

2015

What Search Engines Can’t Do.

Holistic Entity Search on Web Data

Von der Carl-Friedrich-Gauß-Fakultät

der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung des Grades

Doktor-Ingenieur (Dr.-Ing.)

genehmigte Dissertation

von Silviu Homoceanu

geboren am 01.09.1982

in Bacau, Rumänien

Eingereicht am:

10.11.2014

Mündliche Prüfung am:

27.04.2015

Referent:

Prof. Dr. Wolf-Tilo Balke

Korreferent:

Prof. Dr. Ansgar Scherp

iii

ABSTRACT

More than 50% of all Web queries are entity related. Users search either for entities

or for entity information. Still, search engines do not accommodate entity-centric

search very well. They only provide keyword search and return a list of links to

articles. It falls on the users’ shoulders to browse through the returned Web pages,

and to pick the relevant information. In contrast, database systems master this task

without any difficulties because the data is structured and integrated. Thinking along

the same lines, the mainstream approach for accommodating entity search was to

build a structured Web. Linked data and schema.org represent the most prominent

initiatives for a structured Web. But our analysis shows that neither of the two can

reliably serve the purpose of entity search. In our opinion, the problem of entity

search on Web data cannot be solved by manually building a global schema. Instead,

we propose data-driven approaches, dynamically extracting schemata shaped for

each entity type. Obviously, these approaches have to be tailored for the various

types of entity-centric queries.

Building on the concept of the semiotic triangle from cognitive psychology now

established also in information theory, which models entity types in terms of inten-

sions and extensions, we identified three types of queries for retrieving entities: type-

based queries - searching for entities of a given type, prototype-based queries - search-

ing for entities having certain properties, and instance-based queries - searching for

entities being similar to a given entity. For type-based queries we present a method

that combines query expansion with a self-supervised vocabulary learning technique

built on both structured and unstructured data. Our approach is able to achieve a

good tradeoff between precision and recall. For prototype-based queries we propose
ProSWIP, a property-based system for retrieving entities from the Web. But since

the number of properties given by the users can be quite small, ProSWIP relies on

direct questions and user feedback to expand the set of properties to a set that

captures the user’s intentions correctly. Of course the number of questions has to

be kept small. ProSWIP cleverly solves this problem with the help of information

theory concepts choosing to ask user feedback on but a few properties showing the

highest information gain. Our experiments show that within a maximum of four

questions the system achieves perfect precision of the selected entities. In the case

of instance-based queries the first challenge is to establish a query form that allows

for disambiguating user intentions without putting too much cognitive pressure on

the user. Learning from standard example-driven entity search tasks like related entity

finding (REF) and entity list completion (ELC) we propose a minimalistic instance-based

query comprising the example entity and intended entity type. With this query and

building on the concept of family resemblance we present a practical way for retriev-

ing entities directly from the Web. Our approach is able to retrieve semantically

meaningful entities even for entity types, which have proven problematic for REF

and ELC.

Providing information about a given entity, entity summarization is another kind of

entity-centric query. Google’s Knowledge Graph is the state of the art for this task.

In our quest for enabling instance-based search we observed that entity types from

manually curated knowledge bases like Wikipedia may group together heterogene-

ous entities. This is problematic especially for entity summarization systems, as the

resulting entity overviews end up being too general. Unfortunately, Google’s

Knowledge Graph is also affected by this problem. Relying entirely on manually cu-

rated knowledge bases, this also excludes all new and less known entities. We pro-

pose not to rely on prearranged schemas, but to use a data-driven approach. Our

approach intelligently blends the homogeneity/heterogeneity of entity types with

schema integration techniques in the light of facts extracted directly from the Web.

Our experiments on real-world entity classes representing different degrees of class

homogeneity show that this approach is indeed superior to both, frequency-based

statistical approaches and the Knowledge Graph, in terms of precision and recall.

Our results show that type-based, prototype-based, instance-based, and entity sum-

marization queries can successfully be answered with data-driven approaches, and
that the results are superior to corresponding state of the art methods. We are

confident that mastering these four query types enables holistic entity search on

Web data for the next generation of search engines.

ZUSAMMENFASSUNG

Mehr als 50% aller Web Suchanfragen sind entitätsbezogen. Benutzer suchen ent-

weder nach Entitäten oder nach Entitätsinformationen. Dennoch werden entitäts-

bezogene Anfragen von Suchmaschinen nicht gut unterstützt. Sie stellen nur eine

Liste von Links zu Artikeln bereit. Es ist die Aufgabe der Benutzer die Suchergebnisse

nach relevanten Informationen zu durchsuchen. Im Gegensatz dazu beherrschen Da-

tenbanksysteme solche Anfragen, da die Daten strukturiert und integriert vorliegen.

Folglich war der Hauptansatz um Entitätssuche im Web zu unterstützen, ein struk-

turiertes Web zu bauen. Linked data und schema.org stellen die wichtigsten Versu-

che für den Bau eines strukturierten Webs dar. Allerdings zeigen unsere Analysen,

dass keiner der beiden Ansätze zuverlässig das Entitätssuchproblem lösen kann. Un-

sere Meinung nach kann das Entitätssuchproblem auf Web Daten nicht durch das

manuelle Erstellen eines globalen Schemas gelöst werden. Stattdessen stellen wir in

dieser Arbeit datengetriebene Ansätze, welche entitätstypenangepasste Schemata

dynamisch extrahieren vor. Offensichtlich müssen solche Ansätze an die verschie-

denen Typen von entitätszentrischen Anfragen angepasst werden.

Aufbauend auf dem Konzept des semiotischen Dreiecks aus der kognitiven Psycho-

logie, haben wir drei Anfragetypen zur Entitätssuche identifiziert: typbasierte Anfragen

– Suche nach Entitäten eines gegebenen Typs, prototypbasierte Anfragen – Suche nach

Entitäten mit bestimmten Eigenschaften, und instanzbasierte Anfragen – Suche nach

Entitäten die ähnlich zu einer gegebene Entität sind. Für typbasierte Anfragen haben

wir eine Methode entwickelt die query expansion mit einer self-supervised vocabulary

learning Technik auf strukturierten und unstrukturierten Daten verbindet. Unser An-

satz liefert einen guten Kompromiss zwischen Precision und Recall. Für prototypba-
sierte Anfragen stellen wir ProSWIP vor. Dies ist ein eigenschaftsbasiertes System um

Entitäten aus dem Web abzurufen. Da aber die Anzahl der Eigenschaften die durch

die Benutzer bereitgestellt werden relativ klein sein kann, baut ProSWIP auf direkten

Fragen und Benutzer Feedback um die Menge der Eigenschaften zu einer Menge

welche die Intentionen der Benutzer korrekt erfasst zu erweitern. Man kann natür-

lich nicht erwarten das Benutzer bereit sind viele Fragen zu beantworten. ProSWIP

lost dieses Problem mit Hilfe von informationstheoretischen Konzepten. Benutzer-

feedback wird nur bei Eigenschaften mit dem größten Informationsgewinn verlangt.

