑖 be any candidate term from the candidate list CT. 𝑛𝑐(𝑐𝑡𝑖) and 𝑛𝑐̅(𝑐𝑡𝑖) 

represent the number of documents (if 𝑐𝑡𝑖 was extracted from unstructured data) 

or tuples (if 𝑐𝑡𝑖 was extracted from structured data) that contain 𝑐𝑡𝑖 from c and 

respectively 𝑐̅.  

The weight of 𝑐𝑡𝑖 , denoted 𝑊(𝑐𝑡𝑖) is estimated by calculating the difference 

between the normalized frequencies of 𝑐𝑡𝑖 in c and  𝑐̅: 

 𝑊(𝑐𝑡𝑖) =
𝑛𝑐(𝑐𝑡𝑖) −  𝑚𝑖𝑛𝑐

𝑚𝑎𝑥𝑐 −  𝑚𝑖𝑛𝑐
−

𝑛𝑐̅(𝑐𝑡𝑖) − 𝑚𝑖𝑛𝑐̅

𝑚𝑎𝑥𝑐̅ − 𝑚𝑖𝑛𝑐̅
, (12)  

where the components of the normalizing factors 𝑚𝑎𝑥𝑐 and 𝑚𝑖𝑛𝑐 are the number 
of documents, or by case tuples, containing the most frequent and respectively 

least frequent entity feature from 𝑐. 𝑚𝑎𝑥𝑐̅ and 𝑚𝑖𝑛𝑐̅ are analogously defined, with 

the most frequent and respectively least frequent feature from 𝑐̅. 
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and 𝑐̅. This is critical because |𝑐| ≪ |𝑐̅|. In this way important candidate terms with 
implicit connection to the queried concept aren’t severely penalized despite appear-

ing also in 𝑐̅.  

But since we have split the data into two classes why not apply classical supervised 

machine learning techniques on this automatically generated training set and train a 

classifier? As argued in [43] and as shown later on in the evaluation section, classical 

IR techniques like VSM are not able to retrieve many of the eligible products. There-

fore both 𝐷𝑐̅ and 𝑆𝑐̅ contain data which is implicitly relevant regarding the query. 

For this reason, classifiers like SVM or decision trees are not an option (see [131] 

for further details). Furthermore, typical weight measures associated with discrimi-

native feature weighting like term co-occurrence, mutual information or information 

gain tend to excessively penalize important terms due to the noisy initial classifica-

tion.  

Selecting the Expansion Terms 

Having calculated the weight of all candidate terms we are now ready to choose the 

most appropriate terms for query expansion. Taking a closer look at the weighting 

function, the candidate terms are associated values between [-1; 1]. As intuitively 

expected, there are few very week candidate terms, with weights close to -1, many 

general terms, with similar normalized appearances in c and 𝑐̅ and weights close to 

0, and some strong candidate terms with values closer to 1. For the query expansion, 

we chose the candidates with the highest weights according to the ‘three-sigma rule’ 

[95] (average plus three standard deviations). 

3.1.3. Evaluation 

Evaluation methodology 

Query expansion is a classical method for improving the retrieval performance of IR 

techniques. For evaluating purposes, we compared results with the well-known VSM 

featuring TF-IDF with cosine similarity. LSI is a promising technique for indexing and 

retrieving documents in a low-dimensional concept space by making use of semantic 

connections between terms. We address queries containing implicit concepts and 

as such we considered LSI is an important reference for our tests. Since the pro-

posed approach is a query expansion technique, we also compared our method 

against Stephen Robertson’s best match (BM25) [102] with Kullback-Leibler Diver-

gence (KLD) [72] as probabilistic term weighting scheme, a widely accepted ap-

proach as being the standard method for weighting terms in query expansion. As 

metric we relied on the well-known Precision/Recall curves [123] emphasizing on 

precision/recall ratios at k (with k iterated from 1 to the number of all returned 

entities).  

The evaluation process was the following: for each conceptual query, candidate 
terms for expansion were extracted according to Definition 1. All candidates were 

weighted with the function presented in Definition 2 and only those terms having 
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weights greater than average plus three standard deviations were considered for the 

query expansion. With the query in expanded form, all products were ranked based 

on their relevance to the expanded query. The relevance of a product was computed 

as the sum of weights of the query expansion terms appearing in the unstructured 

data associated with the entity. As a gold standard we had domain experts tagging 

products with respect to prevalent concepts in the respective domain.  

Evaluation Data 

Consistent with our running example for subordinate entity types, for evaluating the 

query expansion method introduced in the previous section, we rely on product 

data from the field of cell phones. The structured part of the data comprises in this 

case, technical specifications of the products (an example of such data is presented 

in Fig. 17). For the unstructured data, text documents come in more flavors like for 

example editor’s reviews, user reviews or blogs. Analyzing these information 

sources we observed that they offer different perspectives of the products. If edi-

tor’s reviews presented the features and facts in a more objective manner, with 

extensive but field-relevant vocabulary, the user comments were smaller in size, 
concentrated on a reduced number of features, and were strongly influenced by the 

user’s interests and point of view towards the entity. Blogs were even more emo-

tional than user reviews making sentiment analysis an absolute requirement. Senti-

ment analysis however remains very unreliable when the text uses slang, sarcasm, 

emoticons, prolonged letter usage, capitalization, punctuation, etc. For this reason, 

we performed the query expansion process on a collection of 350 products with 

the corresponding technical specifications and 500 editor’s reviews. The data has 

 

Fig. 17. Structured data table comprising technical specifications for Sony Ericsson Xperia 

X10 extracted from phonearena.com. 
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been crawled from phonearena.com, a top Web publication in the field.  

To test the quality of the expansion terms for different queries, we built a gold 

standard, comprising 50 products with corresponding technical specifications and 

200 user reviews crawled from CNET41. We chose to evaluate on the more chal-

lenging user reviews to question the suitability of the expansion terms for non-ex-

pert typical user language. These products were manually labeled by experts in the 

field, as either being relevant or not with respect to three most important42 subor-

dinate entity types: ‘business cell phone’, ‘social networking cell phone’ and ‘camera 

cell phone’ based on their user reviews and technical specifications. We chose these 

features to cover different levels of clarity regarding the meaning of the query terms: 

‘business’ represents ambiguous, classical concepts; ‘social networking’ stands for 

emerging concepts with well-defined use and finally ‘camera’ represents clear cut 

technical characteristics. 

Discussion of the Results 

Baseline: first we tested the base line methods i.e. VSM with TF-IDF, LSI and BM25 

with the available data. To our surprise, LSI always obtained poor results even com-
pared to VSM (see Fig. 18). Varying the number of dimensions for LSI (we evaluated 

with 10, 20 and 100 dimensions which according to [32] typically provide for good 

results) for all our test scenarios, didn’t bring any improvements. The reason for this 

behavior is the small amount of data available for training the LSI. The collection of 

                                            

41 http://www.cnet.com - a leading technology oriented Web site offering large amounts of both editor and user 

reviews for different products 

42 According to field experts, article presented on msn.com at http://tech.uk.msn.com/features/photos.aspx?cp-

documentid=149711759 

 

Fig. 18. ‘Business Cell Phone’ – LSI vs. VSM vs. BM25. 
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500 documents seems rather limited for the latent semantics needs. Editor’s reviews 

are rather scarce resource, so we then increased the document base for LSI to 6000 

documents, supplementing with user reviews. However, user generated documents 

do not offer similar advantages as editor’s reviews do. Even with this large collection, 

LSI is still unable to achieve notable results. Collecting editor’s reviews over long 

periods of time is also not a solution. The cell phone domain is a great example in 

showing how fast concepts evolve with time.  

The TF-IDF based VSM retrieved all the products for which the conceptual query 

is explicitly mentioned in the description of products. This provided for quite good 

precision for low recall rates. But the precision deteriorated heavily in the case of 

products for which the query concept is only implied in the description. In the case 

of conceptual query ‘business’ presented in Fig. 18, VSM achieved good precision up 

to a recall of about 40%. The behavior of VSM becomes clear after taking a closer 

look at the data: 43% of the reviews the experts labeled as relevant towards the 

‘business’ concept, explicitly mentioned the conceptual feature. VSM identified with 

a high precision exactly these documents. It is interesting to notice that there was a 
drop in precision at a recall of about 15%. The reason for this drop is that the word 

‘business’ appeared in the description of some non-business products, e.g., “allows 

you to locate businesses nearby” tricking VSM into retrieving the product as rele-

vant.  

The BM25 ranking model assigns weights to all terms according to the KLD prob-

abilistic weighting scheme. Only terms having the KLD weight above a certain 

threshold are used for expansion. In order to establish this threshold, we conducted 

a series of tests. Expanding the query with terms weighting more than the average 

KLD weight of all terms, provided the best results in terms of precision and recall 

for BM25. For the case presented in Fig. 18, BM25 with KLD identified 192 expan-

sion terms out of which the top 10 terms were: ‘business’, ‘bold’, ‘nexus’, ‘pure’, 

‘webo’, ‘she’, ‘exchange’, ‘control’, ‘offer’ and  ‘storm’. In terms of precision and 

recall, BM25 achieved less precision than VSM in the low recall area (up to 40% 

recall), but compensated more than enough by obtaining pretty high precision (about 

50%) for recall rates as high as 80%. Since LSI doesn’t even come close to the results 

of the other two techniques, in any experiment we performed, in the following 

graphs we will display only the more successful VSM and BM25.  

Also worth mentioning is the ‘saw-tooth shape’ effect [19], common in preci-

sion/recall curves.  

The query expansion technique: our query expansion comprises terms which have or-

thogonally been extracted from structured and unstructured data. But is using both 

of the underlying sources boosting recall or is using structured data just as good? 

To answer this question, we evaluated the results obtained by expanding the query 

with terms originating from structured data only, then from unstructured data only, 

and then from both data sources. In Table 11 we present the query expansion terms 
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extracted from the technical specifications, along with the top 10 out of a total of 

153 terms extracted from the unstructured data. 

As shown in Fig. 19, expanding the query only on the technical specifications 

(Structured data Query Expansion, further denoted as SQE), leads to poor results 

in terms of precision and recall. The same test performed with the expansion terms 

from the unstructured data (Unstructured data Query Expansion, further denoted 
as UQE) already delivers much better results. Finally, since the structured and un-

structured data cover different aspects of products, by considering both data 

sources, Conceptual Query Expansion (further denoted as CQE) achieved even bet-

ter results. Not only did the precision for low recall values drastically improve, but 

 

Fig. 19. ‘Business Cell Phone’ – CQE vs. UQE vs. SQE. 
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Table 11: Query expansion terms. 

Structured Data Unstructured data 

Phone type Windows mobile 

Smart phone Business 

Phonebook features Work 

Picture id Letters 

Multiple numbers Notes 

Phonebook capacity Fileds 

 Qwerty keyboard 

 Navigation 

 Outlook 

 Task 
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it was also maintained above 50% up to a recall above 90%. Also worth mentioning 

is the fact that at 100% recall, precision was of approximately 40%. In fact, CQE has 

consistently achieved better results than considering only structured or unstruc-

tured data alone for all experiments. This confirms our assumption that bridging 

structured and unstructured data will have a positive effect on the results. Taking 

this into consideration, for the subsequent experiments we present the results for 

CQE only.  

Comparing the results to the baseline methods (Fig. 20), besides some marginal 

cases in low recall conditions, VSM was always dominated by CQE. On the other 

hand, BM25 achieved results that were quite comparable with our approach. Be-

tween the recall rates of 30% to 60% (middle area of the recall range) it even man-

aged to obtain higher precision. However, for the low (up to 30%) and high (above 

80%) recall areas, CQE was superior. Taking a closer look at the results we observed 

that the behavior of BM25 was much more similar to the results we obtained by 

expanding the query based only on the unstructured data (UQE in Fig. 19). By con-

sidering also the structured data, the precision is then improved in low and high 
recall areas, at the cost of precision in the middle recall area.  

The positive behavior of BM25 confirms that query expansion is indeed a suitable 

and most powerful technique for dealing with more sophisticated queries as is the 

case for concepts. However, as we will present in the following section, BM25 

doesn’t always achieve such good results. 

The ‘social networking cell phone’ query is an exceptional example of how the 

syntactical representation of some concepts can be misleading. From a linguistic per-

spective this type is represented by a nominal phrase with strong syntactic relation 

 

Fig. 20. ‘Business Cell Phone’ – CQE vs. VSM vs. BM25. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

CQE

BM25

VSM



3.1 Mining Entity Types from the Web 59  

 

to the ‘networking/network’ technical feature. This relation however doesn’t reflect 

human perception. For instance, the concept of ‘social networking’ and the ‘UMTS 

network’ technical specification show no semantic connection whatsoever. In such 

cases, both VSM and BM25 have a very difficult time in providing for correct results 

(Fig. 21). In fact looking into the behavior of both methods, we observed a very 

powerful topic drift towards the ‘networking’ features of products.  

Since the number of such conceptual queries relying on nominal phrase constructs 

is not neglectable (e.g., ‘tough as nails’, ‘packed with value’, ‘multimedia marvel’ to 

mention just a few) we decided to take a closer look at the ‘social networking’ case. 

In the case of VSM, every product containing the terms ‘social’ or ‘networking’ in its 

textual description was considered relevant. Of course, products for which both 

terms co-occur in the textual description were ranked higher. This way VSM was 

able to identify the explicit cases, achieving some precision for the top 20% of the 

entities. Unfortunately, the remainder of the entities was ranked based on their 

mentioning of the term ‘networking’. This led to catastrophic precision. 

BM25 was also not able to provide notable results. Similar to the case of VSM, 
most of the products were considered relevant, due to their description containing 

the term ‘networking’. As a consequence, the query expansion terms seemed to 

have been selected randomly. Besides ‘social’ and ‘networking’, other top expansion 

terms were ‘nexus’, ‘hero’, ‘release’, ‘widget’ and ‘bluetooth’.  

In the case of CQE first, the set of documents containing the complete concept 

were selected. In a boosting fashion, this set of documents was expanded to include 

all other documents being highly similar to them. At this stage however the topic 

drift doesn’t take place for two reasons: on the one side documents selected in the 

 

Fig. 21. ‘Social Networking Cell Phone’ – CQE vs. VSM vs. BM25. 
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first stage are relevant since they include the complete concept as a noun phrase 

and not a part of it; on the other side the highly selective threshold 𝜃 (from Eq. 8) 
for the similarity between selected documents and the rest, prohibits from expand-

ing the relevant document base with product descriptions which are only vaguely 

similar to relevant documents. 

As shown in Fig. 21, our results were, in this tricky case indeed much better than 

the ones achieved by VSM and BM25. The curve is also different from the ‘business’ 

concept. This is due to the fact that more user reviews share the same strength, i.e. 

the recall was improved without notably lowering precision. Actually, it is a conse-

quence of the reduced number of terms selected for query expansion, which char-

acterizes this entity type. 

Finally, inspired by the contradicting terms obtained when considering also the 

‘network’ feature as seed for expansion, the last of our tests, investigated a query 

purely based on a technical feature. The results show that our approach is at the 

present time indeed limited to expanding implicit conceptual features (see Fig. 22). 

The retrieval performance for technical features was merely comparable to VSM 

and BM25. The reason is that technical features are always explicitly mentioned in 

most of the editor reviews, as well as the technical specifications, regardless of the 

product. For example, the ‘camera’ technical feature was present in 80% of the doc-
uments from the collection used for query expansion. This clearly calls for standard 

techniques and our approach cannot offer any additional benefits here.  

Performance results: since query expansion should be conducted in real time, we in-

spected the feasibility of the proposed method also in terms of performance. As 

 

Fig. 22. ‘Camera Cell Phone’ – CQE vs. VSM vs. BM25. 
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expected, the NLP techniques, respectively the chunking process and the POS de-

tector represent important performance killers. Considering a collection of 500 

documents with an average of 1500 words each, the parsing process took about 100 

seconds, which is not acceptable for real-time constraints. By comparison BM25 

needed about 7 seconds to prepare the documents (The preparation includes text 

tokenization, word stemming and building inverted indices). Even if by comparison 

the time of 7 seconds seems quite good, it still doesn’t fulfill real-time expectations.  

Surely by optimizing the implementation of the NLP components or by means of 

parallelization, one could achieve better performance. The solution we propose is a 

system which makes use of the caching principle. Two major components are nec-

essary: an on-line retrieval component which establishes the workflow and performs 

the actual Web search, and one off-line component, which maintains a database of 

entities together with structured and unstructured data. It goes beyond the scope 

of this work, but such a database could easily be put together by applying WebTables 

(the system presented in [24]) to the ClueWeb12 corpus. The off-line component 

also performs NLP tasks on the documents, storing the resulting noun phrases into 
the database. This reduces the computation time of a query expansion model to less 

than 2 seconds on regular hardware (for our tests we used a Core I7 QM with 2.4 

Ghz and 16 GB RAM). Run on the same collection of preprocessed documents, also 

BM25, also needed 2 seconds for query expansion. 

Building further on the caching solution, one could even store the expansion mod-

els (expansion terms and corresponding weights) of the most queried concepts, just 

by periodically inspecting query logs for the most frequent terms complying with 

Observation 1. This reduces the on-line process to ranking new entities based on 

pre-cached models, operation which can be easily executed in real-time.  

3.1.4. State-of-the-Art 

Recently, several search engines have been proposed, which can retrieve entities, 

and especially products even if the query keywords don’t match the product tuples 

in the database [2, 91]. Such engines extract the entities which co-occur with key-

words from the query, in documents on the web. But for concept driven querying 

this approach is likely to suffer from incompleteness since most of the concepts are 

mentioned only in a few documents. The reason is that concepts are rather implied 

by means of related terms. We tackle this problem by further expanding the query 

with terms related to the concept. Such search engines may also suffer from impre-

ciseness of the results. In some of the documents the concept may be present but 

with a different meaning than the one intended by the user. Searching for a ‘business’ 

cell phone, one would also encounter cell phones with a description similar to ‘…it 

has GPS, so you can locate businesses nearby!’. By adding weights to the query ex-

pansion terms we are able to maintain a higher precision even for high recall.  

On the other hand, approaches like [43, 109] follow a query transformation tech-

nique. They translate the user query to a SQL statement to be executed on the 
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product database. The query terms are mapped to predicates on the table attributes. 

This approach is able to tackle queries like ‘small IBM laptop’ with clear meaning 

(map on the size and brand attributes). However complex concepts i.e. ‘business’ 

for which the meaning is rather ambiguous, are associated with a textual predicate 

(‘contains’) over attributes like the product name or description. Again this approach 

suffers from incompleteness and impreciseness. 

Our work is also related to the field of product feature extraction. In this context, 

Hu and Liu [79], introduce a method for considering product features implied 

through adjectives like ‘heavy’, or ‘big’. For this purpose, they use a human labeled 

training set, and generate rules with association rule mining for the features and 

adjective mappings. As in the case of approaches translating the user query to SQL, 

this method is only feasible for queries where a clear-cut mapping between the query 

and table attributes can be performed. This is not the case for conceptual queries. 

Turning to the field of concept extraction, in [127], Weld Hoffman and Wu pro-

pose Kylin, a self-supervised open information extraction technique. Kylin relies on 

information from Wikipedia to learn extractors for concepts. Wikipedia is only used 
as a seed, with the extractors being learned by means of bootstrapping on the Web 

and with the support of WordNet providing for the semantic term relations. But 

the extracted concepts are rather general and cannot cope with the closed vocabu-

lary of product descriptions. 