Unsere Experimente zeigen dass mit maximal vier Fragen eine perfekte Precision

erreicht wird. In dem Fall von instanzbasierten Anfragen besteht die Schwierigkeit

darin eine Anfrageform zu finden die die Benutzerintentionen eindeutig macht ohne

dem Benutzer eine zu hohe kognitive Last aufzuerlegen. Wir stellen eine minimalis-

tische instanzbasierte Anfrage, die aus einem Beispiel und dem entsprechenden En-

titätstypen besteht vor, indem wir Erfahrungen aus standard Beispielgetriebenen En-

titätssuchaufgaben wie related entity finding (REF) und entity list completion (ELC)

benutzen. Mit Hilfe des Konzepts der Familienähnlichkeit entwickeln wir eine prakti-

sche Lösung um Entitäten mit Bezug zur der Anfragenentität direkt aus dem Web

abzurufen. Unser Ansatz erzielt sogar für Entitätstypen, die für REF und ELC prob-

lematisch waren, gute Ergebnisse.

Entitätszusammenfassung ist ein anderer Typ von entitätszentrischen Anfragen, der

Informationen bezüglich einer Entität bereitstellt. Googles Knowledge Graph ist der

Stand der Technik für solche Aufgaben. Auf dem Weg instanzbasierte Anfragen zu

ermöglichen haben wir festgestellt dass Entitätstypen aus manuell erstellten Know-

ledgebases wie Wikipedia heterogen sein können. Besonders für Entitätszusammen-

fassungssysteme ist dies problematisch weil die erzielten Entitätsüberblicke zu allge-

mein werden. Leider ist auch Googles Knowledge Graph von diesem Problem be-

troffen. Das Zurückgreifen auf manuell erstellte Knowledgebases schließt alle neuen

und weniger bekannten Entitäten aus. Wir schlagen vor sich nicht auf vorbestimmte

Schemata zu verlassen, sondern datengetriebene Ansätze zu nutzen. Unser Ansatz

verbindet die Homogenität/Heterogenität von Entitätstypen mit Schemaintegrati-

onstechniken auf direkt aus dem Web extrahierten Fakten. Unsere Experimente auf

Entitätsklassen die unterschiedliche Grade von Klassenhomogenität aufweisen, zei-

gen dass dieser Ansatz besser in Bezug auf Precision und Recall ist als frequenzba-
sierte statistische Ansätze und der Knowledge Graph.

Unsere Ergebnisse zeigen dass typbasierte Anfragen, prototypbasierte Anfragen, in-

stanzbasierte Anfragen und Entitätszusammenfassungsanfragen erfolgreich durch da-

tengetriebene Ansätze beantwortet werden können. Die Ergebnisse sind entspre-

chenden state-of-the-art Methoden überlegen. Wir sind überzeugt dass das Bewäl-

tigen dieser vier Anfragetypen eine holistische Entitätssuche auf Web Daten für die

nächste Generation von Suchmaschinen ermöglicht.

vii

Acknowledgements

First I would like to express my sincere appreciation to Prof. Dr. Wolf-Tilo Balke

for his useful critiques, enthusiastic encouragement and patient guidance of this re-

search work. He gave me the possibility to join one of the most ambitious institutes

of this university, he introduced me to research in the field of information systems

and he always took time for discussing new research ideas. He was a true mentor

for me. For all this he has my deepest gratitude.

I got to know Prof. Dr. Ansgar Scherp through his valuable research work on

linked data. In fact his analysis of the schema structures on the Linked Open Data

cloud motivated me to analyze the feasibility of property-based entity retrieval from

linked data, now an important part of this thesis. I would like to thank him for being

my second examiner.

There were many interesting discussions and collaborations with my colleagues

from the Institute of Information Systems at the Technical University of Braun-

schweig and the L3S Research Center. I would like to thank Joachim Selke for our

interesting and useful discussions. Learning from his vast experience was extremely

valuable for me especially during my early years. I would also like to thank Christoph

Lofi for sharing his experience on paper writing with me. Furthermore, I would like

to thank my colleagues, Sascha Tönnies, Benjamin Köhncke, Jose Maria Gonzales

Pinto, Philipp Wille, Simon Barthel, Kinda El Maarry, Felix Geilert, Jan-Christoph

Kalo, Michael Loster und Jewgeni Rose for the wonderful collaboration.

I would also like to extend my thanks to Thomas Mack for always ensuring the

needed hardware and software support. I greatly appreciated his help since many of
the experiments I performed required complicated setups which he quickly orga-

nized. Furthermore, I would like to thank Regine Dalkiran for giving me feedback on

my writing on numerous occasions. Her valuable input helped me improve my writ-

ing skills in both German and English.

Finally, I would like to thank my family for their support and patience. I am espe-

cially grateful to my wife for supporting and encouraging me to continue my work

even if this meant working longer hours or weekends.

ix

Table of Contents

INTRODUCTION .. 1

RELATED WORK .. 7

2.1. LINKED DATA ... 12

2.1.1. Entity Type Queries using the rdf:type Property 15

2.1.2. Analyzing the Practical Utilization of rdf:type in Linked Data 17

2.2. SCHEMA.ORG .. 20

2.2.1. The Acceptance of Schema.org ... 24

2.2.2. Learning to Annotate Unstructured Data with Schema.org 27

2.3. INSTANCE MATCHING ... 32

2.4. CONCLUSIONS ... 41

ENTITY SEARCH BASED ON THE ENTITY TYPE 43

3.1. MINING ENTITY TYPES FROM THE WEB ... 46

3.1.1. Task Definition .. 47

3.1.2. The Query Expansion Process .. 49

3.1.3. Evaluation .. 53

3.1.4. State-of-the-Art ... 61

3.2. CONCLUSIONS ... 62

PROPERTY-BASED ENTITY SEARCH .. 65

4.1. USE CASE .. 66

4.2. PROPERTY-BASED ENTITY RETRIEVAL – SYSTEM DESCRIPTION 69

4.2.1. Property-based Data Access .. 69

4.2.2. Quality of the Selected Entities ... 72

4.2.3. Property Selection .. 74

4.2.4. System Evaluation ... 76

4.2.5. State-of-the-art in Property-based Entity Retrieval 79

4.3. CONCLUSIONS ... 80

INSTANCE-BASED ENTITY SEARCH .. 83

5.1. STATE-OF-THE-ART IN INSTANCE-BASED ENTITY SEARCH ... 83

5.2. THE INSTANCE-BASED ENTITY QUERY .. 87

5.3. SYSTEM DESCRIPTION .. 90

5.3.1. Theoretical Foundations ... 90

5.3.2. System Architecture .. 92

5.3.3. Evaluation .. 96

5.4. CONCLUSIONS ... 100

ENTITY SUMMARIZATION .. 103

6.1. REVERSE-ENGINEERING GOOGLE’S KNOWLEDGE GRAPH 106

6.2. RELATED WORK .. 111

6.3. ATTRIBUTE EXTRACTION FOR ENTITY SUMMARIZATION-SYSTEM DESCRIPTION .. 112

x

6.3.1. Attribute Typicality .. 112

6.3.2. System Architecture .. 114

6.3.3. Evaluation.. 117

6.4. CONCLUSIONS ... 121

CONCLUSIONS AND FUTURE WORK .. 123

APPENDIX: ANALYSIS ON RDF:TYPE URIS IN BTC 127

CURRICULUM VITAE .. 131

LIST OF FIGURES ... 133

LIST OF TABLES ... 135

BIBLIOGRAPHY .. 137

1

Introduction

With the widespread use of the Web as primary information source, entity-centric

search has become a common task for many people. For decades, Web search en-

gines have been the de facto tools for searching the Web. Searching for something?