An interesting approach is presented in [28]. The authors build on the theory of 

Formal Concept Analysis introduced by Rudolph Wille in [42] and caching mecha-

nisms to improve precision and recall for conceptual queries. This approach assumes 

that a shared, domain-specific vocabulary is available and known to the user. How-

ever, in the context of web search, and especially in the case of users who can’t 

express their needs in clear cut feature language, such vocabularies have to be ex-

tracted first. The method we presented in this section is not affected by such prob-

lems as it dynamically extracts the needed vocabulary if enough structured and un-

structured data is available. 

3.2. Conclusions 

In this chapter we have presented an in-depth analysis on the topic of entity type-

based query type for entity-centric search. Such a query type is essential for entity 

retrieval systems as it poses the least cognitive burden on users. One just needs to 

state the entity kind and the system does the rest. Structured data is, if available, 

always the first choice for querying data. Also in the case of entity search, data 

sources like linked data or schema.org represent a great opportunity. The process 
of retrieving entities of a certain type from this data sources is simple enough: the 

user gives an entity type, and the entity search system building on either LOD or 

schema.org or even both, to return all entities of that type.  
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However, there are some problems severely affecting the benefits of the struc-

tured data on the Web for entity-centric search tasks: in the case of linked data, 

each data source may use its own vocabulary. This has the effect that entities and 

types are represented through different URIs in different sources. We observed 

thousands of different URIs for the same type. For this reason, it is difficult to re-

trieve entities based on type from more than one sources. In the case of schema.org, 

our web scale analysis shows that, one year after being launched, with an acceptance 

rate of about 1.5% of the Web pages in ClueWeb12, it didn’t gain traction. Extending 

its coverage with for example machine learning tasks also didn’t produce satisfactory 

results. Another problem that is relevant for entity type-based queries is the support 

for subordinate entity types. As discussed in this chapter, structured data on the Web 

is organized with the help of type hierarchies covering the few superordinate and 

basic entity types. However, there are so many possible subordinate entity types, 

that one can hardly expect to include all of them in this static hierarchy.  

Overall, we believe that at the present time, the contribution of schema.org for 

entity type based search is completely neglectable. Search on structured data on the 
Web is in our opinion limited to one data store search only and to superordinate and 

basic entity types. This has sever effects on the recall and on the number of sup-

ported queries. In the future, we believe that, boosted by manual (crowd-sourced) 

or semi-manual effort to align types and interlink entity instances, linked data will 

play a major role in accessing entities from the Web. This would have positive impact 

in the recall. But we don’t believe that subordinate entity types, will ever be properly 

supported by static vocabularies. Instead, we think that a system that is able to mine 

new, unknown types out of Web data makes more sense. It has been shown times 

and again, that for information retrieval, especially for keywords carrying consider-

able knowledge easy to understand by people, query expansion is the best approach. 

Combined with a self-supervised vocabulary learning technique built on both struc-

tured and unstructured data, such an approach is able to achieve a good tradeoff 

between precision and recall, with about 70% precision for 70% recall. Perfect recall 

can also be reached at the cost of precision (about 40% precision for perfect recall). 

The evaluation presented in this section was focused on the example of cell phones, 

however we have observed similar results on experiments also for the laptops and 

cars domain. This doesn’t allow us to claim the generality of this approach for all 

kind of entities. But at least for entities having abundant structured and unstructured 

data on the Web, like it is the case for consumers’ products, such an approach seems 

promising.  

Reviewing the discussed possibilities, an interesting approach would be to com-

bine the strength of linked data with the flexibility of query expansion. Such a hybrid 

system would benefit from the high precision that isolated data sources can deliver, 

while entity retrieval on query expansion on the Web could cater for better recall 

values and support for ad-hoc types not known to the LOD vocabularies. But in 

order to compile a list of resulting entities, duplicate detection is required, a problem 

that instance matching has yet to master. For this reason, we believe that for the 
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moment, the decision between tapping linked data as a source or querying the Web 

with IR techniques like proposed in this chapter depends on the user requirements. 

If precision on common entity types is required, than tapping Freebase or DBpedia 

is more sensible. If subordinate entity types are the target and a tradeoff between 

precision and recall is acceptable, than our take on query expansion is definitely the 

better choice. 

Of course entity type-based entity search is but one way of searching for entities. 

In the following chapter we continue our quest for approaches enabling entity-cen-

tric search by focusing on the entity properties. Our experience from working with 

both structured and unstructured data, elaborately presented in the course of this 

chapter has shown that both types of data sources are valuable. Combined they 

bring added value to the quality of the results. For this reason, we believe it is im-

portant that solutions for the remaining entity-centric query types be able to work 

with both types of data. In consequence, all other systems presented in the subse-

quent chapters will work on triples of the form (subject, predicate, object). This is 

perfectly aligned with linked data which can directly be used as a data source. For 
unstructured data, we rely on an information extraction system we have developed 

to extract facts from text and store it as a triple based knowledge base. This triple 

extraction system is presented in detail in Chapter 5. 
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Property-based Entity Search 

When searching for a certain type of entity, users have some mental representation 

of “things” they are looking for. Discussed in Chapter 1 in detail, it is common 

knowledge in cognitive psychology (imported in information science [114]) that con-

cepts take the place of thoughts. They are represented through symbols (words, 

sounds, etc.), defined intensionally by a set of properties, and extensionally by a set 

of entities. The goal in entity search on Web data is to easily access the entities that 

correspond to a concept the user thinks of. This concept may easily be expressed 

by its symbol, a word label a subject we have extensively discussed in the previous 

chapter.  

Another way of expressing the user information needs in entity search is through 
the intension: the set of properties prototypically defining the kind of entity that the 

user is searching for. We call such queries property-based entity search queries. But 

there is not much research involving property-based entity search, or any kind of 

data access building on properties for that matter. Recently, there have been some 

proposals to adopt property-based models for accessing data for programming pur-

poses. Sketched first in [110] and extended in [111] the entity type information for 

the newly proposed programming paradigm is given by properties: a type is defined 

by a set of required properties, and every entity with at least those properties is 

part of that type. But besides these visionary publications, not much has been done 

to show how property-based entity access can actually be implemented. So why isn’t 

there more being done in this respect? Are properties too weak for entity search? 

In [70] the authors measure the conditional probability that an entity has a specific 

property set given a certain type, and vice versa. The analysis was performed on the 

BTC’12 data set and it shows that properties bear more information than types. So 

this cannot be the reason.  

Obviously, providing a property based description of the entities to be searched 

for is not as easy as providing types. Maybe the cognitive load put on the user is too 

high to make such queries feasible. After all, our analysis on the acceptance of 

schema.org (presented in Section 2.2 on the example of articles in ClueWeb12) 

shows that people used at best an average of about 4.6 attributes, which is about 

15% of the attributes available for annotation. This is despite the fact that the content 

comprised data for many more attribute annotations. This shows users are not keen 

on providing too many properties even though a more accurate description would 

have clear and direct benefits like directing more users to own pages. In conse-

quence, one can safely assume that also for entity search by means of properties, 

users will most probably provide on average about 4 properties as a description of 



66 Property-based Entity Search  

the intended entity type. Indeed, the cognitive load can be a problem for this kind 

of entity search. Consequently, a system accepting this kind of queries has to be able 

to work with only a subset of the actual intentional description. For instance, a user 

with movies in mind, may provide {‘Title’, ‘Director’, ‘Genre’, ‘Language’} as an in-

tension. But this description, is rather broad, as it may refer to movies, audio books 

or even video games. Ultimately, the quality of the retrieved entities is poor.  

Nonetheless, we believe that property based entity retrieval is a promising take 

on the problem of entity centric search. The first step towards a working solution 

is to acknowledge that the provided properties are a mere subset of an intensional 

definition of the entity type, and that the choice of properties has severe impact on 

the quality of the retrieved entities. Building on these observations, our work pre-

sented in [59], is the first research paper to address the problems of property-based 

entity retrieval. Starting from properties provided by users as a query, we propose 

a method for estimating the quality of the selected entities and if necessary, identi-

fying additional properties that have a high positive impact on the quality. The system 

we propose, works in an iterative fashion to assist users to extend the property-
based type definitions while checking that the extended definition still matches their 

intentions.  

The contribution of our work, discussed in more detail in this chapter, can be 

summarized as follows: an extensive inspection of property-based entity search; the 

presentation and evaluation of a quality metric enabling transparency for this entity 

search approach; and the presentation and evaluation of a property selection 

method for improved data quality.  

4.1. Use Case 

To assess the feasibility of the property-based paradigm for retrieving entities from 

the Web, we conducted an experiment on the example of movies. When searching 

for movies, users will most probably query on a few properties (up to four if we 

consider people’s behavior observed for annotating data with schema.org attributes) 

they usually associate with movies. These properties are used in the property-based 

entity access approach as filters such that all entities having those properties are 

considered to represent movies. Inspecting the selected entities one can measure 

the quality of the property-based entity search approach by computing the percent-

age of entities which actually are movies. But first, what are the properties people 

typically associate with movies?  

Our analysis on schema.org annotations presented in Section 2.2 on the example 

of articles in ClueWeb12 is again helpful also for answering this question. For mov-
ies, we observed about 40,000 annotations. On average, each movie annotation 

comprises 4.6 movie properties. Amongst the properties used to annotate data, the 

‘Title’, ‘Description’ an ‘URL’ of the movie page, the ‘Director’ and the ‘Genre’ are 

the most frequently used. In Table 12 we present a list of the properties appearing 

in at least 30% of the movie annotations. We assume that these properties or at 
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least most of them, were not annotated by chance with such high frequency, but 

rather because they are typically associated with movies. In this case, for the ‘Movie’ 

entity type, most probable property-based definitions are a subset comprising three, 

four or at best five properties from the most frequent ones, e.g. {Title, Description, 

URL}, {Title, Description, URL, Director}, {Title, Description, URL, Director, 

Genre}.  

According to the idea of property-based entity retrieval, all entities fulfilling these 

properties represent movies. To put this approach to the test we inspected its use 

on the BTC12 linked data corpus, introduced in the previous chapter in Section 2.1. 

The process of selecting data for a set of properties provided in natural language 

works as follows:  

 Property URIs are identified for each property. For this purpose, all sub-
jects from tuples of the form (*, rdfs:label, p) are selected for each prop-

erty p (* is a wildcard which may be substituted by any URI). Synonym sets 

provided by WordNet or obtained through the owl:sameAs predicate are 

used to extend the coverage of each property (more details in Section 

4.2.1).  

 With p’ as the URI of each property p, the entities to be selected are the 

set of all distinct subjects s for which there are tuples of the form (s, p’, *) 

in the BTC dataset (* is a wildcard which may be substituted by any URI 

or literal in this case).  

An overview of the selectivity for different property sets is provided in Table 

13(a). While Title, Description and URL are quite general (1.5 million entities of 

various types are selected), Director, Actors and especially Genre notably reduce 

the number of relevant entities. 

Table 12: Top ‘Movie’ properties (with frequency above 30% of all movie annota-

tions) from the ‘Movie’ schema from schema.org used for annotating movie data on 

Web pages from ClueWeb12. 

Property Movies anno-

tated with 

property 

Title 78 % 

Description 56 % 

URL 44 % 

Director 39 % 

Genre 38 % 

Actors 38 % 

AggregateRating 33 % 
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Precision and recall are the standard measures for evaluating the quality of re-

trieved information or, in our case, the quality of selected entities. Precision repre-

sents for this use case the proportion of entities being movies out of all retrieved 

entities, while recall represents the proportion of retrieved movies out of all movies 

present in the BTC dataset. Computing precision and recall is not trivial in this case 

since it requires recognizing entities that are movies. A problem we already raised 

awareness on, in linked data, URIs are not unique over all data stores. In conse-

quence, the rdf:type property which connects entities to their types, is in this case 

impossible to rely on without further action. In the previous chapter, in Section 2.1 

we invested much effort to manually build a long list of URIs comprising 4,336 URIs 

all representing the ‘Movie’ entity type. With these types we identified a total of 

169,469 movies in the BTC dataset. It’s important to mention that this is just an 

approximation of the exact number of movies in BTC, therefore the recall presented 

in Table 13(b) has to be taken as an estimation of the actual value.    

As shown in Table 13(b), the choice of properties has notable impact on the 

quality of the selected entities: precision increases from a mere 0.02 to 0.78 by 

adding one single property to the definition of ‘Movie’ entity type. Precision values 

of 0.92 are possible if the “right” properties are chosen. Recall is, with 0.3 for the 

first three most frequent properties, quite low. The main reason is the sparseness 

of the data. This becomes extreme in the case of ‘Genre’ with just a few movies 

having this property.  

Overall, the property-based entity retrieval can lead to high quality/high precision 

entity selection if properties are well chosen. A major obstacle in the process is the 

lack of transparency: the user has no idea about the quality of the selected entities. 

Properties belonging to the entity type definition are mandatory: since they are pro-

vided by the user one can be certain of their correctness. In consequence, none of 
the entities missing on any of these properties should be retrieved. But this has a 

high impact on recall. Combined with the sparse nature of Web data, the more 

elaborate the definition, the smaller the number of selected entities. In the case of 

entity type-based queries, and especially for linked data, we mostly focused on recall, 

since high precision was ensured by the fact that data was manually curated. As we 

have seen in the use case presented in this section, in the case of property-based 

Table 13: Number of entities from the BTC12 data corpus fulfilling each property set 

(a). The corresponding precision and recall values (b). 

Property Set (a)  Nr. of Enti-

ties from BTC 

(b) Precision / 

Recall 

{Title, Description, URL} 1,447,813 0.018/0.3 

{Title, Description, URL, Director} 29,328 0.78/0.26 

{Title, Description, URL, Director, Genre} 2,266 0.35/0.01 

{Title, Description, URL, Director, Actors} 21,531 0.92/0.23 
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entity retrieval this doesn’t apply anymore as the choice of properties and property 

based type definition has a high impact on precision. We believe that if precision and 

selection quality can be controlled, one can improve recall by building on structural 

similarity or by extending the selection to cover types discovered with high precision 

through the property-based retrieval. For this reason, we focus here on improving 

the quality of the selection throughout precision first, by extending the entity type 

definition with a set of well-chosen properties. 

4.2. Property-based Entity Retrieval – System Description 

Starting from a property-based entity type definition with properties expressed in 

natural language and a large collection of data organized as (subject, predicate, ob-

ject) triples, the entity retrieval system that we propose, helps the user to obtain 

high quality selections: relying on a measure of property-based data homogeneity, it 

measures the quality of the entities that fulfill the property-based definition. If the 

quality is low, key properties contributing the most to better data quality are found. 

The user has to finally decide if those properties are part of the entity type or not. 

The definition of the intended type is extended to include the user feedback and the 

process is repeated until the quality reaches a satisfactory level. For this purpose, 

the following functionality is required:  

 identify and select those entities that fulfill the property-based type definition; 

 compute the quality of a collection of entities; 

 find properties that, if added to the set of properties defining the type, con-

siderably improve the quality of the selected data. 

4.2.1. Property-based Data Access 

As previously mentioned we aim for a system that is able to work with both struc-

tured and unstructured data. But working with triples like provided in linked data is 

enough since (as we will show in Chapter 5) information presented in text form can 

be extracted into triples to build an additional data store made available in the LOD 

cloud. In consequence, in the following we discuss about data as being organized 

only in triple form and refer the whole data through LOD.  

According to the property-based entity retrieval approach, the system selects all 

entities from the data having all properties from a given set. In our triple stores, like 

in linked data, properties are represented through URIs. Hence, a mapping between 

the properties in natural language and the URIs is necessary. For this mapping, we 

rely on the rdfs:label property, an instance of rdf:property providing a human-read-

able name for a resource. For better coverage, and especially for data coming from 

text, where there are no owl:sameAs relations, each property is automatically ex-

tended beforehand with a list of synonyms from WordNet.  
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For some entities the rdfs:label property may be missing. Furthermore, the same 

property may be present in different data stores under different URIs, possibly con-

nected to each other through the owl:sameAs property. In consequence, in a dic-

tionary-like fashion, each property is actually mapped to a set of URIs all considered 

synonyms. This is especially important for the triples extracted from text. 

Mapping Expansion Algorithm: 

By repeatedly linking elements through synonyms, two or more properties from the 

definition set may end up being represented by the same set of URIs. Such cases are 

reported to the user. 

At the very core of the property-based approach, an entity is relevant with respect 

to a specific property if there is a statement or fact asserting that the entity has this 

property. In the context of linked open data, we define the binary relevance of an 

entity w.r.t. a property as a hit function: 

According to the semiotic triangle, concepts and thus entity types are defined in-

tensionally by a set of properties, and extensionally by a set of entities. Aiming for 

simple yet effective access to entities we define concepts expressing entity types, as 

the set of properties that intensionally define the entity type given by the concept. 

Definition 3 (mapping): Given a property p ∈ Properties, 𝑃𝑆𝑌𝑁𝑝
 its set of syn-

onyms from WordNet (including p) and LOD a large set of 3-tuples of the form 

(subject, predicate, object), we define map as a function map : Properties → 

℘(URIs) with: 

 𝑝 ⟼ {𝑠|∃𝑝𝑖 ∈  𝑃𝑆𝑌𝑁𝑝
: (𝑠, rdfs: label, 𝑝𝑖) ∈ 𝐿𝑂𝐷} (13)  

 

With Δ𝑝,1 ≔ 𝑚𝑎𝑝(𝑝) define 

 
Δ𝑝,𝑖+1 ≔ {𝑠𝑗′|∃𝑠𝑗 ∈ Δ𝑝,𝑖: (𝑠𝑗 , owl: sameAs, 𝑠𝑗

′)

∈ 𝐿𝑂𝐷 ∨ (𝑠𝑗′, owl: sameAs, 𝑠𝑗) ∈ 𝐿𝑂𝐷} 
(14)  

 

 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦(𝑝) ≔ ⋃ Δ𝑝,𝑖

∞

𝑖=1
 (15)  

 

 

 

Definition 4 (hit): Given some entity 𝑒 ∈ E represented by its URI, a property 

in natural language p ∈ Properties and LOD defined as above, we define hit as a 
function 

hit : (URIs × Properties) → {0, 1} with: 

 ℎ𝑖𝑡(𝑒, 𝑝) =  {
1    iff ∃ 𝑝′ ∈ 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦(𝑝): (𝑒, 𝑝′,∗)  ∈ 𝐿𝑂𝐷
0   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                          

 (16)  

where * is a wildcard that may be substituted by any literal or URI. 
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This type definition may iteratively evolve based on user feedback. Because the user 

feedback may be negative w.r.t. to some properties (by negative we mean properties 

that all entities corresponding to the type definitely shouldn’t possess), we define an 

entity type as follows: 

While here all properties (initial as well as positive and negative extensions) are 

treated equivalently, the fact that not all properties extending the definition are re-

quired is a starting point for future work. As in the case of properties, in the LOD 

cloud the same entities may end up having multiple URIs. For the sake of simplicity, 

we refer to one entity as being uniquely identified by an URI.  