Google it! Entity-centric search is no exception. In fact, according to studies per-

formed on the Yahoo! query logs ([73, 74]), entity related search has already sur-

passed the mark of 50% of all Web queries.

Typical entity types in this context are ‘people’, ‘places’ or ‘products’. But gener-

ally speaking, an entity is defined as any existing or real thing. In consequence, things

like ‘diabetes’, ‘hypertension’ or ‘the flu’ are entities just as ‘Angela Merkel’, ‘Berlin’

or an ‘iPhone 6’ cell phone are. Entities have various properties and corresponding

property values. For instance, amongst many others, a person has properties like

‘gender’, ‘nationality’, or ‘profession’. Only this way, can abstract queries like retriev-

ing all female German Chancellors be answered. Not only do entities show different

properties, they are also categorized in classes, the entity types. Entity types span

over various degrees of granularities. They range from all-encompassing types like

‘thing’ representing all possible entities, to basic entity types like ‘person’ or to more

fine granular entity types like ‘female German Chancellors’, constructs obtained by

fixating the values for one or more of the entity properties.

With entity data in mind, the functionality of entity search refers to methods

which enable search engines to answer entity-related queries on Web data, by un-

derstanding and satisfying the user intent. Entity-related queries are in this case all
queries on entities, properties or entity types. Entity-related data is abundantly avail-

able on the Web in three main forms of representation:

 Embedded in text documents

 Stored as facts in linked data stores

 Embedded in text documents and annotated with global semantic vocabu-

laries

These three forms of data representation have emerged as a consequence of the

purposes they were designed to serve. For instance text documents are the standard

means for communicating information between people using the Web as a medium.

Since the text documents were written for humans, entities are described with just

enough information for people to understand the meaning. For this reason, this data

representation form heavily relies on common knowledge and contextual infor-

mation. For example when writing about a certain entity, like the new ‘G63 AMG’

car from Mercedes most properties of this entity are not required to be explicitly

mentioned in the document. Since it is a car, it obviously has a body, an engine,

wheels and all the other properties a car has. Only things that set it apart from other

2 Introduction

cars, like the fact that it has six wheels1 have to be made explicit. But since most of

the information is implied and has to be decoded by the reader with the help of

background information, understanding and retrieving entity-meaningful information

implied in text documents is a difficult task for machines.

Driven by the Semantic Web initiative to make entity data on the Web accessible

to machines, a large amount of data has been published online in linked data stores.

Building together the Linked Open Data (LOD) cloud, data stores contain billions

of facts about entities. Facts are extracted from text documents with the help of

information extraction techniques or produced and maintained by large data pro-

viders. Storing even the most basic facts, this is an important form of entity data

representation for entity search because all information is made explicit. But the

data is still difficult to query in integrated form, because each data store has its own

vocabulary for structuring the data. This way, entities, properties or entity types

may bear different names or identifiers in different data stores making it difficult to

join facts from different sources.

To make all entity data available to machines in an integrated fashion, semantic
vocabularies for annotating in-text entity data were proposed. Schema.org is the

most popular collection of such entity annotation vocabularies. For documents an-

notated with schemata from schema.org, all annotated entity data is this way availa-

ble in structured form and can theoretically be queried with structured query lan-

guages, like a huge Web database. Having the same structure, all data can be queried

in an integrated form. Regarding implicit information, the main assumption is that

even the most basic information is available somewhere on the Web, annotated with

schema.org. Unfortunately, there is not nearly enough data annotated with such vo-

cabularies. In fact as we will extensively discuss in Chapter 2, none of these data

representation forms managed to facilitate entity search on Web data.

The problem of searching for entities on the Web is obviously important and

neither the appearance of the LOD nor schema.org has solved it for now. Although

a fully structured Web building on a global schema would definitely empower entity

search, we believe that such an approach is not feasible. Instead, in this thesis we

claim that independent of the way entity data is represented on the Web, entity

search should consider how humans manage entity data. Perhaps the best example

for this, is the way information is handled on an abstract, conceptual level. For in-

stance, in terms of data modelling, during the conceptual modelling phase data engi-

neers have a mental representation of ‘things’ they require for describing entities.

Those ‘things’ are a generalization of the mind, for a category of real world entities.

They are mere abstractizations, or concepts, as they are referred to in cognitive

psychology [114]. In the context of information theory, a concept represents a set

of entities of a similar kind. Such entities may be similar in terms of structure, i.e.

sharing a certain set of attributes. The may also be similar in terms of attribute

1 http://www.autocar.co.uk/car-review/mercedes-benz/g63-amg-6x6

2.1 Linked Data 3

values, i.e. sharing both attributes and the corresponding values. But a more elabo-

rate view over the meaning of concepts is provided by linguists Ogden and Richards

in [92]. In this work the authors introduce the triangle of reference. Also known as

the semiotic triangle (see Fig. 1), this is now an established model also in information

science [114]. In this model, concepts are represented in language through words

or labels. They are defined by their extensions and intensions. The extension of a

concept is the set of entities that fall under it while the intension determines the

concept via its properties or attributes. Going back to entities, with the semiotic
triangle in mind, the word or symbol is, in this case, the entity type (e.g. ‘actor’) that

the user thinks of. For entity type ‘actor’ the extension would comprise all actors

that ever existed and its intension could be ‘person’ and ‘played in at least one movie’.

Considering the semiotic triangle as a model of how people handle entity data,

when searching for entities, users are searching for the set of entities (the extension)

of a certain entity type that they have in mind. In exploratory search, and especially

in product search, this is the first step towards compiling a list of candidates to

choose form (see [107] for details). The next step, also relevant for entity search,

requires paying closer attention to some of these candidates. Entity summaries of a

certain entity come in handy for this purpose. In order to get either the set of enti-

ties or the entity summary, users have to express their information need somehow.

As a query, they may provide for instance the entity type; or they may provide an

intensional description, a prototype of the expected entities; or some partial exten-

sion, instances, most probably well-chosen examples of entities that one is searching

for. Taking all this into consideration, the following types of queries are relevant for,

and should be supported by systems offering entity-centric search:

 Entity type query. Input: the entity type. Expected output: the exten-

sion; the set of entities of the given type. An example of such a query

would be searching for all entities of type ‘movie’. Search engines, which
are the de facto information retrieval systems for the Web, were not built

for, and are not able to accommodate such queries. A try on one of the

Fig. 1. Semiotic triangle.

Concept
Label

Entities Properties

extension intension

4 Introduction

leading search engines2 on query ‘movie’ returns links for IMDb, YouTube,

AppleTrailers, RottenTomatoes but not even one movie.

 Prototype-based query. Input: the intension; a set or attributes de-

scribing the entity type. Expected output: the extension; the set of enti-
ties of the intended type. Since it relies on attributes/properties to describe

the entity type, this type of query is also called a prototype based query,

and the properties are expected to offer a prototypical sketch of the ex-

pected entities. An example of such a query would be searching for all

entities having ‘title’, ‘year’, ‘director’, ‘actor’ and ‘genre’ as attributes. Due

to the co-occurrence of terms that have a high characteristic power for

movie Web pages, for query ‘title’, ‘year’, ‘director’, ‘actor’, ‘genre’ search en-

gines are able to return two IMDb pages of two movies3. An important

problem for this type of queries is the fact that providing a complete in-

tensional description of the intended entity type is not a trivial task for the

user. Instead, systems that support such a query type will have to take into

consideration that the user may provide a subset of the intension, a small

number of properties he/she is aware of.

 Instance-based query. Input: partial extension; a few examples of en-

tities best representing what the user is searching for. Expected output:

the extension; the set of entities of the same type as the example entities.

An example of such a query would be searching for all entities similar to

‘The Matrix’, ‘Avatar’ and ‘Inception’ as examples. This kind of queries have

been previously researched in the context of multimedia databases, e.g.
query by humming for audio [45], or by sketch for images and videos [66,

90]. As expected also in this case, Web search doesn’t provide any satis-

fying results. Major concerns for this query type are the fact that the ex-

amples have to be well chosen and that users will not be able to provide

more than a handful of examples. For reasons of practicality one can ex-

pect that the user provides at best a maximum of five examples.

 Entity summary. Input: an entity. Expected output: an entity sum-

mary; the intension plus values for the attributes in the intension.

Knowledge Graphs, introduced by Google and recently adopted by Bing,

provide this kind of functionality. But they rely on manually curated

knowledge bases that prevents them from accommodating many new or

more obscure entities available on the Web.

2 https://www.google.de/?gfe_rd=cr&ei=zdmeU66iKaWK8QeIqoHoBQ&gws_rd=ssl#q=movie

3https://www.google.de/?gfe_rd=cr&ei=zdmeU66iKaWK8QeIqoHoBQ&gws_rd=ssl#q=%E2%80%98ti-

tle%E2%80%99%2C+%E2%80%98year%E2%80%99%2C+%E2%80%98direc-

tor%E2%80%99%2C+%E2%80%98actor%E2%80%99%2C+%E2%80%98genre%E2%80%99+

2.1 Linked Data 5

Taking all this into consideration, our goal is to research data-driven methods,

which independent of the data representation forms, are able to answer these typical

entity search query types.

Boundaries of the thesis. Two types of entity related queries will not be han-

dled in the course of this work: user/user group specific entity types that require

personalization and entity related question answering.

All these query types are quite flexible, allowing users to express all kinds of entity

types. For example one could search for clear-cut categorical entity types like

‘movie’ or ‘actor’. Users can also search for entity types where the expected result

set enjoys the consensual acceptance of the large majority of users e.g. ‘science fic-

tion movie’. But, as introduced in [114], one can also search for more individual,

user/user group specific entity types like for instance ‘good mood movie’. In the

course of this thesis we will consider only entity types where there is consensus

w.r.t. the expected result and user profiling or personalization is not required. Of

course personalized entity search is very interesting for product search and it may

be interesting for systems like Amazon’s A9 product search engine. In fact, there is
a compelling amount of research in the field of recommender systems ([85, 100,

101]) focusing on exactly these problems. But especially in a time when privacy con-

cerns have reached critical levels and users are advised to use alternative methods

(see https://duckduckgo.com/privacy for more information) to avoid profiling from

Web search engines, this type of queries has lost, relevance for Web search.

The task of “Web-based Question Answering” where users search for a specific

piece of information about a certain entity e.g. ‘Amazon customer service phone

number’ is also not a subject of this thesis. In this field extensive research ([26, 27,

78, 134]) has been done. Systems like the well-known IBM Watson [120] stand as a

proof of their success.

Thesis structure. In this thesis we propose a solution to entity-centric search

on Web data. Our approach builds on the assumption that different types of entity-

centric query types require different methods. In Fig. 2 we present a simplified view

of our system for holistic entity-centric search. The heart of this system is repre-

sented by the four core components corresponding to the entity-centric query

types. They rely on Web data and query type specific methods to enable entity-

centric search. Discussed and evaluated individually, they are the central part of this

thesis. In the middle, there is a basic component whose only purpose is to forward

the query to the appropriate component according to the query type, and present

the result back to the user.

The entity type query type for entity-centric search poses the least cognitive bur-

den to users. One just needs to state the entity kind and the system will do the rest.

But precisely because entity-type queries are concise, simple keywords, it makes the

work of a system that supports them, much more difficult. While the information

transmitted by such a keyword is easy to understand for people due to common

sense and background knowledge, machines require complicated methods and large

6 Introduction

amounts of data to mine this information from. The details on how to build such

methods are presented in Chapter 3.

The prototype-based query type requires that the user provides a set of properties

that intensionally define the intended type of entity. But, as we have found out in

[59] users are rarely keen on providing more than four properties. This leads to the

fact that in most cases, a system accepting this kind of query has to be able to work

with only a subset of the actual intentional description. For instance, a user may

provide ‘Title’, ‘Director’, ‘Genre’, ‘Language’ as an intension. But this description, is

rather broad, as it may refer to movies, audio books or even video games. In Chapter

4 we present a method that is able to cope with such cases.

Also in the case of the instance-based query type, one cannot expect that the user

will provide more than a few examples of entities to point out what his/her infor-

mation needs are. But as we will discuss in more detail in Chapter 5, providing ex-

amples may leave room for ambiguity. For instance, with “Ronald Reagan” as a query

entity and “Clint Eastwood” as additional example, the user will be referring to

American actors rather than American presidents. However, he/she might also have

more restricted entity types in mind like Western actors, actors from California,

American actors with political ambitions, and so on. The more examples, the better

a query can be disambiguated, however increasing query complexity.

Next, we present an approach for providing a data driven entity summary that is

not limited to popular entities already present in manually curated databases. But

what should such a summary comprise and how long should it be? The answer to

these questions is presented in Chapter 6.

Finally, in Chapter 7 we present our conclusion on entity-centric search together

with an outlook to future work.

But before proceeding to introduce our take on entity-centric search, in the next

chapter we provide an extensive overview on existing approaches and efforts being

made to enable entity search on the Web.

Fig. 2. System overview, with the four main components of the system being presented

in detail in chapters 3 to 6.

3

1
1 2

4 3

7

Related Work

The storage, management, and retrieval of entity-related data has always been among

the core applications of database management systems. Such systems can master

entity queries because the underlying data is provided in structured form on a model

that matches the query needs. However, entity search has moved to the Web. And

on the Web, entities are not only characterized by structured data alone but to a

large extent, by unstructured information. Indeed, unstructured data is a rich source

of information on the Web. In order to exploit it best for entity-centric search, the

research community has focused on building capabilities for extracting structured

information out of it. Named entity recognition (NER) [31, 80], entity detection

(ED) [7], or the extraction of precise facts from unstructured data known as open
information extraction (OIE) [37] are just a few of the information extraction tech-

niques that reached maturity. With these tools, large repositories of facts in the

form of (subject, predicate, object) triples could be extracted. But without proper

structure, like a global ontology or schema, querying entities in such triple stores

remains a challenge. In fact, the problem of algorithmically structuring information

on the Web has been extensively researched, see e.g., [22, 24, 116]. However, cur-

rent automatic approaches still face quality problems and require considerable effort

for extracting, transforming and loading data. Thus, from a practical perspective they

are not yet mature enough to keep up with the volume and velocity, at which new

data is published on the Web.