More often than not, the number of properties provided by users to describe 

some type of entity is much smaller than the intension of that entity type. Extensive 

experiments presented in Section 2.2 show that on average only 4.6 (out of an av-

erage of 34 existing) properties have been used to describe entities. This suggests 

that the user provides a sub-set of properties meant to represent the intended (to 

us hidden) type. This set of properties is one of the many possible super-types of 

the intended type. Starting from a property set that builds a type or a super-type for 

some concept, all entities having all these properties are selected as being relevant 

for the type or super-type:  

 

Definition 5 (type): Given a concept c, representing an entity type extensionally 

defined through the set of entities given by their URIs, Ec, we define the type of 

concept c denoted Tc as the set of properties Tc = 𝑃𝑐+
∪ 𝑃𝑐−

 with 𝑃𝑐+
 the set of 

positive properties and 𝑃𝑐−
 the set of negative properties (𝑃𝑐+

∩ 𝑃𝑐−
= ∅), such 

that: 

 

(𝑖)     ∀𝑒 ∈ 𝐸𝑐 , 𝑝 ∈ 𝑃𝑐+
: ℎ𝑖𝑡(𝑒, 𝑝) = 1  

(ii)     ∀𝑒 ∈ 𝐸𝑐, 𝑝 ∈ 𝑃𝑐−
: ℎ𝑖𝑡(𝑒, 𝑝) = 0  

(𝑖𝑖𝑖)    ∀𝑒 ∉ 𝐸𝑐 ∃𝑝 ∈ 𝑃𝑐+
: ℎ𝑖𝑡(𝑒, 𝑝) = 0 

 
(17)  

 

  

 

Definition 6 (property-based data access): Given a set of properties Tc=

𝑃𝑐+
∪ 𝑃𝑐−

 representing either a type or super-type for a concept c as before, the 

set of entities selected according to the property-based data access paradigm Ec 

is the set of entity URIs that fulfill all properties from Tc: 

 𝐸𝑐 =  ⋂ 𝐸𝑗

|𝑇𝑐|

𝑗=1
 (18)  

where 𝑬𝒋 = {𝒆|𝒉𝒊𝒕(𝒆, 𝒑𝒋) = 𝟏 𝒊𝒇 𝒑𝒋 ∈ 𝑷𝒄+
∧ 𝒉𝒊𝒕(𝒆, 𝒑𝒋) = 𝟎 𝒊𝒇 𝒑𝒋 ∈ 𝑷𝒄−

} 
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In the ideal case, for a concept c the set of properties Tc represents the intension 

of c. Then, the set of selected entities Ec also extensionally defines concept c and 

should fit the user needs. However, there is a high probability that Tc is a subset of 

the intension. Since the type intended by the user is hidden to the system and entities 

have no clear types, there is no trivial way for checking if the selected entities cor-

respond to the intended concept and thus entity type. The user also has no feedback 

whatsoever regarding how good the retrieved entities match the intended entity 

type. This has grave effects on the applicability of the property-based entity retrieval 

approach. Aiming for better transparency of the whole approach, in the next section 

we introduce a measure of quality for the selected entities. 

4.2.2. Quality of the Selected Entities 

We measure the quality of entities selected through the property-based model as a 

function of entity homogeneity. The basic assumption is that the user describes sim-

ple concepts (like ‘Movies’ or ‘Books’) with all corresponding entities having the 

same or almost the same properties and not ad-hoc or composed concepts (like “all 

things having a geo-location”). Consider for example that the user provides three 

properties: {‘Title’, ‘Description’ and ‘Genre’}. Based on these properties a set of 

eight entities is selected. Besides the three properties, each entity is described by 

other additional properties like in Table 14. Properties p4, p5 and p6 may be, for 

instance, ‘Duration’, ‘Actors’ and ‘Director’ while p7, p8 and p9 could represent 

‘ISBN’, ‘Pages’ and ‘Editor’. As you may have intuited, entities e1, e2, e3 and e4 repre-

sent movies while the remaining entities represent books. Properties in Web data 

and in the LOD cloud may be missing. This is reflected also in this artificial example 

with movies e1, e3 and e4 providing no values for properties p4 and respectively p6. 

Analogously, for the entities representing books. The rest of the missing values are 

attributed to the fact that properties p4, p5 and p6 are proper to movies while p7, p8 
and p9 are proper to books. 

Table 14: On rows - the entities that are selected for the property set {p1, p2, p3}. On 

columns – all properties describing any of the selected entities. 

 

p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9

e 1         

e 2         

e 3         

e 4         

e 5         

e 6         

e 7         

e 8         
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More generally, starting from the set of properties, the system selects a set of 

entities as described in the previous section. In a relational sense, together with the 

union of all their corresponding properties (stop properties like rdfs:label, 

owl:sameAs, rdf:type, etc. are first removed) these entities form a relational schema 

(as in Table 14). Especially in the field of schema extraction and discovery, the num-

ber of null values has successfully been used for establishing the quality of the schema 

[22] – the better the schema, the fewer null values, the more homogeneous the 

data. Thus, if the data is homogeneous in terms of structure - their properties - 

these properties intensionally define a single entity type. As a measure of homoge-

neity we measure the property-based similarity between all entities. But there is a 

problem: Entities may be selected from different data sources (DBpedia, LMDB, 

etc.). Entities with the same type and from the same source tend to share the same 

properties, usually due to the focus of each data store. Different sources have dif-

ferent sizes, and small data sources with many properties can introduce null values. 

These null values are artificially amplified by the size of the data source. To handle 

this problem, we reduce all entities having the exact same properties to just one 
witness. This way, for the example presented in Table 14, e3 and e4 are both repre-

sented by one witness: 𝑤𝑒3𝑒4
 having the same properties as e3 or e4. The same for 

e6 and e7. The rest are their own witnesses. Based on this observation we define the 

quality of a set of entities as follows: 

While the Jaccard index is most suitable for measuring structural similarity between 

entities, any other similarity measure may be used here. 

For the example introduced in Table 14, the quality of the selected entities is 

0.55. If however, additional information were provided, like the fact that the entity 

type that the user has in mind also has property p5, or doesn’t have property p7, the 

entities selected by the property based model restrict to movies only (entities 1 to 

4). The quality in this case increases to 0.78, the result being slightly affected by the 

noise (missing values) in the data. In the following subsection we present how to find 

properties better separating various types of entities in the result set. 

Definition 7 (quality): With the notations of Tc and Ec as above and Wc as the 

set of witnesses represented by URIs of entities from Ec, the quality of the selected 

entities is a function,  Q : ℘(URIs) → [0, 1] with: 

 𝑄(𝐸𝑐) =
1

𝐶2
𝑛 ∙ ∑ ∑ 𝑆𝑖𝑚(𝑤𝑖, 𝑤𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (19)  

∀𝒘𝒊, 𝒘𝒋 ∈ Wc, n=|Wc| and 𝒔𝒊𝒎(𝒘𝒊, 𝒘𝒋) =
|𝑷𝒘𝒊

∩ 𝑷𝒘𝒋
|

|𝑷𝒘𝒊
∪ 𝑷𝒘𝒋

|
 is the Jaccard index [10]. 

𝑷𝒘𝒊
 is the set of properties of 𝒘𝒊 and 𝑷𝒘𝒋

 is the set of properties of 𝒘𝒋. 
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4.2.3. Property Selection 

Finding the list of properties best distinguishing different types is similar to the prob-

lem of induction of an optimal decision tree in data classification, which is a hard 

task. It has been shown that finding a minimal decision tree consistent with the set 

of labeled entities provided as data is NP-hard [49]. Consequently, greedy algorithms 

like the C4.5 are applied for solving this problem [98]. When it comes to selecting 

some property that better discriminates between different types of entities, infor-

mation gain from the field of information theory is the standard measure for deciding 

the relevance of a property [99]. Generally speaking, the information gain is the 

change in information entropy from a prior state to a state that takes some infor-

mation as given. Computing this entropy change is only possible for entities that 

have class labels (entity types) attached. Types are provided in the LOD cloud by 

means of the rdf:type property, however entities may have multiple types partly with 

different granularities e.g., the movie “Gangs of NewYork” has types owl:Thing, 

schema.org/CreativeWork, dbpedia-owl:Film, yago:VictorianEraFilms and 15 other 

types. For other movies, types owl:Thing, or schema.org/CreativeWork are missing. 
All these types are obviously related to each other but without an upper ontology 

or global type hierarchy, it’s difficult to make use of the type property to compute 

the information gain. 

But as shown in [47], the type information strongly correlates with the entity 

properties: in the example presented in Table 14, it’s obvious that entities having 

properties ‘Duration’, ‘Actors’ and ‘Director’ on top of ‘Title’, ‘Description’ and 

‘Genre’ are movies while entities having ‘ISBN’, ‘Pages’ and ‘Editor’ are books. The 

type information is latent in the properties. But the missing values for some entities, 

as well as the heterogeneity of data sources make it difficult to fold all movies to-

gether to just one witness – a property set representing the movie type. Actually 

what happens is that more witnesses, with more or less similar properties, exist for 

a single type. The problem of reducing similar witnesses to a dominant type is similar 

to the problem of dimension reduction.  

Principal component analysis (PCA) is the best, in the mean-square error sense, 

linear dimension reduction technique [65]. In essence, PCA is a basis transformation 

that seeks to reduce the dimensionality of the data by finding a few orthogonal linear 

combinations (called principal components) of the original variables capturing the 

largest variance. Given Ec the set of entities selected according to the property-

based data access paradigm, and Wc the set of witnesses of entities from Ec, let X be 

a n × p matrix, where n and p are the number of entity witnesses and the number 

of properties of all witnesses, respectively. Let the matrix decomposition of X be 

 𝑋 = 𝑈𝐷𝑉𝑇 (20)  

Y=UD are the principal components (PCs), where the p × p matrix U is the matrix 

of eigenvectors of the covariance matrix 𝑋𝑋𝑇, matrix D is a p × n rectangular diag-
onal matrix of nonnegative real numbers on the diagonal with customary descending 
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order, and the n × n matrix V is the matrix of eigenvectors of 𝑋𝑇𝑋. The columns of 
V are called loadings of the corresponding principal components. Usually the first 

PCs (capturing the highest data variance) are chosen to represent the dominant 

dimensions. 

For the example introduced in Table 14 (first all data is reduced to binary values 

and centered on the columns such that the mean of each column is equal to 0), the 

first PC shows the strongest variance of 1.16. This PC is also considered relevant. 

The next two components show a variance of 0.2 and the rest are 0 or close to 0 

and can be neglected. With respect to the properties, the coefficients of the first PC 

are clustered together according to their variance (Table 15). For this example, the 

three property clusters that build on the relevant PCs show the existence of two 

dominant types that differentiate in terms of properties p4, p5, p6 and p7, p8, p9. Show-

ing no variance, properties p1, p2 and p3 can be ignored since they belong to both 

dominant types.  

In general, depending on the selected entity set, more PCs may be relevant. To 

dynamically establish which of them show notable variance, we rely on the ISO-

DATA algorithm, an automatic thresholding approach [5] that identifies thresholds 

in one dimensional spaces that best separate a set of data points. With the PCs that 

show variances above the threshold, one dimensional clusterings (agglomerative hi-

erarchical clustering with average inter-cluster similarity) on the coefficients are built 

for each PC. This way each property is assigned to one cluster for each relevant PC. 

Each set of properties belonging to the same clusters on all relevant PCs are grouped 
together and represent abstract dominant types we will further refer to as latent 

types. For the example in Table 15, considering that only PC1 is relevant, the ex-

tracted latent types are t’ ≡  {p1, p2, p3, p4, p5, p6} and t’’ ≡  {p1, p2, p3, p7, p8, p9}. With 

these types we can now label entities according to the property-based model. This 

way, e2 will be labeled with t’ and e5 with t’’. In this manner a set of labeled entities 

Table 15: Coefficient values (component loadings) for each property, for the first 

three principal components. 

 

         PCs

Props. PC1 PC2 PC3

p1 0.00 0.00 0.00

p2 0.00 0.00 0.00

p3 0.00 0.00 0.00

p4 0.35 -0.71 0.00

p5 0.50 0.00 0.00

p6 0.35 0.71 0.00

p7 -0.50 0.00 0.00

p8 -0.35 0.00 0.71

p9 -0.35 0.00 -0.71
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is created. Entities that fulfill properties for multiple types (‘Audiobooks’ in the con-

text of our example) are automatically associated with multiple labels. 

With the set of labeled entities, the information gain for a property can be com-

puted as follows: 

The entropy (denoted H) represents a measure of the amount of uncertainty in the 

data and is usually computed as follows: 

 𝐻(𝐸𝑐) = − ∑ 𝑝(𝑡𝑖) log 𝑝(𝑡𝑖)

𝑛

𝑖=1

 (22)  

where n represents the number of latent types and p(t) represents the probability 

(relative frequency) of latent type t in 𝐸𝑐. 

However in our case, an entity may have multiple types. Known as the multi-label 

learning problem, this poses difficulties for most learning and classification methods. 

The information gain - entropy based approach from the C4.5 decision tree algo-

rithm is no exception [121]. To overcome this problem, we employ a modified ver-

sion of the entropy proposed in [30] that considers multiple labels by introducing 

the probability of an entity not belonging to a certain type:  

 𝐻(𝐸𝑐) = − ∑((𝑝(𝑡𝑖) log 𝑝(𝑡𝑖)) + (𝑞(𝑡𝑖) log 𝑞(𝑡𝑖)))

𝑛

𝑖=1

 (23)  

with n and p(t) as before and q(𝑡𝑖) = 1 – p(𝑡𝑖) the probability of not having type 𝑡𝑖. 

4.2.4. System Evaluation 

The system presented in this chapter has two major objectives: to provide transpar-

ency regarding the quality of the entities retrieved through the property-based par-

adigm and to improve the quality of the selected data by iteratively, and with user 

feedback, extending the property-based type definition with chosen properties. To 

evaluate how well these objectives have been fulfilled we performed the following 

experiment: starting from different entity types presented in structured form with 

schemata on schema.org, as in the use case presented in Section 4.1, we build an 

initial type definition for each concept. This initial definition embodies typical prop-

Definition 8 (information gain): With the notations of Tc and Ec as previously 

defined and 𝑃𝑈 the set of all properties of all entities from Ec, the information gain 

of a property 𝑝 ∈ 𝑃𝑈 − 𝑇𝑐 w.r.t. the entity selection Ec is: 

 𝐺𝑎𝑖𝑛(𝑝, 𝐸𝑐) = 𝐻(𝐸𝑐) − ∑
|𝐸𝑐|𝑝𝑣|

|𝐸𝑐|
∙ 𝐻(𝐸𝑐|𝑝𝑣)

𝑣∈{0,1}

 (21)  

where 𝐸𝑐|𝑝𝑣 =  {𝑒 ∈ 𝐸𝑐|ℎ𝑖𝑡(𝑒, 𝑝) = 𝑣}.  
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erties most users associate with each entity type. It comprises the first four proper-

ties that have been most frequently annotated in ClueWeb12 for the corresponding 

schema.org schemata. The property-based data access is applied to these four prop-

erties and a set of entities from the BTC data corpus is selected. The quality score, 

precision and recall are computed for the selected entities. If the quality score is 

lower than 0.65 (our experiments have shown that a threshold of 0.65 brings satis-

fying data quality), a property is chosen based on its information gain. The user is 

asked whether this property belongs to the entity type or not. We simulate the user 

feedback by relying on information from schema.org: If the property with the highest 

information gain is part of the schema that describes the corresponding concept on 

schema.org (considering synonymy), then the user feedback is positive. The type 

definition for the entity type is in this case extended with this property and all enti-

ties having this property are kept. If, however, the property with the highest infor-

mation gain is not part of the schema, then it is considered a negative property and 

all entities not having this property are kept. The process is repeated until the quality 

score reaches the quality threshold. Using schema.org to simulate user feedback is 
convenient but it has some drawbacks that will be addressed in future work: some 

properties that are part of schema.org may be irrelevant from a human perspective. 

At the same time, schema.org doesn’t claim full completeness. In consequence one 

can’t be sure that properties not being part of schema.org are negative properties. 

In order to measure precision and recall, a gold standard is required. The gold 

standard represents, in this case, clear type information w.r.t. the entity types: In the 

context of movies, is a given entity a movie or not? We build the gold standard by 

bootstrapping on a set of 1,000 seed entities that we know are of the entity type: 

We extract all rdf:type types for each of the seed entities. On average, about 500 

types are found. Types that are not related to the concept or that are too general 

(e.g. owl:Thing or schema.org/CreativeWork) are manually pruned. In a second it-

eration, all entities having those types are selected and 100 entities are randomly 

chosen. Only those entities that, on manual inspection show the correct type are 

kept. Their rdf:type types are extracted, and unrelated or general types are again 

manually pruned. The process is repeated one more time. The resulting list of 

rdf:type values represents the description of a concept type according to the rdf:type 

property. Any entity that has one of the types in the list is considered to be of the 

respective type. Of course, only a subset of the actual expressions of a certain type 

is found. As a result, the precision and recall values computed on this gold standard 

underestimate the actual values.  

Our system chooses key properties to improve the type definition based on in-

formation gain. As a baseline, we built Rand, a system choosing properties at random 

(without replacement). The randomization process is repeated 10 times for each 

property selection step. Average quality, precision and recall values are considered 

for each iteration. The property that is closest to the average scores of all 10 random 

picks is chosen to extend the definition for the next iteration. 
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We evaluated our property based entity retrieval system (named ProSWIP – 

short for Property based Semantic Web Interactive Processing) on multiple con-

cepts from various fields, with different characteristics. In Table 16 we present the 

results on the example of three chosen concepts. The base iteration (0) is common 

to both systems and corresponds to the most frequent four properties used for 

annotating the corresponding schema in ClueWeb12. For Movie, this iteration al-

ready produces good precision but it is quite restrictive in terms of recall. ProSWIP 

requires in this case 4 iterations to reach quality above 0.65 and perfect precision. 

With 0.93, precision is already very good after the first iteration. Further iterations 

isolate well defined movies from the ones with missing values. This in turn affects 

recall. Benefitting from high quality entity selection from the base iteration (78% of 

entities selected from the start are movies), the random approach is also able to 

obtain good results. Primarily guided by average scores and with high quality seman-

tic feedback, the baseline method achieves 0.95 precision and a quality score of 0.59 

after 4 iterations. Recall however is severely affected by the random choice of prop-

erties. For Music the base iteration is, with a precision of 0.44, of lower quality. 
Various types of entities are selected. The probability for the random selector to 

choose some irrelevant property is higher in this case. This is also reflected in the 

poor performance of Rand for Music. In contrast, ProSWIP achieves the desired 

level of quality after only two iterations. For Books, the base also has low precision 

with negative consequences on the performance of Rand. The quality metric we 

introduced is highly correlated to precision on all experiments (Pearson’s linear cor-

relation coefficient of 0.94) denoting its expressiveness for the quality of the data 

selection. Precision rapidly increases towards values above 90%, showing the success 

of the whole approach.  

Table 16: Quality, precision and recall for three chosen entity types and multiple  

iterations. 

 

Iteration

Movies ProSWIP Rand ProSWIP Rand ProSWIP Rand

0 0.49 0.49 0.78 0.78 0.26 0.26

1 0.57 0.5 0.93 0.78 0.25 0.26

2 0.55 0.51 0.91 0.74 0.12 0.03

3 0.58 0.53 0.96 0.89 0.11 0.03

4 0.65 0.59 1 0.95 0.07 0

Music

0 0.34 0.34 0.44 0.44 0.82 0.82

1 0.58 0.34 0.99 0.43 0.82 0.78

2 0.67 0.34 0.99 0.43 0.62 0.78

Books

0 0.21 0.21 0.37 0.37 0.71 0.71

1 0.32 0.21 0.83 0.38 0.07 0.07

2 0.52 0.22 0.93 0.39 0.07 0.07

3 0.59 0.25 0.89 0.43 0.04 0.07

4 0.65 0.25 1 0.43 0.03 0.07

Quality(Q) Precision Recall



4.2 Property-based Entity Retrieval – System Description 79  

 

From a technical perspective, ProSWIP is a component implemented in Scala43, 

which maps variable names to properties from the BTC data set. While classical 

relational databases are not suitable for querying on RDF data, graph databases like 

Neo4j44 have limited performance for our approach. In comparison, Lucene45 has 

proven much faster in both the time needed for initially loading the data (building 

the index) as well as in terms of querying. With an off-the-shelf commodity com-

puter with Intel I5-3550 quad-core CPU with 3.3 GHz. 32 GB RAM and 8.5 ms 

access hard drive, the index creation for the complete BTC data set took about 39 

hours (only one core was used). The resulting index was about 1T in size including 

data. One simple entity search takes about 16 seconds. But the complete process of 

property-based data access may take up to hours as multiple queries, entity and 

property retrievals are being performed. It was possible to speed up the process by 

introducing caching mechanisms, for instance for the property synonymy dictionar-

ies. Computing the quality, principal components, latent types and information gain 

for all properties on large data samples takes under 2 seconds. Nonetheless, we 

believe that in order to realize all operations in real-time a Lucene-based distributed 
index leveraging Hadoop like for instance Elastic Search46 is necessary. 