Another way of approaching this problem emerged from how data surfaces the

Web. Most websites are dynamically generated from some structured data source.

For instance, the IMDb page of the movie ‘Iron Man 3’4 is obviously a dynamically

generated page. It is most probably built with some HTML template engine and

server sided scripts accessing the needed data from a database. This is convenient

for human use, but not for machines. However, making the data directly available

online, in structured form, in a data store, would allow machines to perform proper

entity search, much beyond the naïve information retrieval (IR)-style keyword

search. Instead of trying to automatically extract the structured data, the Linked

Open Data (LOD) [9, 13] initiative tried a different approach. It offers technology

for information providers to directly publish data online in structured form and in-

terlinked with other data. In Fig. 3 we present a small selection of the data on movie

4 http://www.imdb.com/title/tt1300854/

8 Related Work

‘Iron Man 3’ available on DBpedia.org5. Such data would most definitely allow us to

perform some entity-centric search. For starters, entity summary queries seem to be

fairly simple: just by searching an entity, in this case a movie, one can get all infor-

mation about it. Or not? Unfortunately, some of the important information is missing

in the case of the ‘Iron Man 3’ movie. For instance, no information about the full cast

or the movie genre is provided on DBpedia. However, this data is available on Free-

base. After all, this is the point in linked data: to join information from multiple data

stores for a unified view of an entity. In LOD entities are matched to one another

through the owl:sameAs property. Hence, for the example presented in Fig. 3, we

would require that an owl:sameAs link matches the entity from DBpedia to its coun-

terpart on Freebase. But this link is missing. As discussed in [33], the cross-linkage

in the LOD is not nearly as extensive as one would hope. At the same time, auto-

matic instance matching solutions present important quality problems [57].

Furthermore, it is worth noticing that, in the example presented in Fig. 3, various

vocabularies (e.g. DBpedia’s dbpedia-owl, foaf, owl, rdf, rdfs and dbprop) are being used

5 DBpedia [14], is a crowd-sourced community effort to extract structured information from Wikipedia and

make this information available on the Web. It is the heart of the LOD cloud as most other data stores link

their data to DBpedia. The data on movie ‘Iron Man 3’ can be found at: http://live.dbpe-

dia.org/page/Iron_Man_3

Fig. 3. Data from dbpedia.org about the Iron Man 3 movie.

2.1 Linked Data 9

for describing the structure of the data. Indeed, the LOD is very flexible since it

even allows for each data publisher to define its own structure. But, as we have

shown in [59], this flexibility comes at a price: although data stores may overlap in

terms of the data stored, the vocabulary used for structuring (and thus querying)

may seriously differ. Ontology alignment has been proposed as a remedy, but the

quality of results is still not convincing [62, 63]. An in depth analysis on the benefit

of LOD for entity-search, the problems that arise and possible solutions are pre-

sented in Section 2.1.

To avoid all these problems while improving their query capabilities, major Web

search engine providers went a slightly different way. Their managed approach builds

on a collection of ready-made schemas accessible on schema.org, which are centrally

managed by Bing, Google, Yahoo! and Yandex. These schemas are used as a vocab-

ulary to be embedded in the HTML source code of a page using microdata. An ex-

ample of a microdata annotation integrated into the Web page of the ‘Iron Man 3’

movie on IMDb is presented in Fig. 4. The main incentive for page owners to use

schema.org is that once a Web page features content annotated with schema.org’s
vocabulary, any search engine can present it as a rich snippet. Furthermore, the Web

page has a higher chance of being found by users interested in that very specific

content, too. Indeed, motivating page owners to annotate their data with schema.org

vocabulary has multiple advantages:

 The effort is spread over many shoulders reducing the effects of volume

and velocity at which new data comes to the Web;

 annotations are of high quality – the one creating the data should under-
stand its semantic meaning best;

 the structure is centrally managed and data can be queried globally with-

out complicated alignment operations like in the case of LOD;

 entity-centric queries with Web data are enabled, ultimately fostering se-

mantic search for the next generation Web.

For entity-centric search, schema.org represents an important advantage because

every entity type is described by one global schema. There is no need to solve com-
plicated schema mapping, or instance matching problems to get a unified view of

Fig. 4. Schema.org annotation for movie Iron Man 3 in microdata format.

10 Related Work

some entity. Getting all entities of the same type, or based on some properties is

also straight forward. One just needs to index Web data with microdata aware in-

dexes like for instance Sindice (see [36]) is doing6. But an in depth analysis on

schema.org reveals, that the number of annotations is in fact very small [56]. This

means that, until schema.org gains traction, its practical use for entity search is quite

limited. More on this topic is presented in Section 2.2.

Unstructured data, linked data and data annotated with global vocabularies like

schema.org are the main representation forms for entity data on the Web. Building

on representation form specific query functionality (see Fig. 5), systems like the

Google Knowledge Graph or the recently published Google Knowledge Vault [35]

have been proposed. The Knowledge Graph provides a short and concise summary

of an entity. After typing some entity name into Google’s search field, an entity sum-

mary is displayed on the right hand side of the search results, if the Knowledge

Graph contains the entity. A sample entity summary for ‘Chuck Noris’ is shown in

Fig. 6. According to Google’s official blog7, the Graph mainly relies on manually cu-

rated data sources like the Wikipedia infoboxes8, Google’s Freebase9, and
schema.org10 annotations on the Web. But the Knowledge Graph has a major short-

coming: it doesn’t cope with the number of new entities published daily on the Web.

It only provides information on well-known entities already having a Wikipedia arti-

cle, Freebase record or sufficient schema.org annotations. Our extensive evaluation

presented into more detail in Chapter 6, shows that this is indeed rather limited.

For instance, from a list of 14,199 common diseases (according to World Health

6 An example of retrieving all schema.org annotations for movies with Sindice: http://sin-

dice.com/search?q=schema&nq=&fq=class%3Ahttp%3A%2F%2Fschema.org%2FMovie%20format%3AMI-

CRODATA&interface=guru&facet.field=domain

7 http://www.googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html

8 An infobox is a fixed-format table designed to be added to the top right-hand corner of articles to consistently

present a summary of some unifying aspect that the articles share and sometimes to improve navigation to

other interrelated articles.

9 Freebase ([16]) is a community-curated database of well-known people, places and things.

10 Schema.org is an initiative of Bing, Google, Yahoo! and Yandex to create and support a common set of schemas

for structured data markup on web pages.

Fig. 5. Entity data on the Web. Representation forms, query functionality and entity-

centric search systems.