4.2.5. State-of-the-art in Property-based Entity Retrieval  

Property-based entity selection has recently been discussed in [111, 112] in the con-

text of programming the Semantic Web. Challenges and open questions concerning 

a property based approach are discussed in these papers. Sharing their view, we 

inspect the practical feasibility of such an approach and address one of the main 

challenges: The data quality problem. 

Property-based data access has been an important research topic especially for 

programming purposes. For instance, property-based interfaces have been studied 

for object oriented languages [46] or extensible record systems for different lan-
guage settings [18, 68]. But additional challenges like discovering, comprehending 

and extending property sets to match the intended use arise in the context of re-

trieving entities from Web data. 

From a broader perspective, systems like Tipalo [41] performing automatic typing 

for DBpedia entities are also relevant to our approach. Tipalo extracts types for 

entities based on their corresponding Wikipedia pages. But there are several entities 

in the LOD cloud having no article on Wikipedia that would hence remain untyped 

                                            

43 http://www.scala-lang.org/ 

44 http://www.neo4j.org/ 

45 http://www.lucene.apache.org/ 

46 http://www.elasticsearch.org/ 
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(there are about 14,199 diseases according to the International Statistical Classifica-

tion of Diseases47 most of them documented through PubMed but only about 3,000 

of them featuring an actual article on Wikipedia). High precision knowledge bases 

like YAGO [116] relying on the Wikipedia category system and Infoboxes suffer 

from the same problem. In contrast, we build on structural similarity independent 

of all-encompassing information sources to find latent, contextually relevant types. 

4.3. Conclusions 

In this chapter we presented an in-depth analysis on the topic of property-based entity 

search. The user expresses his/her information needs through the intension, respec-

tively the set of properties prototypically defining the kind of entity the user is 

searching for, and the system retrieves all entities having the given properties. While 

not as simple as querying by entity type, property-based entity search has the ad-

vantage that properties carry more information than types do. If proper types are 

not provided or cannot be extracted than properties may be an interesting option. 

But the cognitive load put on the user is higher, and as we have seen on the example 

of Web data annotations, users are not keen on providing too much properties. 

Therefore, such an entity retrieval system has to be able to work with a small subset 

of properties defining the intended entity type to be accepted by users. 

Retrieving entities based on a small subset of properties and not on a full blueprint 

of the entity type is challenging. Our experiments show that all kinds of entities can 

easily make their way into the result set. To make matters worse, the user doesn’t 

even have a clue of the bad quality of the entity selection, and simple property-based 

entity retrieval systems can’t detect such problems since type information is missing 

or it is not reliable.  

Motivated by positive examples in the field of programming, were duck typing48  

has already been successfully applied, we believe that property-based data access 

represents a cornerstone in retrieving entities from the Web. The key to its success 

is extending the property-based type definition with well-chosen properties that lead 

to high quality entities, while keeping the user informed on the quality of the se-

lection. For this purpose we propose ProSWIP a system that builds on user feedback 

in order to ensure that it captures correctly the user’s intentions. ProSWIP asks the 

user if some property is, or is not relevant regarding the intended entity type and 

extends the property set for the entity type definition in this way. However, entities 

have hundreds of properties. Asking more than a handful of questions is not feasible. 

ProSWIP cleverly solves this problem with the help of information theory concepts 

                                            

47 http://www.who.int/classifications/icd/en/ 

48 A style of typing in which an object's methods and properties determine the valid semantics and not – the 

naming is attributed to James Whitcomb Riley who coined the duck test: “When I see a bird that walks like 

a duck and swims like a duck and quacks like a duck, I call that bird a duck.” 
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choosing to ask user feedback on but a few properties showing the highest infor-

mation gain. Our experiments show that within a maximum of four iterations the 

system achieves very good quality. With an entity homogeneity-based quality metric 

the level of quality for the selected data can also be measured. Being highly corre-

lated to precision, the quality measure we introduced provides for transparency. 

With additional feedback on chosen properties, precision easily reaches values 

above 0.9, confirming the success of this approach.  

For the time being, all entities not showing a certain property that has been in-

cluded in the entity type definition are not included in the result set. Corroborated 

with the sparse nature of data extracted from the Web, this severely affects recall. 

But even an entity doesn’t possess all properties, defining the entity type, it can still 

be relevant if it possess at least those properties being typical for entities of the 

intended kind. Leveraging high quality property-based definitions, together with the 

concept of attribute typicality (introduced in Section 6.3.1) the recall problem can 

be tackled: we plan to use properties that have been found suitable to extend the 

concept definition, not as filters, but as features for entity ranking on structural sim-
ilarity. Applied only to properties not being typical for the intended entity type, this 

condition relaxation should increase the robustness against missing values and have 

a positive effect on recall. 

Another way of searching for entities is through instance-based search. Instance-

based search is also known under the name of query by example and it has primarily 

been used in multimedia information retrieval systems. Systems like Shazam49 or bet-

ter yet Midomi50 like systems, stand as a proof of their success. In the following 

chapter we analyze different possibilities for supporting this kind of queries for entity 

search. 

                                            

49 http://www.shazam.com/ is a mobile app that recognizes music being played around the user starting even 

from a few seconds of noisy piece of sound  

50 http://www.midomi.com/ is a system for audio query by humming. The user can hum or whistle a song and 

midomi finds the respective song in a large library of music pieces 
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Instance-based Entity Search 

When searching for entities, users may think of some examples best representing 

the entity types that they search for. For instance, when searching for ‘sports cars’, 

some users may already visualize a red Ferrari or an orange Lamborghini. One can 

exploit such automatic associations between entity types and representative entities 

to empower yet another type of entity search: instance-based entity search. For this 

type of search, users provide one or more example of entities and the retrieval 

system returns entities being similar to the ones given by the users.  

But there are two major concerns with this type of queries: first it is very im-

portant that the examples are well chosen. To pick up on the example of American 

presidents, with “Ronald Reagan” as a query entity and “Clint Eastwood” as addi-
tional example, the user will be referring to American actors rather than American 

presidents. However, the user might also have more restricted entity types in mind 

like Western actors, actors from California, American actors with political ambi-

tions, and so on. The more examples, the better a query can be disambiguated, 

however increasing query complexity. This brings us to the second main concern 

which is, how exactly should the query look like? How many examples should it 

contain? Obviously, there is a tradeoff between better disambiguation strength (the 

more examples the better the disambiguation) and the cognitive load put on the 

user (it’s not realistic to expect that users will be able or willing to provide more 

than a handful of examples).  

Learning from the experience of state-of-the-art entity search tasks presented in 

more detail in Section 5.1, in Section 5.2 we discuss the problem of query formula-

tion and propose a satisfying solution requiring low effort from the user. Finally, in 

Section 5.3 we introduce our system for instance-based entity search along with the 

underlying theoretical foundations and corresponding evaluation. But before going 

into any more detail, in the following section we give an overview of the state-of-

the-art in example-driven entity search. 

5.1. State-of-the-art in Instance-based Entity Search  

In contrast to all other entity-centric query types, instance-based entity search has 

been extensively researched and it is today one of the core tasks of information 
retrieval. Acknowledging its importance, the Text Retrieval Conference51 (TREC), 

                                            

51 http://trec.nist.gov/tracks.html 
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an on-going series of workshops focusing on important information retrieval chal-

lenges (tracks), introduced an entity track starting 2009. The aim of the entity track 

is to encourage research on entity-centric search on Web data. It proposed a stand-

ard set of queries and corresponding results extracted from ClueWeb09 and later 

the Sindice-2011 corpora [25] to make the system results comparable to one an-

other.  

When the entity track was first introduced, the entity search task was defined as 

follows: “Given an input entity, by its name and homepage, the type of the target 

entity, as well as the nature of their relation, described in free text, find related 

entities that are of target type, standing in the required relation to the input entity”. 

This task is known today as Related Entity Finding (REF). Some example of REF 

queries from TREC 2011 are presented in Fig. 23. As observed in these examples, 

entity URLs representing the entity homepages are extracted from the ClueWeb09 

corpus. To offer better entity description, in REF-LOD (related entity finding on 

linked data) the entity and homepage are provided as URI from the LOD and refer-

enced from the Sindice-2011 corpus.  

Many approaches have been proposed as a solution to REF. Systems like TongKey 

[94], PRIS [126], FDWIM [34], and many others, stand as a proof of the effort in-

vested in supporting this kind of queries. However, the quality of the results was 

poor. Out of 14 systems submitted until 2011 to the REF challenge, the best achieve 

a disappointing mean normalized discounted cumulative gain (mean nDCG) of under 

0.4. An overview of the results achieved by these systems is presented in Fig. 24. 

Analyzing the problem in more detail, on a query basis, some queries have been 

supported much better than others (see Fig. 25). For instance, query 36, focused on 

searching for companies that build parts for Ford cars has shown the worst results 

                                            

52 http://trec.nist.gov/data/entity/11/11.topics-2.txt 

 

Fig. 23. Example of REF queries from TREC 201152. 
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while query 51 searching for national institute of health organizations was supported 

better by all systems. It seems that the <narrative> section describing some kind of 

an association relation between the query entity and the result has a big influence 

on the quality of the result. If it is complex and has to be reasoned out of data, like 

in the case of query 36 then the results are poor. However, if the required entities 

are already linked to the query entity with the given relation on some page on the 

Web, like in the case of query 5153, the results are much better.  

                                            

53 http://en.wikipedia.org/wiki/National_Institutes_of_Health#Institutes_and_Centers 

54 http://krisztianbalog.com/files/talks/smer2011-ref.pdf 

 

Fig. 24. Mean nDCG of 14 REF systems on TREC REF queries54. Results per system. – Ba-

log et al. [6].  

 

Fig. 25. Mean nDCG of 14 REF systems on TREC REF queries54. Results per query – Ba-

log et al. [6].  
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The entity relation given in the <narrative> tag is complex and difficult to consider 

for entity selection. To provide for more information, a pilot task called Entity List 

Completion (ELC) was introduced in 2010 for the entity track of TREC. In addition 

to the information provided in REF queries, ELC queries comprise examples of tar-

get entities. The basic idea is that the positive examples of result entities be of some 

help in mining the user intentions if the narrative part of the query is too complex. 

Furthermore, besides the broad entity type of the target entities, a more specific 

type, usually from the DBPedia Ontology is also provided to narrow down the result 

list. An example of an ELC query from TREC 2011, comprising besides the query 

entity also seven exemplified target entities, is presented in Fig. 26. With this addi-

tional information, systems extended to support ELC queries like PRIS [132], or LIA-

iSmart [17] already show better results with an average precision at 10 retrieved 

entities (further denoted as precision@10) of about 0.7. 

In conclusion, queries formulated like in the case of ELC, comprising many more 

entities and having a specific target entity type, allow for results of better quality 

than REF. However, looking back at our problem of supporting entity centric search 
by means of instances, our experience in developing systems building on user input 

and user feedback ([56, 59]) shows that it is improbable that users provide such 

elaborated queries. With this in mind, our task is more similar to REF. But without 

                                            

55 http://trec.nist.gov/data/entity/11/11.elc.topics.txt 

 

Fig. 26. Example of ELC queries from TREC 201155. 
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examples of the expected entities, systems performing REF seem to have issues in 

fully understanding the requirements.  

However, REF is more general than what we intend with our instance-based entity 

search system. With REF, one can freely express various constraints that are difficult 

to understand without further support. In our case, we are interested in finding 

entities of the target type, showing a high similarity towards the provided entity (the 

user given instance). In this respect, we consider that instance-based entity search, 

is a simplified REF task. Is this enough to provide for good quality results? Learning 

from the experience of both REF and ELC, in the next section we provide a detailed 

description of an instance-based entity search query that is both user friendly and 

effective in transmitting the user intentions.  

5.2. The Instance-based Entity Query 

The task in instance-based entity search is to find entities that are similar to a given 

example. With this task in mind, there are few important things to be learned from 

REF and ELC: 

 Both REF and ELC are built to search for entities that are in a given relation 

to a given entity. Even if complex, in the case of ELC, this relation is made 

accessible with the help of positive examples of entities having that relation 

towards the query entity. For our task, we are interested in just one relation: 

entities that are highly similar to the query entity. If for instance, the user 

were to search for sports cars, with ‘Ferrari 599‘ as an example, one would 

expect other Ferrari, Lamborghini, Aston Martin, or Maserati models to be 

returned rather than the Volkswagen Golf or the Ford Mondeo. In conse-

quence, there is no need for a <narrative> tag or any other specification of 
the relation between the query entity and the target entity, as this is a con-

stant component of the query. 

 Both REF and ELC were meant to be used by advanced users with deeper 

knowledge of the Semantic Web or by information retrieval systems to im-

prove search results. But neither of the two was intended for the large pro-

portion of normal Web users. As such, the required information is not really 

user friendly: every piece of information that one has to provide in order for 

entity search to work, increases the cognitive pressure on the user. Our goal 

is to keep this load as low as possible. For this reason, we aim at a system 

that is able to work even with queries comprising just one entity. As learned 

from ELC, examples of target entities help to better understand the user 

intentions. Using a frequentist approach, systems like PRIS performing ELC, 

use these positive examples to derive a bag of words like vocabulary that is 

representative for these positive examples. Using this vocabulary as a model, 

such systems search for other entities using more or less the same vocabu-

lary. At its core, this approach extracts the essence of the target entities and 

builds a prototypical representation. We argue that, especially for our task 
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of instance-based entity search, one does not require multiple examples of 

entities. Instead, we believe that one well-chosen example, which people usu-

ally associate with the intended entity type, is enough for a system to retrieve 

suitable entities. 

 Both REF and ELC require that the user provides a target entity type. The 
entity type is also beneficial for disambiguation purposes. Can we spare the 

user from providing the entity type? According to our experiments it seems 

that without the entity type, it is difficult to disambiguate the user intentions. 

Even providing more than one entity as an example is less beneficial than 

providing an entity and the type. This problem will be discussed in more 

detail in the experimental section.   

Picking up on the example of query 36 (presented in Fig. 25) from the REF track, 

which is not well supported by entity search systems, adapted to our task of in-

stance-based entity search, the query in natural language would be to search for 

‘organizations like the Ford Motor Company’. The instance is ‘Ford Motor Com-

pany’ and the target entity kind is ‘Organization’. The user query becomes in this 

case ‘Ford Motor Company: Organization’.  

The instance-based entity search query has the pattern ‘Instance: Entity Type’ and 

no further relation, narrative, or target entity examples are required. The relation 

is always the same (similar to), and since the instance is typical for the entity type, 

no other examples should be necessary. But if the entity type is provided, why also 

demand an entity? One could just retrieve all entities of the entity type given in the 

query like presented in Chapter 3. Indeed entity types are very useful in organizing 

entities. Actually, all information in Wikipedia, whose articles describe entities, is 

organized based on a hierarchical category system56 built on entity types. This way, 

articles describing entities of the same type belong to the same category, bearing 

the entity type name. Manually inspecting articles on Wikipedia having the same en-

tity category it can be observed that for entities of the same type, the structure of 

Wikipedia articles is often very similar with nearly identical first-level headings. En-

couraged by this observation we analyzed a larger number of entities. For instance, 

starting from the list of 3,000 diseases featuring an article on Wikipedia we extracted 

the headings of all articles (purely structural headings of Wikipedia like “References” 

and “External Links” were pruned). Indeed, even over large samples of entities, a 

common structure can be extracted (see Fig. 27). A similar result holds in the case 
of American presidents, yet with lower percentages. Both entity types form homo-

geneous groups. However, this is not always the case: the same experiment per-

formed on all companies from the S&P 500 list shows that, with the exception of 

only two headings (Products and Acquisitions) there is no common article structure 

for this category. Going a step further and inspecting the article headings and topics 

                                            

56 http://en.wikipedia.org/wiki/Wikipedia:Categorization 
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for companies from the same business field, the structure becomes more homoge-

neous. For instance, articles for automotive companies often cover topics like ‘Alli-

ances’ or ‘Motorsport’, in contrast to articles for pharmaceutical companies, where 

topics like ‘Clinical Trials’ and ‘Litigation’ are more common. 

In consequence, entity types, and especially superordinate or basic entity types 

which are more general, may group heterogeneous entities together. Providing only 

the entity type, e.g., ‘Organization’ will return all kinds of companies and not only 

‘Ford Motor Company’ and alike. In this case, in order to find a sweet spot between 

the more general entity type, and the user information needs, an entity example is 

required. Similar to an anchor, the entity fixates the focus of the user needs even 

within heterogeneous entity types. One could argue that tailored, subordinate entity 

types, like ‘Car making companies’ produce better results. Unfortunately, the prin-

ciple of economy and informativeness trade off introduced by Loyd K. Komatsu, dis-

cussed in Chapter 3, strikes. The more specific the types the less chance that entities 

are categorized labeled or associated with them. In consequence less entities can be 

extracted from Web data. While systems like presented in Section 3.1, building on 

entity mining, have proven quite successful for subordinate entity types, it’s difficult 

to know beforehand what kind of entity type the user will provide. We believe that 

in this respect, an example entity is valuable for fixating the user intention while 

allowing the system to be more robust and tolerant towards user input. Considering 

all this, in this chapter we inspect the value of an entity example plus entity type, for 

dealing also with more general entity types referring heterogeneous entities.   

Of course the success of this approach is influenced by the choice of the query 

entity. While there is room for flexibility (e.g. providing ‘Apple: Fruit’ or ‘Pear: Fruit’ 

wouldn’t make much difference), it’s difficult to systematically support such queries 

if the entities provided by the user are but poor examples of the intended entity 

 

Fig. 27. Wikipedia article structure – percentage of entities (y-axis) belonging to the same 

category and sharing a certain heading (x-axis, values less than 10% are omitted). 
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type (e.g. ‘Olive: Fruit’ or ‘Tomato: Fruit’). Therefore, avoiding outliers, or better 

yet, aiming for entities that are typical for the entity type is in our opinion the basic 

requirement for instance-based entity search to work. Fortunately, experiments 

concerning typicality from the field of cognitive psychology have shown that people 

have no difficulty in remembering examples of typical entities if the entity type is 

known to them ([105]), so this requirement should not pose any difficulty to users.  

With the query given as presented in this section, we are now ready to proceed 

to describing our instance-based entity search system.  

5.3. System Description 

The task is to find entities similar to a user provided example, and the query pro-

vided by the user is of the form ‘Instance: Entity Type’. This is a simplification of the 

more general REF task. Our claim is that with this simplified type of query, but with 

a well-chosen entity as an input, being typical for the intended entity type, one can 

obtain acceptable results similar to ELC systems and much better than achieved by 

systems performing REF tasks, even with simple heuristics. 

At the core of this claim lays the concept of typicality, which we will discuss in 

more detail in the following subsection. 

5.3.1. Theoretical Foundations  

Since its formal introduction in [104], the psychological concept of typicality has 

been widely researched and is now well established in cognitive psychology litera-

ture. It has been shown times and again that some instances of a semantic domain 

are more suitable than other instances to represent that domain: For example Jimmy 

Carter is a better example of an American president than William Henry Harrison. 

Leading the quest for defining the psychological concept of typicality, Eleanor Rosch 

showed empirically that the more similar an item was to all other items in a domain, 

the more typical the item was for that domain. In fact, the experiments show that 

typicality strongly correlates (Spearman rhos from 0.84 to 0.95 for six domains) with 

family resemblance a philosophical idea made popular by Ludwig Wittgenstein in 

[129]. For family resemblance Wittgenstein postulates that the way in which family 

members resemble each other is not defined by a (finite set of) specific property(-

ies), but through a variety of properties that are shared by some, but not necessarily 

all members of a family. Based on this insight, Wittgenstein defines a simple family-

member similarity measure based on property sharing: 

 𝑆(𝑋1, 𝑋2) =  |𝑋1 ∩ 𝑋2| (24)  

where X1 and X2 are the property sets of two members of the same family. How-

ever, this simple measure of family resemblance assumes that a larger number of 

common properties increase the perceived typicality, while larger numbers of dis-

tinct properties do not decrease it. But large numbers of distinctive properties for 

a family member should definitely not lead to the member’s selection as a good 
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example. Therefore, the model proposed by Tversky in [122] suggests that typicality 

increases with the number of shared properties, but to some degree is negatively 

affected by the distinctive properties: 

 𝑆(𝑋1, 𝑋2) =  
|𝑋1 ∩ 𝑋2|

|𝑋1 ∩ 𝑋2| +  𝛼|𝑋1 − 𝑋2| + 𝛽|𝑋2 − 𝑋1|
 (25)  

where α and β ≥ 0 are parameters regulating the negative influence of distinctive 

properties. In particular, when measuring the similarity of a family member X2 to the 

family prototype X1, a choice of α ≥ β poses the same or more weight to the prop-

erties of the prototype itself. For α = β = 1 this measure becomes the well-known 

Jaccard coefficient. For α+β ≤ 1 more weight is given to shared features, while for 

α+β > 1 diverse properties are emphasized, which is useful when dealing with more 

heterogeneous families. 

Using either model allows to determine the pairwise similarity between all family 

members. The typicality score for each member is obtained by summing up its sim-

ilarity values to all other members but this is not the focus here. The goal is to 

identify those entities that are similar to the entity provided in the query given that 

the query entity is typical for the intended entity type.  Relating to the concept of 

family resemblance coined by Wittgenstein, the goal is to find the family of the entity 

provided as a query. To do this, we rely on Tversky’s similarity measure (eq. 25) to 

find those k-nearest neighbors to the query entity. These entities not only have the 

same entity type as the query entity, but they also share similar structure.  

The value of θ has to be established dynamically, based on the start entity and the 
entities falling into the same category. For this purpose, we employ automatic 

thresholding methods, in particular the ISODATA algorithm [5], a 1-dimensional 

form of the k-means clustering algorithm.  Applied to the entities falling into the 

same category as the query, this method identifies the similarity threshold that splits 

the entities in two groups: one comprising homogeneous entities with high similarity 

to the query entity, which is the entity set that we want to return to the user, and 

one containing all the less similar entities.  

The instance-based entity search is now reduced to finding the family of a given 
entity being representative for the intended entity type. With the task defined, in 

Definition 9: Family. Let Q be an instance-based entity query, Q:=X: T(X), with X 

the instance entity, and T the entity type. Let C be the set of entities of type T. The family 

of X w.r.t. entity type T, denoted FX,T, is a subset of entities from C, with: 

𝐹𝑋,𝑇 = {𝑌|𝑌 ∈ 𝐶 ⋀ 𝑆(𝑋, 𝑌) > 𝜃} 

where 𝑺(𝑿, 𝒀) represents the similarity between entities X and Y (see eq. 25) and θ is 
a family specific threshold. 
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the following subsection we proceed to describing the entity retrieval system in 

detail.  

5.3.2. System Architecture 

The main task to be handled by the system is the computation of the family set 

according to the heuristics described in Definition 9. But from a technical stance, 

the main challenge lies in preparing the available data such that the results are satis-

factory. As shown in [20] on the example of ELC tasks, approaches relying on both 

structured and unstructured data achieve results that are far superior to using only 

structured data for entity search. Our evaluation on entity type queries with both 

structured and unstructured data presented in Section 3.1.3, supports this observa-

tion. Building on state-of-the-art information extraction, for the prototype system 

we invest considerable effort to extract information from unstructured data and 

make it available in triple form, to ultimately ensure the best setting for instance-

based entity search. Fig. 28 shows an overview of the system. In brief, the system 

works as follows: 

 Information Extraction: Documents crawled from the Web, are pro-
cessed with Open Information Extraction (OpenIE) methods. This results in 

a large number of facts represented as triples (subject, predicate, object). 

The subject and the object usually contain entities, while predicates repre-

sent attributes of the entities, see [82]. Since the same entity can be ex-

pressed in multiple forms, an Entity Dictionary listing unique entities and their 

possible string representations is kept and updated. Similarly, some attribute 

may be expressed by synonymous predicates. Therefore, unique attributes 

and possible representations are also stored as a Paraphrase Dictionary. All 

 

Fig. 28. Instance-based entity search based on family resemblance. System architecture.  
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extracted facts are cleaned based on these dictionaries. Then, they are 

stored in a knowledge base (we use a Virtuoso RDF database in our proto-

type). 

 Query Engine: The query engine allows users to provide a query entity 
together with the corresponding entity type. Starting from the provided en-

tity type all known entities belonging to this type are extracted either directly 

from Web documents or, like in the case of ELC tasks, from special diction-

aries like Wikipedia. In a filtering step only entities being most similar to the 

query entity are selected to form the query’s family. This set of entities is 

returned to the user.  

The remainder of this section will provide a more detailed description of the ar-

chitecture’s main components. 

Information Extraction  

The information extraction (IE) module is responsible for processing documents 

crawled from the Web and for providing a relatively clean triple collection with 

disambiguated entities and predicates. Being query-independent, all these operations 

are performed offline. While considerable efforts are being made in recent develop-

ments like the PATTY system [88], until now there is no readily available framework 

that provides this complete functionality. In consequence, we employ state-of-the-

art OpenIE tools to solve this task. For our implementation we used ReVerb [37], 

but basically any OpenIE tool that fulfills a basic level of quality requirements can be 

used. The IE component needs two types of dictionaries to work properly: one for 

uniquely identifying entities and one for uniquely identifying predicates.  

Entity Dictionary: In Web documents (including news, blogs, tweets, etc.) the 

same entity is often represented by various strings. Two problems have to be dis-

cussed here: synonymy, i.e. every entity can have more than just one string represen-

tation form, e.g. “Barack Obama”, “B. H. Obama”, etc. and ambiguity, i.e. every string 

can refer to different entities e.g. “Clinton” may refer either to “Bill Clinton” or to 

“Hillary Clinton”. 

For synonymy, we assume that a mapping from different strings to the entity is 

provided. For simplicity, our prototype is restricted to Wikipedia entities, and uses 

the different string representation forms each entity has been labeled with in Wik-

ipedia. For better coverage, different thesauri like WordNet or MeSH can be used.  

Solving the problem of ambiguity is known as Entity Disambiguation. In order to 
solve this, we follow the rule of thumb that any ambiguous reference to some entity, 

say “Clinton”, is preceded in the document by some clear entity reference like “Pres-

ident Clinton” or “Mrs. Clinton”. If no such clear-cut reference can be found, we 

relax our assumption by following on the approach introduced in [82] assuming that 

each entity string is uniquely addressing exactly one entity within a document. In this 

way, on a document basis, we fill up the entity dictionary with string representations 

and the corresponding unique entity identifiers. The entity dictionary is used to clean 
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all facts extracted by OpenIE by replacing all entity names with unique, disambiguated 

identifiers.  

Paraphrase Dictionary: As in the case of entities, predicates are also ex-

pressed by means of synonym terms (president_of, won_elections_in, 

was_elected_president_of, etc.). However, in the case of predicates an acceptable 

mapping between a meaning and its representation forms has yet to be developed. 

The field of paraphrase discovery is concerned with this problem [8]. State-of-the-

art methods rely on a class of metrics called distributional similarity metrics [75] built 

on the assumption that similar objects appear in similar context (known as the dis-

tributional hypothesis [52]). In the context of paraphrase discovery, this hypothesis 

is applied as: two predicates are paraphrases of each other, if they are similarly dis-

tributed over a set of pairs of entity-types. Furthermore, in contrast to the entity 

ambiguity problem, a simplifying assumption is made: predicates can’t have multiple 

meanings (single-sense assumption [130]). Following these insights and similar to 

approaches like for example in [51], we applied hierarchical clustering to the predi-

cate/entity-type pairs distributions. As a similarity measure we have used the well-
known cosine metric with mean linkage as criteria. Still, despite experimenting with 

different similarity thresholds, the success of the paraphrasing process is rather lim-

ited. While in manual inspection the clusters prove good precision, just about 7% 

(for 0.9 similarity threshold) actually build clusters. Even lowering the similarity 

threshold to 0.7 only increases this number to 16%. The rest of the predicates build 

single node clusters although a substantial number of cases show obvious para-

phrases. This is consistent with results from the literature [130], where even with 

enhanced information, the recall barely reaches 35%. 

For each predicate, the corresponding cluster representative is determined as 

the most frequent predicate of the respective cluster. Each predicate and cluster 

representative is then inserted into the paraphrase dictionary. The system uses the 

paraphrase dictionary to clean the triples regarding predicate synonymy. 

Query Engine 

The query engine module represents the online part of the system. It is responsible 

for extracting the entity family. It accomplishes two tasks: it extracts entities of the 

given type, and it restricts the extracted entities to a small collection of entities 

having most similar structure to the query entity. 

The first step in this direction is to identify all entities of the type given through 

the query. To do this, a mapping between the entities and the corresponding entity 

types is needed. Such mappings can be extracted directly from text with state-of-

the-art entity class extraction methods. Such approaches build on lexico-syntactic 

patterns, like “…an X such as Y…” or “… all X, including Y…” expressing “is-a” 

hierarchies between entity category X and entity Y. As the focus of this thesis is not 

the technical process of extracting categories, in the same fashion as ELC systems, 

we also rely on the entity-category mapping provided by Wikipedia to find other 
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entities in the RDF triples having the same category as the query entity. In the second 

step, the system filters the entities according to Definition 9. 

For better overview of how the quantification of attribute typicality is performed 

we present the pseudo-code of our system’s algorithm in Algorithm 1. 

Runtime Analysis 

Like all other REF systems, for our tests, we also rely on ClueWeb09 as a data set. 

ClueWeb09 contains 500 million Web documents. All documents were processed 

offline by our IE module and billions of noisy triples were extracted. After filtering 

out triples that are infrequent or have low confidence values according to ReVerb, 

only approx. 15 million triples, with about 2.2 million entities and 0.6 million predi-

cates remain. On average, the IE module needs about 1 minute to process 8,000 

sentences. On commodity hardware, the complete process for all documents took 

about 11 days.   

For the online part (Algorithm 1), our system requires even for broad entity types 

with thousands of entities about 25 seconds per query. For instance, in the case 

Algorithm 1: Algorithm for selecting the entity family. 

Input: X - query entity, C - set of entities of type T, ϕ - attribute quality threshold, RDF triple 

collection 

Output:  F - set of entities forming the family of X 

1: F ← {𝑋}; x_attr ← ATTRIBUTES(X, RDF) 
2: foreach Y in C do 
3: y_attr ← ATTRIBUTES(Y, RDF) 
4: sim←similarity(x_attr, y_attr)  // Tversky’s similarity, eq. 25  

// computed only once then stored in memory for later use (**) 
5: S←S ∪ sim 
6: end for 
7: θ ← THRESHOLD(S) 
8: foreach Y in C do 

9: y_attr ← ATTRIBUTES(Y,RDF) 
10: sim←similarity(x_attr, y_attr)  // (**) 
11: if sim ≥ θ then 

12: F ← F ∪ Y 
13: end if 
14: end for 
15: return F 

 
16: function THRESHOLD(S)   // the ISODATA method 

17: θ ← avg(S); found ← false 
18:  while found = false do 
19: low ← avgLower(S, θ)   // average of values < θ 
20: high← avgHigherEqual(S, θ)  // average of values ≥ θ 
21: θnew ← (low + high)/2 
22: if abs(θnew  - θ) < 𝜀 then 

23: found ← true 
24: end if 
25: θ ← θnew 
26: end while 
27: return θ 
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entities of type medical condition or disease, there are 3,513 entities in the disease 

category on Wikipedia. For query “hypertension”, our system needs 22.472 seconds 

to extract the family of the query entity. This covers the following parts: Extracting 

all attributes for all entities (13.350 seconds – an average of 3.8 milliseconds per 

entity); pairwise comparing the 1,329 found in the extracted statements (8.917 sec-

onds – an average of 6.7 milliseconds per comparison); computing the family thresh-

old (21 milliseconds). All other operations (assignments, logical, arithmetical opera-

tors) for the family computation require 184 milliseconds.  

All tests have been performed single threaded. Since all major operations allow 

for parallelization, we have reason to believe that parallelization on a cluster with a 

few hundred CPU cores will reduce query time to less than a second. 

5.3.3. Evaluation 

REF and ELC are the standard tasks which build on example-driven entity search. 

But systems performing REF achieve poor results with an average precision@10 of 

about 0.4. Profiting from a more elaborate query, comprising numerous target entity 

examples, ELC systems achieve acceptable results of about 0.7 average preci-

sion@10. But the query is more complex, and not acceptable for the casual Web 

user. The problem for the poor results of REF systems is the complex relation ex-

pressed in natural language that such systems have to support. However, for in-

stance-based entity search supporting such relations is not needed. Actually there is 

just one relation, that all target entities are highly similar to the entity given as ex-

ample. We believe that in this case, one can achieve results that are comparable with 

ELC, without having to impose complex queries on the user. In Section 5.2 we 

claimed that a query comprising a single entity and its type is enough. But is the 

entity type necessary or is the entity by itself, or maybe together with a few exam-

ples already enough for a system to disambiguate according to the user intention? In 
the following we present an experiment focused on establishing the minimalistic 

form of the query. Afterwards, we proceed to evaluating the quality of the entities 

extracted by means of family resemblance, for various entities.  

Experimental Setup 

Dataset: Presented in the previous section under runtime analysis, all our experi-

ments are conducted on the English part of the ClueWeb09, a standard corpus for 

entity search tasks in TREC. 

Queries. We experiment with three practical types of entities identified in [74] as 

most popular entity-centric queries on the Web. Since named entities are of special 

interest for most applications, we use two types of named entities in our tests: per-

sons (in the sense of American presidents) and organizations (in the sense of com-

panies). In total we experiment over 544 queries split as follows: 44 American pres-

idents and 500 companies. 
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Establishing Ground Truth: TREC provides data samples and gold standards for 

evaluation purposes. These data samples are built for either REF or ELC, and they 

comprise various complex relations between the provided entity and the target en-

tities. In most cases, the query entity and the target entity don’t even share the same 

type. As a consequence the samples from TREC are not useful for our evaluation 

and no other suitable evaluation dataset is available. We rely in this case on human 

assessment. 

Measures. For the disambiguation experiments no entity types are provided. Given 

that in family resemblance entities are extracted based on structural similarity, we 

compare the success of various query types based on the quality of the extracted 

structure. For this purpose we measure the quality of the results in terms of preci-

sion@10 on attributes. Precision@10 is also the measure for the entity retrieval 

experiments presented in the second part of the evaluation section, only this time 

the quality of the entities found to be similar to the query entity is measured. 

Disambiguation of Queries 

As previously stated a query consists of two parts: an entity and the entity type for 
disambiguation. This is because a single entity is not nearly enough to understand 

what the user intended. Still, allowing users to give some examples might also help 

disambiguation. The more examples, the better a query can be disambiguated, how-

ever increasing query complexity. On the other hand, following on the example of 

REF and ELC systems, a user provided entity type leads to easy and high quality 

disambiguation. To establish which query form is better, we performed three ex-

periments:  

a) Users provide an entity, without additional information.  

b) Users provide five entities of a similar kind - most users are able to provide 

three to five examples. The cognitive burden increases heavily beyond that. 

c) Users provide an entity together with the entity type.  

Evaluation Method: Since our approach relies on resemblance based on structure, 

i.e. shared attributes, without an entity type, for experiments a) and b) there is no 

entity set to filter the family from. A possible approach would be to consider all 

kinds of entities to start with, but with millions of entities on the Web such an 

approach is not really practical. Still, in order to evaluate the usefulness of the query, 

we measure the quality of the entity structure being extracted starting from a single 

entity. Drawing on the ELC literature favoring frequentist methods, we assume that 

attributes frequently appearing together with either the query entity for experiment 

a), with all entities provided as query for experiment b), and with all entities of the 

entity type given in the query for experiment c) define a good structure for their 

entity type. Relying on the infrastructure as provided by the information extraction 

described in section 5.3.2 we thus implemented the frequency-based baseline ap-

proach. 
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In Fig. 29 we present the top 10 attributes for our running example: American 

presidents. For just one entity (Fig. 29.a), the frequency-based method’s precision 

proves really poor. No disambiguation can be performed and thus, all kinds of at-

tributes are considered. Barack Obama (the blue line in Fig. 29.a) has proven to be 

an unlucky choice for the frequency-based approach. Averaging the precision over 

multiple American presidents shows an overview of the results (the magenta line in 

Fig. 29.a). In the case of five entity examples for disambiguation, the quality of the 

results is average at best (the red line in Fig. 29.b). Again, the reason is proper dis-

ambiguation. Finally when the category of American presidents is also provided (the 

green line in Fig. 29.c), a single entity is enough for extracting high quality structure.  

Hence a query consisting of some entity and a respective category leads to better 

disambiguation, while requiring also less effort than a list of examples. 

Family-based Entity Extraction 

Through this chapter we argued that our approach based on family resemblance is 

particularly useful for handling the more difficult queries with entity types grouping 

together heterogeneous entities. Our experiment on the Wikipedia article content, 

has shown that ‘organizations’ is such an entity type.  In consequence, in this section, 

we evaluate the quality of the retrieved entities on the example of the S&P 500 list 

of companies and ClueWeb09 as a data source. 

The query always has the same structure: ‘company name: Organization’. For each 

query, the system compares the query entity with all other 499 companies from the 

S&P list on structural similarity to ultimately select the family of entities highly similar 

to the query entity. For companies like “Toyota Motor Corporation”, “Renault 

S.A.”, or “Volkswagen A.G.”, which are typical car makers, our systems builds fami-

lies with 17 to 24 entities, clearly focusing on car companies (30% - 50% of the 

selected family members are car makers). For queries like “Apple Inc.”, “Google 

                                   a)                                                                b) and c) 

 

Fig. 29. Disambiguation of queries: query comprising a single entity - (a) on the left hand 

side, five entities - (b) on the right hand side or an entity and its entity type - (c) on the 

right hand side.  
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Inc.” or “Microsoft” the results are similar, with 40% - 60% of IT companies in the 

selected family. The same behavior has been observed also for companies from the 

energy, finance, food, medical, and other sectors. This is consistent with our analysis 

on Wikipedia, which showed that articles already feature homogeneous content for 

companies from the same activity field. Driven by a single entity as an example, our 

self-tuning approach focusing around the family of the query entity is quite successful 

in finding a semantically meaningful sweet spot between the more general superor-

dinate or basic entity types, and the very specific types.  