Unstructured Data

Linked Data

Data annotated with schema.orgG
o

o
gl

e
K

n
o

w
le

d
ge

 G
ra

p
h

G
o

o
gl

e
K

n
o

w
le

d
ge

 V
au

lt

Representation form Query functionality

IR: Keyword Search, OpenIE, NER

SPARQL

Semantic Search Engines: Sindice, structured search

2.1 Linked Data 11

Organization – the International Statistical Classification of Diseases11) we found

about 7,000 being covered by the Wikipedia diseases category, with only about

3,000 of them also featuring an actual article on Wikipedia or Freebase. As we will

discuss in Section 2.2, schema.org has not really gained traction. Considering its low

acceptance of only about 1.5% of the websites, schema.org doesn’t contribute much

to extending the knowledge base either.

This way, the majority of entities (in particular, new or more obscure entities) not

present in the manually curated Web resources used by Google’s Knowledge Graph,

cannot benefit from data summarization.

11 http://www.who.int/classifications/icd/en

Fig. 6. Knowledge Graph - result for ‘Chuck Noris’.

12 Related Work

The Knowledge Vault is a Web-scale probabilistic knowledge base. It combines

information extracted from unstructured data from the Web obtained via tech-

niques like OpenIE and NER, tabular Web data, page structure elements, data man-

ually annotated with schema.org and prior knowledge derived from existing

knowledge repositories from the LOD cloud. All these information sources are

fused together with machine learning methods to build a unified and representation

form independent data source for entity search. Published just few weeks ago, the

system is the latest development from Google. It is meant to replace the Knowledge

Graph and it follows the same basic idea as proposed in this thesis, i.e. tapping all

information sources by abstracting from the various data representation forms and

fusing them into an integrated data repository. More on our system for data extrac-

tion and representation is provided in Chapter 5. But like any system that integrates

data from multiple sources, the Vault, suffers from problems regarding entity recon-

ciliation and duplicate detection. This problems are known from core database re-

search and have recently been discussed with respect to interlinking data in the LOD

cloud. Proposed solutions seem to have reached maturity and show promising re-
sults. We discuss this topic in more detail in Section 2.3.

2.1. Linked Data

The term “Linked Data” was coined by Tim Berners-Lee, the director of the World

Wide Web Consortium in a design note ([9]) discussing issues around the Semantic

Web project. His vision was that intelligent agents will one day be able to handle all

the “day-to-day mechanisms of trade, bureaucracy and our daily lives will be handled

by machines talking to machines.” [10]. But for this to be possible, computers have

to become capable of analyzing all the data on the Web – the content, links, and

transactions between people and computers.

Linked Data describes a method for of publishing structured data on the Web in

such a way that it can be interlinked and become more useful. The building blocks

are standard Web technologies such as the Hypertext Transfer Protocol (HTTP)

[38], the Resource Description Framework (RDF) data model [93] and Uniform

Resource Identifiers (URIs) [11]. But rather than using them to serve web pages for

human readers, it extends them to share information in a way that can be read

automatically by computers. This enables data from different sources to be con-

nected and queried.

The core of publishing linked data is outlined by Tim Berners-Lee through four

design principles published in [9], paraphrased along the following lines:

1. Use URIs to denote things.
2. Use HTTP URIs so that these things can be referred to and looked up

("dereferenced") by people and user agents.

3. Provide useful information about the thing when its’ URI is dereferenced,

leveraging standards such as RDF.

2.1 Linked Data 13

4. Include links to other related things (using their URIs) when publishing data

on the Web.

Since 2006, when the concept of linked data has been introduced, the amount of

data published on the Web in linked form, has gradually increased. In May 2007 it

comprised 12 data stores. They all published data in subject, predicate, object RDF

triple format, accounting together for about 500 million RDF triples. In September

2011, when the diagram (presented in Fig. 7) of the LOD cloud was last updated,

there were about 31 billion triples. Currently, more than 53 billion triples in over

300 data stores are available in the largest Virtuoso-based Semantic Web data

cache12.

LOD covers a wide range of domains, governmental data representing the largest

portion of data that is being published online in linked form. In Table 1 we provide

an overview of the various domains, number of data stores and amount of triples

for the LOD cloud from Fig. 7. Cross-domain data sources concentrate information

on all kinds of entities. This makes them a good data source for entity type-based

entity search. With 41 data sets and more than 4 billion triples, cross-domain data
stores are also well represented in the LOD could. These statistics don’t even in-

clude Freebase, which by itself covers information on almost 45 million entities,

12 The Virtuoso SWDB is accessible at http://lod.openlinksw.com/sparql/ through a SPARQL endpoint.

Fig. 7. Linking Open Data cloud diagram as of September 2011. By Richard Cyganiak and

Anja Jentzsch. http://lod-cloud.net/.

14 Related Work

partly gathered from other LOD sources. Typical examples of cross-domain data

stores are DBpedia, OpenCyc [77] or YAGO [116]. DBpedia for instance, stores

data about all kinds of entity types, be it personalities, organizations, medical condi-

tions, movies, books, music, video games and so on. In total it provides information

on about 4 million entities. The cross-domain data sources are well inter-linked, but

have fewer out-links. They are mostly used as references by other data stores, having

many more in-links (as observed on the example on DBpedia in Fig. 7).

Table 1: Domain based overview of the amount data stores, triples and RDF links that
are set from data sources within a domain to other data sources. LOD state as of Septem-

ber 2011. Data from http://lod-cloud.net/state/.

Domain Nr. da-

tasets

Triples % (Out-)Links %

Cross-domain 41 4,184,635,715 13.23 63,183,065 12.54

Life sciences 41 3,036,336,004 9.60 191,844,090 38.06

Geographic 31 6,145,532,484 19.43 35,812,328 7.11

Government 49 13,315,009,400 42.09 19,343,519 3.84

Media 25 1,841,852,061 5.82 50,440,705 10.01

Publications 87 2,950,720,693 9.33 139,925,218 27.76

User-generated

content

20 134,127,413 0.42 3,449,143 0.68

 295 31,634,213,770 503,998,829

There is no central authority to manage data published in linked form. Each data

store is responsible for publishing, storing and managing its own data. In conse-

quence, working with such data, requires that one first searches for relevant data

sources and possibilities to access the respective data. Fortunately, DataHub13, which

is a data management platform offered by the Open Knowledge foundation14, pro-

vides data owners with the tools for registering the published datasets, for tagging

them with metadata and corresponding description, and adding SPARQL endpoints

for data access. It also allows data consumers to search for data sets based on key-

words, to download samples, even complete data dumps, or to query data if

SPARQL endpoints are provided.