Our system is not directly comparable with systems performing REF or ELC be-

cause of the different focus in terms of the relation between the query and target 

entities. But since these standard entity search tasks are the closest to solving the 

problem of instance-based entity search, they may still be useful as reference. To 

measure the results of our approach, we computed precision@10 for various enti-

ties by manually inspecting on the entities belonging to the same field as the query 

entity. In Table 17 we present the results for entities from the field of automotive 

and IT. With an average precision@10 of 0.72 and 0.8 for automotive and IT com-
panies respectively, the results are far superior to the average 0.4 achieved by 

bitRFRun (the system achieving the best results for the REF TREC task - Fig. 24). 

Even with more simple user friendly queries, our results are more similar to the 0.7 

average precision@10 of Pris and LIAiSmart for the ELC TREC task. 

Table 17: Precision@10 for organizations from the fields of automotive and IT. 

Query Precision@10 Field 

BMW: Organization 0.6 

A
u
to

m
o
tive

 

Fiat: Organization 0.7 

Toyota: Organization 0.7 

Renault: Organization 0.8 

Volkswagen: Organization 0.8 

Apple: Organization 0.8 

IT
 

Google: Organization 0.8 

IBM: Organization 0.8 

Microsoft: Organization 0.8 

Yahoo: Organization 0.8 
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It’s interesting to notice that even though we queried on different entities, the 

corresponding company field was always correctly identified. A level of flexibility 

regarding the query entity is provided. Throughout this chapter we argued that en-

tities showing high typicality towards the intended entity type are more helpful for 

grounding the user information needs. Indeed, our experiment shows that for com-

panies like Honda, an automotive company better known for its motorcycle manu-

facturing (Honda has been the world's largest motorcycle manufacturer since 1959) 

with a value of 0.1 achieved precision@10 is rather low. The family is a mix of com-

panies, and Harley Davidson seems to be more related to it than any other car 

manufacturer out of the S&P 500 list of companies. As expected and according to 

the concept of typicality introduced by Rosch et al, some atypical examples of enti-

ties can be misleading causing poor selection results.   

5.4. Conclusions 

In this chapter we presented an in-depth view of instance-based entity search. This 

type of search is inspired by query by example, a type of search where users give 

one or more examples and the retrieval system returns similar objects. Adapted to 

entity search, users provide examples of target entities. Up to a handful of examples, 

it should not be a problem for most users, since one already visualizes suitable en-

tities when performing the search anyway. Obviously the number of examples plays 

an important role: requiring fewer examples, the system is more user friendly. But 

fewer examples also capture less information about the intended entity type. This 

ultimately affects the power to disambiguate the exact user intentions. In conse-

quence our prime concern regarding this query type is to find an instance-based 

entity search query structure that is user friendly, but at the same time allows for 

proper disambiguation. 

The most basic and user friendly form of instance-based query comprises one 

single entity. But our experiments on the example of American presidents show that 

a query comprising one single entity leads to poor results. Furthermore, the choice 

of the entity greatly influences the outcome in terms of disambiguation. Even for 

queries comprising up to five example entities the results were only average. From 

our previous work we have learned that only few users are able and willing to pro-

vide more than five examples. In consequence, an instance-based query comprising 

examples only, is not sufficient.  

Standard entity search tasks based on examples like REF and ELC have more elab-

orate queries. They comprise the example entity, the target entity type, the relation 

between the source and the target entity and in the case of ELC also multiple ex-
amples of target entities. Such queries are obviously not adequate for end users. For 

our task, from all these elements, the entity type seems to bring the most. Actually, 

as we have seen in Chapter 3, the entity type by itself is already enough to perform 

entity search. Our experiment on the Wikipedia entity types (which are the standard 

types used by ELC systems) has shown that type search works well if the types 
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provided by the user are homogeneous, classifying together entities that are highly 

similar. But the success of the retrieval process should not be tied to the entity type 

being homogeneous or not. The system has to be flexible enough such that if the 

entity type is heterogeneous, the result still matches the user intentions. Our ex-

periments show that even a single example of a target entity, is very valuable in this 

respect. All things considered, we have reason to believe that the minimalistic form 

of the instance-based entity search query should comprise only an example and the 

corresponding entity type. This is much less than standard example-based entity 

search tasks, and offers more flexibility than just entity type-based search. 

But the example entity is only valuable if it captures at least to some extent the 

user intentions. As a constraint, outliers have to be avoided. Assuming that the entity 

example is well-chosen, we build on the concept of family resemblance and provide 

a practical way for computing families of entities. These entities are of the type pro-

vided by the user, and together with the example entity form a homogeneous group. 

Such an approach achieves impressive results being able to retrieve semantically 

meaningful entities even for entity types, which have proven problematic for REF 
and ELC (Fig. 25).  

  All in all, our analysis on instance-based queries for entity search has shown that 

up to five examples are not enough for proper disambiguation. With a query com-

prising an entity and corresponding entity type, and a simple similarity-based system 

the results are already practical. Furthermore, the system is more robust, as it can 

be more tolerant with the user, in terms of the chosen entity or entity type, as long 

as the entity is not an outlier and the entity type still makes sense.   

This chapter concludes our presentation of methods for searching for entities. 

But lately, in the wake of systems like the Google Knowledge Graph, another kind 

of entity-centric search, focused on providing concise entity summaries has received 

a lot of attention. In the following chapter we pay closer attention also to this kind 

of queries. 
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Entity Summarization 

Most queries on Web data focus on searching for entities. We have covered this 

kind of queries extensively in the last three chapters. But lately, entity summarization 

which is another kind of entity-centric search, has strongly emerged: want to get 

some idea about a celebrity, a company or even a disease? Google it! Indeed Google 

evolved to accommodate this kind of queries. Today, the popular search engine fea-

tures new entity summarization functionality called the Knowledge Graph. Inte-

grated directly into the Web search page it summarizes knowledge of common in-

terest using some fixed schema to provide a good entity overview. After typing some 

entity name into Google’s search field, an entity summary is provided on the right 

hand side of the search results, if the Knowledge Graph contains the entity. A sample 
entity summary for ‘Barack Obama’ is shown in Fig. 30.  

According to Google’s official blog57, the Graph mainly relies on manually curated 

data sources like Wikipedia Infoboxes, Google’s Freebase, and schema.org annota-

tions on the Web. But the Knowledge Graph has a major shortcoming: it doesn’t 

cope with the number of new entities published daily on the Web. It only provides 

information on well-known entities already having a Wikipedia article, Freebase rec-

ord or sufficient schema.org annotations. Our extensive evaluation on the example 

of diseases shows that, with just 3,000 out of 14,199 diseases featuring a Wikipedia 

article or Freebase entry, this is indeed rather limited. Considering its low ac-

ceptance of only about 1.5% of the websites, schema.org doesn’t contribute much 

to extending the knowledge base either. This way, the majority of entities (in par-

ticular, new or more obscure entities) not present in the manually curated Web 

resources used by Google’s Knowledge Graph, cannot benefit from data summari-

zation. 

We argue that a data-driven approach, of building entity summaries drawing not 

only from existing knowledge bases but also directly from unstructured data on the 

Web, is more suitable for entity-centric search. Inspecting ClueWeb09, approxi-

mately 11,000 statements regarding Barack Obama can be extracted using entity 

recognition and NLP techniques58. But the volume of information is huge and hardly 

appropriate for giving an overview of an entity. With the information needs of the 

majority of users in mind, when browsing through the large variety of attribute: value 

                                            

57 http://www.googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html 

58 Like in previously presented analysis on ClueWeb09, the statements are structured as triples of the form 

(subject, predicate, object). Predicates represent attributes and objects represent the corresponding values. 
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pairs for ‘Barack Obama’, we found that many of them, e.g., visit: Israel, love: Broc-

coli or spent_vacation_in: Hawaii, seem irrelevant for satisfying common infor-

mation needs. Can attributes like visit or love be recognized as irrelevant and pruned 

to obtain a suitable, yet concise structure? 

The first idea that comes to mind is a frequency-based solution. Approaches like 
the count of witnesses as a measure for the importance of attributes have often 

proven efficient [27, 82]. Together with the Knowledge Graph, they serve as base-

line for evaluating new approaches. But browsing through the triples for Barack 

Obama, one can observe that some of the information is common to all American 

presidents. For instance they all share features like their year of election, term in 

office, being members of some party, etc.  One could say they form a small world 

built on characteristics that are typical for American presidents. Intuitively, a data-

driven entity summary for “Barack Obama” as an “American president” would com-

prise a few, good descriptive properties selected from these shared characteristics.  

Taking a closer look at how the attributes extracted for Barack Obama are actu-

ally shared among the 44 American presidents (see Fig. 31) a typical power law dis-

tribution can be observed. While the attributes that are common and important for 

this small world of presidents fall into the head of the distribution, the tail mostly 

comprises trivia about individual presidents. That means, by simply chopping off the 

tail, one might already identify common attributes of good quality. Is such a distribu-

tion valid for all types of entities, i.e. can the lessons learned from the small and 

 

Fig. 30. Knowledge Graph – results for Barack Obama.  
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homogeneous set of 44 American presidents be generalized? And, how can this dis-

tribution efficiently be derived and pruned, i.e. can this also be performed for classes 

with thousands of entities?  

Motivated by these observations, in this chapter, we present ARES (AttRibute se-

lector for Entity Summaries) a system for extracting data-driven structure for entity 

summarization. Regarding the user query, we first considered a query comprising 

just the entity of interest. However, our experiments presented in Chapter 4 in 

Section 5.3.3, show that disambiguation is best when besides the entity also the 

entity type is provided. For this reason, and similar to SCAD [4], the query for the 

task of entity summarization presented in this chapter comprises both the entity and 

entity type, e.g., “Barack Obama: American President”. After all, under the bonnet, 

the Knowledge Graph enriches the query entity with the Wikipedia category system 

in a similar way as we do. For such queries, ARES delivers highly typical attributes 

for the query entity in the context of the provided type. Finding the attribute values 

to complete the entity summary becomes straight-forward once the structure has 

been extracted [4, 134]. 

Exploiting facts extracted from the Web the main task of ARES is to derive a 

common entity structure with high quality attributes, typical for entities of the same or 

at least similar kind. In the previous chapter we built on the concept of typicality to 

extract families comprising entities showing high similarity amongst one another. 

Following on this idea, in this chapter we extend the concept of typicality and define 

 

Fig. 31. Distribution of extracted attributes (x-axis) sorted by how many American presi-

dents (y-axis) share each attribute (with zoom-in on the first 100 attributes).  
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attribute typicality together with a novel and practical rule for actually calculating it. 

We evaluate the quality of extracted attributes in terms of precision and recall de-

ploying the basic structure from matching Wikipedia articles as ground truth together 

with human assessment.  

But what should such a summary comprise and how long should it be? These 

questions will be addressed in Section 6.1, followed by the discussion of related 

work (Section 6.2) and the presentation of ARES, its theoretical foundation and the 

evaluation of the entity summaries produced by ARES for various entities and entity 

types (Section 6.3).  

6.1. Reverse-Engineering Google’s Knowledge Graph 

The Knowledge Graph is the main reference system when it comes to entity sum-

marization. Before going any further, we believe it is important to understand how 

this system works and more important what data sources the Graph relies on. While 

no scientific works have been published on this topic, according to Google the 

Knowledge Graph mainly relies on the Wikipedia Infoboxes, Freebase and 

schema.org annotations. As we have shown in Section 2.2 schema.org did not gain 

traction. There were but few annotations, and most of them (more than 66%) re-

ferred to products, news articles, movies or music. Unfortunately, for entities not 

related to e-shopping and especially for entities of broad interest like medical con-

ditions the number of annotations didn’t reach critical mass. But having at least some 

annotations for each entity is crucial for the Knowledge Graph to provide high qual-

ity summaries: the reliability of a piece of information is questionable if found in just 

few annotations from some unknown websites.  

Schema.org is hardly used on the Web. In consequence it can’t really contribute 

to the Knowledge Graph. It seems that the Knowledge Graph is mostly limited to 

entities from Wikipedia and Freebase. Similar observations have been made by tech-

nology blogs59 that browsed through entities featuring a Knowledge Graph snippet. 

But only entities that reach a certain level of interest make it into Wikipedia or 

Freebase. This means that the Knowledge Graph is not able to scale with the thou-

sands of entities hitting the Web each day. 

Wikipedia and Freebase largely overlap in terms of the covered entities and entity 

structure. Freebase is mainly focused on providing structured information (same as 

Wikipedia Infoboxes but more extensive). Wikipedia additionally provides better, 

more accurate textual description, each entity being presented in a comprising arti-

cle. Infoboxes are fixed-format tables built on one or more hierarchical Infobox 

templates. The purpose of Infoboxes is to consistently present a summary of some 
unifying aspects that articles share. The idea is that articles of entities of a similar 

kind share the same Infobox structure. In this way, similar entities share the same 

                                            

59 http://www.mkbergman.com/1009/deconstructing-the-google-knowledge-graph 
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structure that should flow into the corresponding Knowledge Graph entity summar-

ies.  

But the Infoboxes can be quite extensive, often having more than 30 attributes, 

much more than the Knowledge Graph snippet should comprise. Choosing the 

“right” attributes to build the entity summary is vital for the whole system. For 

instance, the snippet for Barack Obama (Fig. 30) comprises 6 attributes part of the 

“personal details” section from the Wikipedia Infobox (derived from the Infobox 

Person template60). However, nothing really specific regarding his activity as a pres-

ident is mentioned, other than the first sentence being copied from the Wikipedia 

article. The information chosen to display in the Knowledge Graph is quite general, 

common to any person be it a politician, writer, painter, actor or any other person-

ality. In fact, the same snippet structure is provided for instance also for actor Kevin 

Bacon. But relevant information like the year Obama took office or which political 

party he belongs to, are not being included in the Graph’s summary despite being 

present in the corresponding Infobox. It seems that for this entity, the Knowledge 

Graph only presents the first few attributes of the broader Infobox template the 
entity is associated with – in this case the Person Infobox template. This method 

obviously misses out on important information that we believe should be included 

in the summary. Instead finding a sweet-spot between too broad and too specific 

information, like for instance a subset of the Office holder template61, seems more 

sensible for choosing the attributes to include in the summary. 

But is this only a problem of choosing the right attributes from Infoboxes, i.e. do 

Infoboxes include the right attributes to build entity summaries? In Section 5.2 we 

presented an experiment showing that the Wikipedia article richness is not always 

correctly captured by the uniform article structure. The reason for this behavior lies 

in the fact that the Wikipedia entity category system is not always as specific as 

needed, grouping also articles of heterogeneous entities together. On the example 

of companies from the S&P 500 list, our experiment showed that, with the exception 

of only two headings (Products and Acquisitions) there is no common article struc-

ture for this category of entities. Going a step further and inspecting the article 

headings and topics for companies from the same business field, the structure be-

comes more homogeneous. Despite articles for companies being highly heteroge-

neous, all their Infoboxes follow the same template (the Company Infobox tem-

plate62), summarizing information with 41 generic attributes. Does this general struc-

ture provide suitable selections of attributes that reflect article differences? 

Focusing on the structure provided by the Infoboxes we conducted an experiment 

to investigate two aspects: the number of expected attributes (i.e., how many an entity 

                                            

60 http://en.wikipedia.org/wiki/Template:Infobox_person 

61 http://en.wikipedia.org/wiki/Template:Infobox_officeholder 

62 http://en.wikipedia.org/wiki/Template:Infobox_company 
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summary should feature) and the suitability of generic attributes encompassing all com-

panies to build knowledge snippet structures reflecting important aspects of the het-

erogeneous Wikipedia articles. We selected 50 companies, split into 10 groups, each 

group corresponding to a major business field (e.g. Automotive, Energy, Financial, 

IT, Retail, etc.). DBpedia invested considerable effort in manually handcrafting map-

pings for extracting relatively clean Infobox attributes. After manually eliminating 

semantic duplicates (paraphrases) from the DBpedia Ontology63 for the Infoboxes, 

the number of applicable attributes was reduced to 27. Each company and its cor-

responding attributes and values have then been presented to 25 human subjects. 

Since the concept of “entity summarization” may not be familiar to everybody, the 

task instruction was to select those few relevant properties they would like to see 

in a short description of the company (Fig. 32). The experiment was conducted 

through a crowdsourcing platform (CrowdFlower64) and targeted only workers from 

the Amazon Mechanical Turk. Being more complex than classical crowdsourcing 

tasks, this task required thorough understanding of the instructions. To minimize 

the risk of receiving workers that have low English skills, we limited the workers’ 

country of origin to USA. In total we collected 1250 judgments. Companies were 

presented in random order and attributes were shuffled for each task. 

The number of selected attributes over all judgments on all companies (Fig. 33) 

ranges from 1 to 18, with a clear focus between 3 and 7, an average of 5.3 and a 

standard deviation of 3.12. This behavior is consistent for all companies: Averages 

of the selected number of attributes per company range between 5.1 and 6.0. Also 

in terms of attribute relevance there is large consensus: the same few typical attrib-

utes are considered relevant by most subjects for all companies. The histogram pre-

sented in Fig. 34 shows companies from the financial sector (histograms for all other 

companies are all very similar). In fact, low standard deviation values for each attrib-

ute on all companies, show that subjects selected the same attributes over and over, 

regardless of the company. As a consequence, histogram based similarity metrics 

like the Minkowski distance [71] measured pairwise between all companies, can’t 

                                            

63 http://wiki.dbpedia.org/Datasets#h18-11 

64 http://www.crowdflower.com/ 

 

Fig. 32. Instructions on how to complete the task of selecting attributes suitable for entity 

summaries.  
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really differentiate between the various business sectors or other semantically mean-

ingful criteria.  

Of course, since the Infobox structure has to cover all kinds of companies, the 

respective attributes were general. Thus, the resulting summaries are generic and 

provide only marginal information when compared to the rich Wikipedia article 
structure. But the fact that popular attributes selected from this structure are not 

correlated to the different topics presented in the articles suggests more sophisti-

cated measures have to be taken when categories are heterogeneous. 

Our experiments show a clear tendency regarding the number of attributes an 

entity summary should feature and a surprisingly high consensus about what attrib-

utes are considered important. A good entity summary structure highlights between 

3 and 7 attributes, and focuses on typical properties of the entity. However, seeing the 

respective articles’ richness, considering just generic properties may poorly reflect 

the real world. If the entity is part of a homogeneous category, properties are usually 

typical for the entire category. But, if categories are heterogeneous, good structures 

have to be derived in a data-driven fashion with properties typical for a more ho-

mogeneous semantic subgroup.  

In summary, the schema-driven approach of Google’s Knowledge Graph presents 

scalability issues; it has issues in choosing the right attributes to include in the entity 

summary; and it sometimes relies on generic structure that misses out on defining 

attributes that would reflect the article information richness. 

Besides the famous Knowledge Graph, other systems have also been proposed to 

extract highly informative attributes. In the following section we give an overview of 

such approaches. 

 

Fig. 33. Number of selected attributes (x-axis) by the number of judgments (y-axis) select-

ing this number of attributes.  
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Fig. 34. The number of subjects (y-axis) that have selected an attribute (x-axis) for a cer-

tain company (z-axis). For companies from the financial sector only.  
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6.2. Related Work 

Knowledge graphs have been used for entity summarization even before Google’s 

system was proposed. For instance, in [117] the authors present a greedy algorithm 

that adapts the idea of diversification from information retrieval [1] to extract entity 

summaries from subject-predicate-object RDF triple stores. The authors argue that 
a diversity unaware system is likely to present only certain aspects of an entity. For 

instance in a knowledge base representing movie information, entity Tom_Cruise is 

connected multiple times to movies by the acted_in predicate but just once to the 

literal representing his birthday through the born_on_date predicate. In this case, 

the many movies Tom Cruise played in would be more likely to be included in the 

summary while other information (like personal data) that might also be interesting 

to the user would be ignored. To incorporate the concept of diversification into the 

summarization algorithm they rely on a knowledge graph that comprises edge 

weights. The weights should represent the ‘‘importance’’ of the edges. These weights 

are assumed to be provided as input together with the knowledge graph without 

further clarification. We consider that the concept of attribute typicality introduced 

in this work is suitable to be used as weights for the graph edges. Furthermore, we 

separate between predicates and values. Each predicate is considered only once. In 

consequence, acted_in has same chance of making it into the summary as 

born_on_date has. The decision which attributes to include in the summary is made 

entirely based on the attribute typicality, value which is influenced by the user given 

entity type provided in the query. 

Related to our work, in [76] the authors propose a probabilistic approach to 

compute attribute typicality. But there is a fundamental difference: the authors ig-

nore the difference between entities and entity types. This way for any entity type, 

say company, both IT company and Toyota are considered to be instances of com-

pany. This simplifying assumption doesn’t consider data heterogeneity: for entity 

types comprising heterogeneous entities the extracted attributes only loosely rep-

resent the corresponding entities. In contrast, relying on the concept of family re-

semblance introduced in the previous chapter, our approach distinguishes between 

heterogeneous and homogeneous groups of entities. It follows a data-driven ap-

proach with attributes typical for each sufficiently homogeneous semantic subgroup. 

From a broader perspective, our work is related to the field of schema matching 

and mapping. Such systems use various structural matching techniques as well as 

data properties to overcome syntactic, structural or semantic heterogeneity. But 

most approaches focus on data from relational databases or some already existing 
structure [96]. Systems like WEBTABLES [24] or OCTOPUS [23] rely on semi-

structured data like html lists and tables on the Web to extract data structure. In 

contrast, our system may use all extractions from text without any restrictions in-

creasing the number of supported entities. In [21] the authors propose OMNIVORE. 

This systems aims to create a comprehensive Web database by combining the out-

put of several OpenIE tools over a Web crawl. For this purpose the authors propose 
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an all-purpose entity-relation database structuring all entities in the form of attribute, 

value and type. On query time, a relational table comprising query ‘‘relevant attrib-

utes’’ is automatically generated. Unfortunately, there is no clear definition to what 

‘‘relevant’’ actually means. It seems that the structure is given by the shared attrib-

utes. In such a case, a simple query involving a small number of entities poses real 

difficulties. For instance, querying for Bill Clinton and Barack Obama leads to hun-

dreds of useless attributes. Recognizing the need to disambiguate, for the shared 

attributes, we calculate their contribution to the structure, based on how similar 

the entities sharing each attribute really are to the query. 

In large corpora true and essential facts are repeated many times. The redundancy 

of the Web has been exploited by many applications. We leverage it to build a fre-

quentist inference-based method which has repeatedly proven effective for extract-

ing information highly relevant to the query [27, 82]. We consider such an approach 

is a perfect baseline to compare our system with. 

6.3. Attribute Extraction for Entity Summarization-System Description 

The task is to extract a common entity structure featuring high quality attributes, 

which are typical for entities of the same type directly from Web data. The query 

provided by the user is of the form ‘Instance: Entity Type’. Our analysis on the 

Knowledge Graph shows that there are two main problems to be tackled: providing 

specific structure even for entities whose corresponding entity types group together 

heterogeneous entities and supporting even newer entities not having a record in 

one of the source knowledge bases.  

Our claim is that by building on the concept of families of entities (see Section 

5.3.1 Definition 9 for more details) a subgroup of homogeneous entities can be se-

lected which in turn allows for extracting a high quality, specific structure, reflecting 

the essence of the provided entity. Furthermore, following a data-driven approach, 

of extracting facts directly from Web documents, any entity present on the Web 

can be supported by such a system.  

At the core of this claim lays the concept of attribute typicality, providing the 

means to extract those attributes being highly typical for the entity in question. This 

subject will be discussed in more detail in the following subsection. 

6.3.1. Attribute Typicality 

Following on the family resemblance theory introduced by Wittgenstein (presented 

in Chapter 4, Section 5.3.1), properties that an entity shares with its family are more 

typical for the entity than properties that are shared with other entities. Also in the 

context of Web entities, similar entities can be considered to form families. For 

homogeneous categories, entities are all more or less similar to each other and form 

a family on the category level. For heterogeneous groups of entities, a family repre-

sents just one of the clusters of entities from the group. Applying the Tversky’s 
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family resemblance model (Eq. 25) enables the selection of a most typical family mem-

ber or entity. However, our main goal is to find a common structure, i.e. a most 

typical set of attributes for some entity and its respective entity type. Hence, when 

talking about factual information extracted from the Web we have to restrict the 

notion of family resemblance based on generic properties (like characteristics, capa-

bilities, etc.) to clear cut attributes as given by extracted predicates. Moreover, we 

need to find out which of the attributes occurring in a family actually are typical with 

respect to this family. Since the family definition relies on the measure of members’ 

similarity, we adapt Tversky’s measure as follows: Assume we can determine some 

family F consisting of n entities 𝐸1, … , 𝐸𝑛 and a total of k distinct attributes given by 

predicates 𝑝1, … , 𝑝𝑘 are observed for family F. Let Xi and Xj represent the respective 

attribute sets for two members 𝐸𝑖 and 𝐸𝑗 , then: 

 |𝑋𝑖 ∩ 𝑋𝑗| = 1𝑋𝑖∩𝑋𝑗
(𝑝1) + 1𝑋𝑖∩𝑋𝑗

(𝑝2) + ⋯ + 1𝑋𝑖∩𝑋𝑗
(𝑝𝑘) (26)  

where 1𝑋(𝑝) = {
1 𝑖𝑓 𝑝 ∈ 𝑋
0 𝑖𝑓 𝑝 ∉ 𝑋

  is a simple indicator function.  

Now we can rewrite Tversky’s shared similarity measure to make all attributes 

explicit: 

 
𝑆(𝑋𝑖, 𝑋𝑗) =  

∑ 1𝑋𝑖∩𝑋𝑗
(𝑝𝑙)

𝑘
𝑙=1

|𝑋𝑖 ∩ 𝑋𝑗| +  𝛼|𝑋𝑖 − 𝑋𝑗| + 𝛽|𝑋𝑗 − 𝑋𝑖|
 

(27)  

Where the same conditions as above apply to 𝛼 and 𝛽. 

According to Tversky, each attribute shared by Xi and Xj contributes evenly to 

the similarity score between Xi and Xj. This allows us to calculate the contribution 

score of each attribute of any member of the family to the similarity of each pair of 

members: 

Let p be an attribute of a member from F. The contribution score of p to the simi-

larity of any two attribute sets Xi and Xj, denoted by  𝐶𝑋𝑖,𝑋𝑗
(𝑝), is: 

 
𝐶𝑋𝑖,𝑋𝑗

(𝑝) =  
1𝑋𝑖∩𝑋𝑗

(𝑝)

|𝑋𝑖 ∩ 𝑋𝑗| +  𝛼|𝑋𝑖 − 𝑋𝑗| + 𝛽|𝑋𝑗 − 𝑋𝑖|
 

(28)  

where 𝛼 = 𝛽 ≥ 0. 

The contribution of some attribute towards the similarity of two family members 

in this way is dependent on the degree of similarity between the two members. This 

is a fundamental difference to simply performing property set intersections (like in 

Fig. 31), where all family members are assumed to be equally similar to each other. 

In particular, this enables us to cope even with difficult cases where entity collections 

are rather heterogeneous. 

Building on the contribution score we are now ready to introduce the notion of 

attribute typicality. Additionally further normalization could be applied to avoid small 

values. 
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6.3.2. System Architecture 

The main task to be handled by the system is the computation of the attribute typi-

cality according to Definition 10. But these values can only be computed after the 

family of the query entity has been extracted. Obviously, for this reason there is a 

large overlap between ARES and the system based on family resemblance presented 

in the previous chapter. Actually, ARES represents an evolutionary development of 

the instance-based entity search system, sharing most of its architecture (Fig. 35 

shows an overview of ARES). Also here there are two main components: the Infor-

mation Extraction and Query Engine. The Information Extraction did not suffer any 

changes and works as described in Section 5.3.2. However, for ARES the Query 

 

Fig. 35. Attribute extraction for entity summarization based on attribute typicality. System 

architecture.  
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Definition 10: Attribute Typicality. Let F be a set of n entities 𝐸1, … , 𝐸𝑛 of 

similar kind represented by their respective attribute sets 𝑋1, … , 𝑋𝑛. Let U be the set of 

all distinct attributes of all entities from F. The typicality 𝑇𝐹(𝑝) of an attribute/predicate 

𝑝 ∈ 𝑈 w.r.t. F is the average contribution of p to the pairwise similarity of all entities in 
F: 

 

𝑇𝐹(𝑝) =
1

𝐶2
𝑛 ⋅ ∑ ∑ 𝐶𝑋𝑖,𝑋𝑗

(𝑝)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

(29)  

where 𝐶𝑋𝑖,𝑋𝑗
(𝑝) is the contribution score of attribute p regarding the similarity between 

𝑋𝑖 𝑎𝑛𝑑 𝑋𝑗 (see eq. 28) and 𝐶2
𝑛 represents the number of possible combinations of en-

tities from F. 
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Engine has been adapted to extract the typical attributes. The new component 

works as follows: starting from the provided entity type all known entities belonging 

to this type are extracted either directly from Web documents or from special dic-

tionaries like Wikipedia. In a filtering step only entities being most similar to the 

query entity are selected to form the query’s family. With the query rewritten from 

“entity plus corresponding entity type” to “entity plus corresponding family”, we can 

now proceed to extract the attributes that are central for the entity types’ structure. 

Attribute Typicality:  

Obviously, only attributes of members of the family should be considered for com-

puting attribute typicality. Once the family has been selected, all attributes occurring 

together with entities of the family in extracted facts, are taken into account. Fol-

lowing the definition of attribute typicality, for each attribute, we calculate its contri-

bution to the family definition of the query entity. Depending on the user needs [27], 

both Top-k pruning and thresholding can be applied to the typicality scores for se-

lecting the typical attributes.  

For better overview of how the quantification of attribute typicality is performed 
we present the pseudo-code of our system’s algorithm in Algorithm 2. Since the 

attribute extraction has to be performed online, in the following we present an anal-

ysis of the systems’ efficiency. 

Runtime Analysis 

For the online part, ARES requires even for broad categories with thousands of 

entities about 40 seconds per query. To continue with the example of diseases, given 

as a reference for the entity family selection algorithm, for query “hypertension”, 

ARES needs 42.977 seconds to extract typical attributes on commodity hardware. 

Additionally to the 22.472 seconds needed for computing the entity family, the com-

putation of typicality values for all 2,711 attributes (lines 2 to 25 in Algorithm 2) 

takes 20.505 seconds to compute (about 7.5 milliseconds per attribute). Also in this 

case, all tests have been performed single threaded. Since all major operations allow 

for parallelization, we have reason to believe that parallelization on a cluster with a 

few hundred CPU cores will reduce query time to less than a second. 
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Algorithm 2: Extraction algorithm for typical attributes. 

Input: X - query entity, C - set of entities of type T, ϕ - attribute quality threshold, RDF triple 

collection 

Output:  S (structure) - set of typical attributes 

1: F ← FAMILY(X, C)  

2: S ← {}; U ← {} 
3: foreach X in F do 
4:            x_attr ← ATTRIBUTES(X, RDF)  

  // all attributes from triples where X is the subject or the object 
     // stored in memory for heavy reuse (*) 

5:   U ← U ∪ x_attr 
6: end for 
7: foreach a in U do 

8:   a_typ ← 0 
9:   for Xi ∈ F do 

10:    for Xj ∈ F −{𝑋𝑘|1 ≤ 𝑘 ≤ 𝑖 ⋀ 𝑋𝑘 ∈ 𝐹} do 

11:     xi_ attr ← ATTRIBUTES(Xi, RDF)  // (*) 
12:     xj_ attr ← ATTRIBUTES(Xj, RDF) // (*) 
13:     contr←0 
14:     if  a ∈ xi_attr ⋀ a ∈ xj_ attr then 

15:     contr ← 
1

|x𝑖_attr∩𝑥𝑗_attr|+𝛼|x𝑖_attr−𝑥𝑗_attr|+𝛽|𝑥𝑗_attr−x𝑖_attr |
 

// contribution of p to similarity between Xi and Xj (eq.5) 
16:     end if 
17:     a_typ ← a_typ + contr 
18:    end for 
19:   end for 

20:   a_typ ← 2 ∙ 
𝑎_𝑡𝑦𝑝

|𝐹|∙(|𝐹|−1)
           // the number of pairwise comparisons (𝐶2

|𝐹|
) 

21:   if a_typ > ϕ then 

22:    S ← S ∪ a 
23:   end if 
24:  end for 
25:  return S 

 
26:  function FAMILY(X, C) // this function represents the functionality of the system in Chapter 4 

27:   F ← {𝑋}; x_attr ← ATTRIBUTES(X, RDF) 
28:   foreach Y in C do 

29:    y_attr ← ATTRIBUTES(Y, RDF) 
30:    sim←similarity(x_attr, y_attr)  // Tversky’s similarity, eq. 25  

// computed only once then stored in memory for later use (**) 
31:    S←S ∪ sim 
32:    end for 

33:    θ ← THRESHOLD(S) // same function as in Algorithm 1 
34:   foreach Y in C do 
35:    y_attr ← ATTRIBUTES(Y,RDF) 
36:    sim←similarity(x_attr, y_attr) // (**) 
37:    if sim ≥ θ then 

38:     F ← F ∪ Y 
39:    end if 
40:    end for 

41:  return F 
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6.3.3. Evaluation 

The task is to derive a common entity structure comprising high quality attributes. 

Our claim is that attributes being shared by similar entities are perfect for such a 

structure. Furthermore, we claim that by using the concept of families of entities 

introduced in the previous chapter, we can extract representative structure even in 

cases where the entity type gathers together heterogeneous entities. To validate 

our claim we assess the quality of the extracted structure with a set of experiments 

on both homogeneous and heterogeneous entity types. But before proceeding to 

the experimental subsection, in the following we introduce the basic setup. 

Experimental Setup 

Dataset: In previous experiments we observed that a large portion of the facts ex-

tracted from ClueWeb09 was of poor quality. To assess if there were influences 

based on the quality of the data, for this evaluation we also experimented on Pub-

MedCentral. This corpus comprises about 250,000 biomedicine and life sciences re-

search papers. Like in the case of ClueWeb09, all documents are processed offline 

by our IE module. We extracted about 23 million triples with 3 million entities and 
1.2 million predicates. This is much more than the 15 million triples extracted from 

the 500 million documents from ClueWeb09. Besides the fact that research papers 

are usually larger than Web pages, the high quality of documents from PubMedCen-

tral may be the reason for the large number of facts extracted from this corpus. 

Queries. Entity summarization is a follow up of the evaluation on instance-based 

entity search. In consequence, these experiments focus on the same types of entities. 

We experiment with persons in the sense of American presidents which have 

proven to form a homogeneous group of entities and organizations in the sense of 

companies building a heterogeneous group of entities. Besides named entities, we 

also test our approach with other simple entities like medical conditions which ac-

cording to [74] make for an important portion of the Web entity search. In total we 

experiment over 16 queries split as follows: 5 American presidents 6 companies and 

5 well-known medical conditions. 

Establishing Ground Truth. Diseases build a homogeneous group according to dis-

ease Wikipedia articles. In consequence, the structure for diseases is perfectly suit-

able to use as a ground truth. But exceptionally, the Wikipedia Infobox for diseases 

is nothing but a collection of links to the National Library of Medicine - Medical 

Subject Headings. Since the goal is to obtain data-driven structure, we consider the 

structure provided by the Wikipedia articles. To be specific, the content headings 

that were shared by the majority of diseases on Wikipedia were used. The quality 

of these headings as attributes is confirmed by the fact that they were approved by 

the standardization committee of schema.org to build the “MedicalCondition” 

schema (http://schema.org/MedicalCondition). The complete list of attributes is: As-

sociated anatomy, Cause, Diagnosis, Epidemiology, Prognosis, Pathophysiology, Possible 

treatment, Prevention, Risk factors, Signs or symptoms.  
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For the case of the American presidents the relatively small number of entities 

(only 44) and the weaker homogeneity (shown in Fig. 27) is not as compelling as in 

the case of disease. For companies, the Wikipedia Infobox is definitely too general 

when compared to the article content. Unfortunately schema.org also doesn’t pro-

vide for a better alternative. In these cases we rely on human assessment to establish 

ground truth. All attributes extracted (by both the attribute-typicality and the fre-

quency-based method) were mixed together with the Google Knowledge Graph 

attributes and ordered alphabetically for each query. We presented the resulting 

lists to subjects and provided the same instructions as in Section 6.1. We selected 

relevant attributes based on the ‘majority rule’. All assessments proved substantial 

agreement ([19]) showing Fleiss’ Kappa ([12]) agreement levels between 0.71 and 

0.76. 

Measures. Our goal is to extract a high quality structure with limited, yet precise 

attributes for the entity summary. Therefore the success of all algorithms in our 

experiments is measured in terms of precision (also in aggregated form as mean 

average precision MAP). Given the small number of attributes included in an entity 
summary, recall is less important than precision but still relevant for our task. 

The frequency-based baseline algorithm. Drawing on the literature, for the baseline 

we will assume that attributes frequently appearing together with either the query 

entity or with entities of the same type as the query entity define a good structure 

for their entity type. Relying on the same infrastructure as ARES we thus imple-

mented the frequency-based baseline approach (in the following called Frequency-

based Entity Summarization - short FES). Another reference system is of course 

Google Knowledge Graph, the attributes from the knowledge snippet to be specific. 

Experiments 

In Fig. 36.a) we present the top 10 attributes for the example of American presi-

dents. The precision and recall values obtained by the systems are presented in Ta-

ble 18. Both ARES and FES return lists of attributes ranked by their relevance values. 

In consequence the precision values in the table represent MAP values. For the 

Knowledge Graph there is no information about the relevance of attributes. All of 

them are considered to have the same relevance. An averaged precision value is 

presented in this case. Recall is also presented as the average value over all entities 

of a category. For the case of American presidents, ARES is with a MAP of 0.75 

superior to the other systems. The Knowledge Graph focuses in this case on family 

and education, elements considered irrelevant by the assessors. This severely affects 

its recall. These precision and recall values were computed based on attributes pre-

sented by the Knowledge Graph. For ARES and FES the top10 attributes were con-

sidered.  

While entity types are perfect for disambiguation, some may prove heterogene-

ous. Fortunately, our approach features a self-tuning resemblance measure able to 

automatically refine categories: all queries are focused on a family of entities with 

sufficiently homogeneous structure, while keeping the focus on the query entity. In 
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the previous chapter we have seen that out of the S&P 500 list of companies, for 

queries like “Toyota Motor Corporation”, “Renault S.A.”, or “Volkswagen A.G.”, 

our systems builds families with 17 to 24 entities, clearly focusing on car companies 

(30% - 50% of the selected family members are car makers). For queries like “Apple 

Inc”, “Google Inc” or “Microsoft” the results are similar, with 40% - 60% of IT com-

panies in the selected family.  