On a logical level, in data stores, the data is usually stored in subject, predicate,

object RDF triple format. An excerpt of some triples for movie ‘Iron Man 3’ from

DBpedia is presented in Fig. 8. The subject is always an URI representing an entity,

13 http://datahub.io/

14 The Open Knowledge foundation (https://okfn.org/) is a worldwide non-profit network of people passionate

about openness, using advocacy, technology and training to unlock information and enable people to work

with it to create and share knowledge

2.1 Linked Data 15

the predicate is an URI representing a property, and the object is either the URI of

an entity or a literal. For the example in Fig. 8, the subject of all these triples is

obviously the DBpedia URI of the movie ‘Iron Man 3’. Some interesting predicates

are the <http://www.w3.org/2000/01/rdf-schema#label> (known as, and further de-

noted with rdfs:label since rdfs is a predefined prefix of

http://www.w3.org/2000/01/rdf-schema#) property indicating the human friendly

name of a resource, or the <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

(known as rdf:type again as a result of predefined prefix structure) linking an entity

to its type. For our previous example, the movie ‘Iron Man 3’ is defined as having

the types <http://www.w3.org/2002/07/owl#Thing>, <http://schema.org/Creative-

Work>, <http://schema.org/Movie> and <http://dbpedia.org/ontology/Film>. Is this

entity type information useful for empowering entity search on types? Being a prop-

erty of all entities, in the following sections we discuss about the contribution of

LOD data to entity-centric search by focusing on the example of the rdf:type prop-

erty. But our observations are valid for any other property and entity search task.

2.1.1. Entity Type Queries using the rdf:type Property

The semantic Web research community has invested much effort in providing enti-

ties with proper type information. This is exactly the kind of information required

for entity search based on types: for instance, when searching for movies, one could

get all movie URIs and their titles from DBpedia only, by getting all entities of type

<http://dbpedia.org/ontology/Film> with the following SPARQL query15:

 SELECT DISTINCT ?MovieTitle, ?MovieURI WHERE{

 ?MovieURI rdf:type dbpedia-owl:Film .

 ?MovieURI rdfs:label ?MovieTitle .

 }

where rdf, rdfs and dbpedia-owl are the predefined prefixes for the rdf syntax, the rdf

schema and the DBpedia ontology name spaces. This query returns all 77,600 movie

entities available on DBpedia. Since DBpedia, like the other data repositories in the

LOD is manually curated, we can assume that all these entities are indeed movies.

Precision is in this case not an issue. However, recall is an issue, since these are not

15 The SPARQL endpoint for DBpedia is available at http://dbpedia.org/sparql

Fig. 8. RDF excerpt comprising 10 triples from DBpedia for movie Iron Man 3.

<IMURI> is short for <http://dbpedia.org/resource/Iron_Man_3>.

16 Related Work

all the movies available in the LOD cloud. Other sources, like YAGO, Freebase,

Linked Movie DataBase16 (LinkedMDB), etc., also store movie entities. In conse-

quence, to fully answer the entity type based queries one would have to search and

return all relevant entities from all relevant data stores. Three basic steps have to

be performed for this:

 First, one has to identify relevant sources and corresponding SPARQL end-
points. This is done by means of keyword search on DataHub.

 Second, one has to run SPARQL queries on each identified endpoint. The

goal here is to get all relevant entities based on the entity type. To make

matters simpler, one can use the endpoint17 provided by OpenLink which

centralizes and caches all data in the LOD cloud in one single large triple

based Virtuoso repository. This way all data can be accessed through a single

endpoint. However, this only solves part of the problem: running the

SPARQL query from the previous example will return all movies from DBpe-

dia only, even if executed on the OpenLink Virtuoso cache comprising all

triples from the LOD. The reason for this behavior is the fact that the query

specifies that all entities of type ‘dbpedia-owl:Film’ be returned. At the same

time, other data sources use other URIs for the movie entity type. At the

core of the problem lies one of the basic design principles of LOD: the fact

that each data store is responsible of publishing and maintaining its data. As

such, each source may develop its own vocabulary and ontologies for struc-

turing the data. This flexibility comes at a price: querying the LOD as a unified

source of data is impossible due to the lack of global or aligned structure. In
the case of entity type-based search, this means that, for the same entity

type, each data source may have its own data type URI. For movies for in-

stance, the URI for the ‘movie’ type on Freebase is <http://rdf.free-

base.com/ns/film.film>. Although it represents the same type of entities as

the DBpedia movie type, the Freebase movie type is represented by a differ-

ent URI. This is not an isolated case: later on, in this section we provide an

in depth analysis showing the complexity of the problem and possible solu-

tions on the example of various types of entities.

 Third, obviously, data sources in the LOD cloud may overlap in terms of

stored entities. In the final step, one has to integrate the result obtained from

querying all relevant data stores. This basically means identifying and elimi-

nating duplicates. Normally, this should be a simple task since all entities are

represented through unique identifiers: URIs. Ideally one could just use the

DISTINCT clause from SPARQL to get the set of all unique entities for the

given entity type. However, the advantage of having independent data stores

with a flexible vocabulary strikes again since one entity may be represented

16 linkedmdb.org/

17 http://lod.openlinksw.com/sparql/

2.1 Linked Data 17

with different URIs in different data stores. Known as instance matching, the

problem of finding all URIs that refer the same real-world entity has yet to

be solved. An in-depth analysis over this problem is provided in Section 2.3.

2.1.2. Analyzing the Practical Utilization of rdf:type in Linked Data

The basic hypothesis is that one can use the rdf:type property to successfully per-

form entity search based on the type. The rdf:type property, defined in the RDF

Schema 1.1 of the W3C recommendation18 is an instance of the rdf:Property that is

used to state that an entity is an instance of a class. For this reason, rdf:type is the

most simple way of getting entities of a certain type: identify the type URI (a task

that could simply be performed with the help of an inverted index with keywords as

keys and entity type URIs as values) and get all entities having that URI as a type. But

as we have seen on the example of movies, the same type may have different URI

representations. To assess the dimension of this problem we performed an in-depth

analysis on the type URIs assigned to entities of the same type.

Presented in [59], we conducted an analysis on the well-known Billion Triple Chal-

lenge corpus (BTC) from 2012 ([50]). BTC comprises about 1.4 billion quads of the

form (subject, predicate, object, source) crawled from major LOD data stores like Dat-

ahub, DBpedia, Freebase, YAGO and others during May and June 2012. We ex-

tracted a list of movie types from the BTC data set, by bootstrapping on a seed of

movies from the LinkedMDB and manually inspecting the resulting types. With this

approach we found 4,336 URIs all for the type ‘movie’. This surprisingly large number

is mostly due to the very fine classification provided by YAGO. This way, besides

basic types, most specific movie types e.g. Animation, FrenchFilm, or even

1910DramaFilms are introduced. Using the same method, we found 2,919 URIs rep-

resenting the type ‘book’ and 14,190 URIs for type ‘music album’. Overall, we found

169,469 unique URIs for movies in BTC. The number of unique movies is obviously
smaller because of existing duplicates, but it is hard to establish manually. With the

DBpedia movie type URI, one can reach only about 20% of the entities. A list of

most comprising URIs for ‘movie’ type is presented in Table 2. For entities of type

‘book’ and ‘music album’ results are similar. To be self-contained, we include them

in the Appendix A chapter in Table 19 and Table 20 respectively. In consequence,

with the current state of linked data and without further intervention entity search

based on the rdf:type property doesn’t really work on a large scale. While precision

is perfect, since the type information is manually curated, the problem is the low

recall indirectly caused by the vocabulary flexibility.