                                        a)                                                                              b) 

    

                                         c)                                                                                     d) 

 

 

Fig. 36. Precision@k averaged over all query entities for American presidents (a), auto-

motive companies (b), IT companies (c) and diseases (d).  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ARES FES

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Table 18: Precision & recall by system and query category. 
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Indeed the self-tuning works well also for structure extraction. In contrast to the 

results observed for generic attributes from Wikipedia Infoboxes (Section 6.1), 

where Minkowski similarity metrics (Manhattan distance) showed no particular dif-

ference between companies in different fields, for the attributes extracted by our 

system these differences are considerably more expressive. The average histogram 

distance for the attribute selection generated by the crowd starting from the com-

pany Wikipedia Infobox between the car companies is of 69.8. The same distance 

for the attributes selected by ARES for car companies is of 6.7. For IT companies 

the respective average values are 56.4 for the selection from the Wikipedia Infobox 

vs. 1.4 for the ARES selection. However, the average distance between different 

sectors stays large also for ARES: 78.16 vs. 65.3 for the selection from the Wikipedia 

Infoboxes and ARES respectively, for car vs. IT companies. This clearly shows that 

ARES is able to extract attributes particular to homogeneous entities (small histo-

gram distances for similar companies) while keeping heterogeneous entities apart. 

It’s interesting to notice that when presented with data-driven attributes, assessors 

were able to pick attributes that differentiate between business sectors. 

In terms of precision, our approach achieves 0.73 MAP for all company queries, 

superior to both baselines. We present the results, averaged by sector, in Fig. 36.b) 

and Fig. 36.c). For car makers, 8 attributes proved relevant according to the majority 

of human assessors. There is quite some difference in the precision that the baseline 

is able to achieve in the two sectors. Deeper inspection lead to the conclusion that 

there seems to be more information about IT companies than about car makers, 

probably because ClueWeb09 contains many blogs and forum posts. In fact most 

information on automotive topics actually refers to the cars and not to the respec-

tive companies. Thus, it is understandable that a frequency based method shows 

such poor results. 

Motivated by these findings, we repeated the above experiments on PubMedCen-

tral with diseases as query entities. Unlike in the case of companies, here we can’t 

recognize any particular (especially taxonomically motivated) patterns regarding the 

members in our automatically derived families. Cardiovascular diseases are mixed 

together with infectious diseases, skin conditions and forms of cancer, regardless of 

the query entity. We evaluated both systems in terms of precision and recall, over 

five well-known diseases and medical conditions (“cancer”, “diabetes mellitus”, “hep-

atitis”, “hypertension” and “tuberculosis”). The results, averaged over the five que-

ries, are presented in Fig. 36.d). Boosted by the high quality information, our method 

achieves an impressive MAP of 0.87. The Knowledge Graph returns some of the 

National Library of Medicine headings for each disease obtaining fair average preci-

sion of 0.52 over all entities. We would have expected that the frequency baseline 

also performs better in face of the large amount of relevant and indeed very struc-

tured information. It seems that the broad coverage of various subjects with respect 

to medicine and diseases leads to the frequency of attributes being spread rather 

evenly without notable differences in frequency. Also in terms of recall (Table 18) 

our method is consistently superior, showing its overall practical usefulness.  
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Taking these results into account, we consider that attribute typicality based on 

the principle of family resemblance indeed is a highly promising solution for auto-

matically discovering high quality attributes for summarizing entities from the Web 

6.4. Conclusions 

In this chapter we presented an in-depth view of entity summarization. Currently, 
Google’s Knowledge Graph represents the state of the art for this task. Relying on 

curated knowledge bases, this particularly excludes all new and less widely known 

entities. The alternative is not to rely on prearranged schemas, but to use a data-

driven approach. As our experiments show, even simple, frequency-based ap-

proaches already reach similar and often even better performance than the 

Knowledge Graph in terms of quality. But for good user experience even more is 

needed: especially in the case of heterogeneous collections of entities an intelligent 

selection for extracting compact, yet high quality entity summaries is needed. There-

fore, tuning the data-driven schema selection for entities over the vast variety of 

facts that can be extracted from the Web is a major contribution of the ARES ap-

proach presented in this chapter. 

Since lessons learned from instance-based entity search show that by itself, an 

entity is not enough for proper disambiguation, as an input ARES requires a query 

comprising an entity and its type. Also regarding the produced entity summary, our 

experiments show a clear tendency with respect to the number of attributes an 

entity summary should feature: a good entity summary structure highlights between 

3 and 7 attributes, and focuses on typical properties of the entity. If entities grouped 

together by the provided entity type are homogeneous, properties are usually typical 

for the entire group of entities. If they are heterogeneous, good structures have to 

be derived in a data-driven fashion with properties typical for a more homogeneous 

semantic subgroup.  

ARES relies on the concept of family resemblance introduced by cognitive psy-

chology and intelligently blends the homogeneity/heterogeneity of entity families 

with schema integration techniques in the light of all extracted facts. ARES is self-

tuning in the sense that after family selection, entities within families show high intra-

family similarity, while entities from heterogeneous categories show low inter-family 

similarity. Given the current advances in OpenIE, that allow to work directly on text, 

any entity being described somewhere on the Web, can thus be summarized appro-

priately. Our experiments on real-world entity classes representing different de-

grees of class homogeneity show that ARES is indeed superior to both, frequency-

based statistical approaches and the Knowledge Graph, in terms of precision and 
recall. Moreover, also the run-time performance is already quite practical. 
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Conclusions and Future Work 

The Web has evolved to an all-purpose source of information on any topic. Want 

to know something about a medical condition, or a drug? Ask Doctor Google! With 

over 50% of all Web search queries, most of Web queries focus on entity-centric 

search. But while entity related information is abundant on the Web, search engines 

are not yet prepared to support such queries. Actually, with the exception of 

Google’s Knowledge Graph, search engines did not evolve much with respect to 

entity search. Keyword-based entity search is possible but it falls on the users’ shoul-

ders to browse through the returned Web pages, to pick out relevant information 

or to formulate new queries that will hopefully lead to a satisfying answer.  

The Knowledge Graph is a first step towards providing for better user experience 
for entity search. It performs entity summarization based on data from manually 

curated knowledge bases. But this way, the majority of entities (in particular, new 

or more obscure entities) not present in the manually curated Web resources used 

by Google’s Knowledge Graph, cannot benefit from data summarization. Automati-

cally integrating information extracted from unstructured data into a Web-scale 

knowledge base, the Knowledge Vault seems to be a promising solution in this re-

spect. However, besides entity summarization, there are three other entity related 

queries, primarily focused on retrieving entities based on user input: searching for 

entities that have certain properties, searching for entities that are similar to a given 

entity, or searching for entities of a given type. Since the Knowledge Vault has just 

been proposed, no detailed information about its use for entity search is provided, 

and no running prototype is available, we can’t really tell how well it will accommo-

date such queries. But for the time being, considering both, the weak overall support 

that search engines provide for entity related search, and the high demand for such 

queries, we believe that developing capabilities for performing entity-centric search 

on the Web represents a strategic advantage for any mainstream search engine.  

The retrieval of entity-related data has always been among the core applications 

of database systems. In this context, entity-centric search is trivial because the un-

derlying data is provided in structured form. Thinking along the same lines, the prob-

lems of entity-centric search would be solved if all data on the Web were available 

in structured form, just like in a big database. Linked data is the first major initiative 

for building a structured Web. The initiative encourages data providers to publish 

their data online. To make their life easy, the effort of integrating the published data 

into the existing data cloud is kept to a minimum: data providers have the flexibility 

of choosing (or keeping) their own data structure. Interlinking the published data as 

well as vocabulary reuse is desired and recommended, however, besides a few 
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prominent examples like DBpedia or Freebase, most data sets available online are 

rather isolated. With today’s LOD cloud interlinking and vocabulary heterogeneity, 

providing a holistic view of an entity, spanning over multiple data stores is impossible. 

Automatic instance matching and ontology alignment has often been proposed as a 

solution to integrate the various data sets together. But as we have shown in this 

thesis, the quality of the results obtained by such systems is far from being adequate. 

Pushed by major search engine providers, schema.org followed a different ap-

proach: it offered a set of global schemata and encouraged Web page owners to 

annotate their content with these schemata using rich snippets and better ranking 

results as incentives. The schemata are well designed and have been developed with 

the help of experts in the corresponding fields. This approach seems promising as it 

solves the problems of schema mapping and matching which have proven problem-

atic in the case of LOD. But since entities are not uniquely identifiable there is still 

a problem of entity reconciliation. However, the major problem of schema.org is its 

low acceptance on the Web.  

Both LOD and schema.org represent cornerstones in the evolution of the Web. 
But given the problems encountered when trying to use them for entity-centric 

search, we believe that this “one size fits all” of structuring the Web requires a long 

evolution process until it can reliably serve the purpose of entity search. Instead, in 

this thesis we have shown that data-driven approaches, tailored for the different 

types of entity-centric queries already achieve quite practical results. 

Borrowing from the field of cognitive psychology, the semiotic triangle now es-

tablished also in information theory, models entity types in terms of intension and 

extension. Based on this, we identified three types of queries focused on retrieving 

entities and one for entity summarization: 

Entity type query. For the moment, the contribution of schema.org for entity 

type based search is neglectable. Search on structured data on the Web is in our 

opinion limited to one data store search only and to superordinate and basic entity 

types. Because of the large number of possible subordinate entity types most of them 

are usually not considered by the data structure. This has sever effects on the recall 

and on the number of supported queries. Boosted by manual (crowd-sourced) or 

semi-manual effort to align types and interlink entity instances, linked data will, some 

day, play a major role in accessing entities from the Web. This can have a positive 

impact on the recall. But subordinate entity types, will not be properly supported by 

static vocabularies. Instead, we proposed a system that is able to dynamically mine 

new, unknown types out of Web data. Combining query expansion with a self-su-

pervised vocabulary learning technique built on both structured and unstructured 

data, our approach is able to achieve a good tradeoff between precision and recall.  

An interesting approach we leave to future work would be to combine the 

strength of linked data with the flexibility of query expansion. Such a hybrid system 

would benefit from the high precision that isolated data sources can deliver, while 

entity retrieval on query expansion on the Web could cater for better recall values 
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and support for ad-hoc types not known to the LOD vocabularies. But in order to 

compile a list of resulting entities, duplicate detection is required, a problem that has 

yet to be mastered. 

Prototype-based query. Motivated by positive examples in the field of pro-

gramming, were duck typing has already been successfully applied, we proposed Pro-

SWIP, a property-based system for retrieving entities from the Web. ProSWIP 

builds on user feedback in order to ensure that it captures correctly the user’s in-

tentions. To be specific, it asks the user if some property is, or is not relevant re-

garding the intended entity type, extending this way the property set for the entity 

type definition. However, entities have hundreds of properties. The challenge is to 

understand the user intentions with just a handful of questions. ProSWIP cleverly 

solves this problem with the help of information theory concepts, asking for user 

feedback on just a few properties showing the highest information gain. Our exper-

iments show that within a maximum of four iterations the system achieves perfect 

quality.  

For the time being, all entities not showing a certain property from the entity type 
definition are not included in the result set. Corroborated with the sparse nature of 

data extracted from the Web, this severely affects recall. This problem can be tack-

led in future work by using properties that have been found suitable to extend the 

concept definition, not as filters, but as features for entity ranking on structural sim-

ilarity. Corroborated with the concept of attribute typicality introduced in this the-

sis, this relaxation should be applied only to properties not being typical for the 

intended entity type. This should increase the robustness against missing values and 

have a positive effect on recall. 

Instance-based query. The most basic and user friendly form of instance-based 

query comprises one single entity. But our experiments have shown that with such 

a query it is hardly possible to capture the user intentions. Even for queries com-

prising up to five example entities the disambiguation was not satisfactory. Following 

on the example of standard example driven entity search tasks like REF and ELC we 

have proposed a minimalistic instance-based query comprising the example entity 

and intended entity type that is both user friendly and allows for satisfactory disam-

biguation. But the example entity is only valuable if it captures at least to some extent 

the user intentions. As a constraint, outliers have to be avoided. Assuming that the 

entity example is well-chosen, we build on the concept of family resemblance and 

provide a practical way for computing families of entities. These entities are of the 

type provided by the user, and together with the example entity form a homogene-

ous group. Such an approach achieves impressive results, being able to retrieve se-

mantically meaningful entities even for entity types, which have proven problematic 

for REF and ELC. 

For the time being, our instance-based query system building on family resem-

blance focuses on high precision. This comes at the cost of recall. Especially for entity 

types grouping together entities with a high degree of homogeneity, the ISODATA 
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based thresholding method may be too selective. In this case more refined methods 

involving user interaction may be more suitable for nailing the user intentions. 

Entity summarization query. Google’s Knowledge Graph which is the state 

of the art for this task, relies on curated knowledge bases, and this particularly ex-

cludes all new and less widely known entities. Our suggestion is not to rely on pre-

arranged schemas, but to use a data-driven approach. As our experiments show, 

even simple, frequency-based approaches already reach similar and often even better 

performance than the Knowledge Graph in terms of quality. But especially in the 

case of heterogeneous collections of entities an intelligent selection for extracting 

compact, yet high quality entity summaries is needed. Therefore, tuning the data-

driven schema selection for entities over the vast variety of facts that can be ex-

tracted from the Web is a major contribution of our approach. ARES intelligently 

blends the homogeneity/heterogeneity of entity families with schema integration 

techniques in the light of all extracted facts. ARES is self-tuning in the sense that 

after family selection, entities within families show high intra-family similarity, while 

entities from heterogeneous categories show low inter-family similarity. Given the 
current advances in OpenIE, that allow to work directly on text, any entity being 

described somewhere on the Web, can thus be summarized appropriately. Our ex-

periments on real-world entity classes representing different degrees of class homo-

geneity show that ARES is indeed superior to both, frequency-based statistical ap-

proaches and the Knowledge Graph, in terms of precision and recall. 

For the moment, ARES extracts structure only. But following on the example of 

systems like SCAD [4], for the future, values for the selected attributes can also be 

extracted.  

Our claim in this thesis is that by supporting these four query types, a system 

enables holistic entity search. Representing the main building blocks of such a system, 

the components that implement the functionality to support these query types, have 

been discussed and evaluated individually. They rely entirely on Web data, follow a 

data-driven approach, tailored for each query type and they obtain promising results 

better than the corresponding baselines. But considering that some components 

may require user feedback while others don’t, that three components retrieve enti-

ties while one retrieves entity summaries, there are still a few open questions re-

garding the user interface. This is especially important considering the integrated 

result presentation. Entity snippets may for instance prove useful in this respect. 

However, broad user studies focusing on assessing the user friendliness and clarity 

of the user interface as well as the quality of the overall results are needed. We 

leave these aspects as a subject for future work.
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Appendix A 

Appendix: Analysis on rdf:type URIs in BTC 

Table 19: Top 30 most comprising URIs for the ‘book’ entity type from various data 
stores in the BTC corpus. 

URI Nr. % 

<http://rdf.freebase.com/ns/book.book> 31,570 36.64 

<http://rdf.freebase.com/ns/book.written_work> 25,896 30.05 

<http://dbpedia.org/ontology/WrittenWork> 23,571 27.36 

<http://schema.org/Book> 15,398 17.87 

<http://dbpedia.org/ontology/Book> 15,397 17.87 

<http://rdf.freebase.com/ns/fictional_universe.work_of_fiction> 10,304 11.96 

<http://umbel.org/umbel/rc/Book_CW> 5,934 6.89 

<http://rdf.freebase.com/ns/book.magazine> 3,160 3.67 

<http://dbpedia.org/ontology/Magazine> 2,862 3.32 

<http://rdf.freebase.com/ns/book.journal> 2,409 2.80 

<http://rdf.freebase.com/ns/book.published_work> 2,357 2.74 

<http://rdf.freebase.com/ns/book.newspaper> 2,342 2.72 

<http://dbpedia.org/class/Book> 2,301 2.67 

<http://data.kasabi.com/dataset/bricklink/schema/Book> 1,650 1.91 

<http://swrc.ontoware.org/ontology#Book> 1,348 1.56 

<http://umbel.org/umbel/rc/Magazine> 1,301 1.51 

<http://rdf.freebase.com/ns/book.short_story> 1,259 1.46 

<http://dbpedia.org/class/yago/AmericanNovels> 879 1.02 

<http://dbpedia.org/class/yago/FilmsBasedOnNovels> 751 0.87 

<http://dbpedia.org/class/yago/ScienceFictionNovels> 740 0.86 

<http://rdf.freebase.com/ns/book.poem> 664 0.77 

<http://dbpedia.org/ontology/Play> 474 0.55 

<http://dbpedia.org/class/yago/MonthlyMagazines> 472 0.55 

<http://dbpedia.org/class/yago/BritishNovels> 470 0.55 

<http://dbpedia.org/class/yago/ShortStory106371999> 460 0.53 

<http://dbpedia.org/class/yago/FantasyNovels> 434 0.50 
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<http://dbpedia.org/class/yago/AmericanFantasyNovels> 384 0.45 

<http://dbpedia.org/class/yago/Children%27sNovels> 381 0.44 

<http://dbpedia.org/class/yago/AmericanScienceFictionNovels> 374 0.43 

<http://dbpedia.org/class/yago/HistoricalNovels> 365 0.42 

 

 

Table 20: Top 30 most comprising URIs for the ‘music album’ entity type from various 
data stores in the BTC corpus. 

URI Nr. % 

<http://rdf.freebase.com/ns/music.album> 57,786 50.79 

<http://dbpedia.org/ontology/MusicalWork> 56,725 49.86 

<http://dbpedia.org/ontology/Album> 54,395 47.81 

<http://schema.org/MusicAlbum> 54,395 47.81 

<http://umbel.org/umbel/rc/Album_IBO> 5,334 4.69 

<http://dbpedia.org/class/yago/DebutAlbums> 3,052 2.68 

<http://dbpedia.org/class/yago/Album106591815> 2,892 2.54 

<http://dbpedia.org/class/yago/2006Albums> 1,732 1.52 

<http://dbpedia.org/class/yago/2005Albums> 1,646 1.45 

<http://dbpedia.org/class/yago/2007Albums> 1,640 1.44 

<http://dbpedia.org/class/yago/2004Albums> 1,492 1.31 

<http://dbpedia.org/class/yago/2008Albums> 1,324 1.16 

<http://dbpedia.org/class/yago/2003Albums> 1,297 1.14 

<http://dbpedia.org/class/yago/2009Albums> 1,236 1.09 

<http://dbpedia.org/class/yago/2002Albums> 1,177 1.03 

<http://dbpedia.org/class/yago/2001Albums> 1,083 0.95 

<http://dbpedia.org/class/yago/2000Albums> 1,039 0.91 

<http://dbpedia.org/class/yago/GreatestHitsAlbums> 1,014 0.89 

<http://dbpedia.org/class/yago/1999Albums> 967 0.85 

<http://dbpedia.org/class/yago/1998Albums> 860 0.76 

<http://dbpedia.org/class/yago/1997Albums> 800 0.70 

<http://dbpedia.org/class/yago/1996Albums> 794 0.70 

<http://dbpedia.org/class/yago/LiveVideoAlbums> 744 0.65 

<http://dbpedia.org/class/yago/1995Albums> 666 0.59 

<http://dbpedia.org/class/yago/1994Albums> 660 0.58 
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<http://dbpedia.org/class/yago/DouBleCompilationAlbums> 653 0.57 

<http://dbpedia.org/class/yago/1993Albums> 616 0.54 

<http://dbpedia.org/class/yago/English-languAgeAlbums> 570 0.50 

<http://dbpedia.org/class/yago/ColumbiaRecordsAlbums> 556 0.49 

<http://dbpedia.org/class/yago/DouBleLiveAlbums> 532 0.47 
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