We did not aim for, and raise no claim for completeness for this experiment. But

the sheer number of URIs identified for the same type, corroborated with the fact

that one type URI reaches only a subset of entities of a given type, shows that getting

all entities of a certain type using LOD is not trivial. Ontology alignment has been

18 http://www.w3.org/TR/rdf-schema/#ch_type

18 Related Work

proposed as a remedy, but the quality of results is still not convincing [62, 63]. How-

ever, as the results from Table 2 suggest, it would be enough to get to the few URIs

comprising most entities of the type.

Table 2: Top 30 most comprising URIs for the ‘movie’ entity type from various data
stores in the BTC corpus.

URI Nr. %

<http://rdf.freebase.com/ns/film.film> 118,731 70.06

<http://schema.org/Movie> 34,455 20.33

<http://dbpedia.org/ontology/Film> 34,455 20.33

<http://data.linkedmdb.org/resource/movie/film> 31,141 18.38

<http://dbpedia.org/class/yago/Movie106613686> 8,406 4.96

<http://dbpedia.org/class/yago/English-languAgeFilms> 8,036 4.74

<http://dbpedia.org/class/yago/Black-and-whiteFilms> 6,011 3.55

<http://dbpedia.org/class/yago/AmericanFilms> 5,941 3.51

<http://umbel.org/umbel/rc/Movie_CW> 5,091 3.00

<http://dbpedia.org/class/yago/IndianFilms> 3,121 1.84

<http://dbpedia.org/class/yago/ShortFilms> 1,693 1.00

<http://dbpedia.org/class/yago/Hindi-languAgeFilms> 1,507 0.89

<http://dbpedia.org/class/yago/BritishFilms> 1,368 0.81

<http://dbpedia.org/class/yago/Spanish-languAgeFilms> 1,320 0.78

<http://dbpedia.org/class/yago/SilentFilms> 1,307 0.77

<http://dbpedia.org/class/yago/DramaFilms> 1,236 0.73

<http://dbpedia.org/class/yago/IndependentFilms> 1,102 0.65

<http://dbpedia.org/class/yago/ItalianFilms> 1,035 0.61

<http://dbpedia.org/class/yago/FrenchFilms> 1,017 0.60

<http://dbpedia.org/class/yago/Italian-languAgeFilms> 892 0.53

<http://dbpedia.org/class/yago/ArgentineFilms> 883 0.52

<http://dbpedia.org/class/yago/2007Films> 867 0.51

<http://dbpedia.org/class/yago/ComedyFilms> 866 0.51

<http://dbpedia.org/class/yago/2006Films> 858 0.51

<http://dbpedia.org/class/yago/2008Films> 821 0.48

<http://dbpedia.org/class/yago/Tamil-languAgeFilms> 811 0.48

<http://dbpedia.org/class/yago/French-languAgeFilms> 792 0.47

<http://dbpedia.org/class/yago/JapaneseFilms> 774 0.46

<http://dbpedia.org/class/yago/2005Films> 774 0.46

<http://dbpedia.org/class/yago/2009Films> 774 0.46

2.1 Linked Data 19

For instance, when starting from the DBpedia URI for the ‘movie’ type, connecting

that URI to its’ counterpart from Freebase and LinkedMDB would already account

for more than 90% of entities. Can one identify and connect different URIs repre-

senting the same type to ultimately improve entity search on types in LOD? Ontol-

ogy alignment doesn’t seem to work. However, another possible approach is to

perform type alignment by means of witnesses, with the help of the owl:sameAs

property: For instance, starting from the type dbpedia-owl:Film, one would identify

movie entities from DBpedia like the Iron Man 3 movie with URI <http://dbpe-

dia.org/resource/Iron_Man_3>. This entity is represented in Freebase through URI

<http://rdf.freebase.com/ns/m.0bc1yhb>. This fact is stored amongst the DBpedia

data of movie Iron Man 3 through triple:

Following on the type of entity URI <http://rdf.freebase.com/ns/m.0bc1yhb> in

Freebase, one finds five type URIs presented in Table 3. Out of these, URI

<http://rdf.freebase.com/ns/film.film> grants access to 70% of the movie entities in

the BTC corpus. However, connecting the DBpedia URI to any other of the five

URIs, would have disastrous effects on the results: it would include all kinds of enti-

ties be it movies, music, video games or books, that have a common topic or have

been awarded some prize. Filtering this type URI only, without manual intervention,

is possible if there is enough evidence, that the URI for ‘movie’ type from DBpedia

is the same as the one from Freebase and less similar to the other Freebase type

URIs. A large number of witnesses confirming this connection is strong evidence

enough. Therefore, it is crucial to have a high number of, in this particular case movie

URIs, from one source linked through owl:sameAs predicates to their counterparts

from other data stores. Unfortunately, as discussed in [33], today owl:sameAs link-

age is not nearly as extensive as one would hope. Many links are missing and from
the ones available, a large part are trivial links like for instance the internal links of

DBpedia linking URIs across different languages.

Known under the problem of entity reconciliation or instance matching, the problem

of matching the same entity in different data sets has been extensively studied ([15,

61, 64, 89, 118, 124]) and seems to have reached a level of maturity. In [57] we pay

closer attention to systems that promise to create high quality owl:sameAs links

automatically. This has two advantages: On the one side it allows us to connect all

URIs of a certain type, and in the following step it allows to remove duplicate URIs

Table 3: Type URIs for entity <http://rdf.freebase.com/ns/m.0bc1yhb> from Freebase.

<http://rdf.freebase.com/ns/film.film>

<http://rdf.freebase.com/ns/common.topic>

<http://rdf.freebase.com/ns/award.award_nominated_work>

<http://rdf.freebase.com/ns/award.award_nominee>

<http://rdf.freebase.com/ns/award.award_winning_work>

20 Related Work

of the same real world entity, reducing the result set to one URI per unique entity.

But, as we will discuss in more detail in Section 2.3, instance matching systems still

struggle when it comes to high precision instance matching, making them useless for

type alignment tasks.

Considering all this, we believe that rdf:type is a simple and effective way of getting

all entities of a given type from one data store. But this represents only part of the

entities to be found in the LOD cloud. If multiple stores are targeted, or if the whole

LOD is to be used as a data sources, the flexibility of each data store being allowed

to have its own vocabulary strikes. The same entity and entity type, have different

URI representations in different stores. The built in mechanism that should help

solve this problem is based on the owl:sameAs and the owl:equivalentClass proper-

ties. owl:sameAs matches instances of the same real world entity, and owl:equiva-

lentClass matches URIs of the same class, in different data sources. Unfortunately,

only a fraction of the data is linked with these properties. There are two main pos-

sible approaches at this point:

 One approach is to enforce a single vocabulary, a global schema that is
centrally managed, and used by all data providers and publishers, so that

there is only one type URI per type. This is the approach followed by Web

search engine providers with their proposal of schema.org.

 The other approach, followed by the semantic Web community is to keep

the schema flexibility, but to improve on instance matching systems that

automatically create high quality links connecting data across multiple

stores. The evolution of the systems presented in the Ontology Alignment
Evaluation Initiative19 (OAEI) with its Instance Matching20 (IM) tracks stand

as proof of the efforts that are being made in this direction.

These two approaches are discussed in more detail in the following sections.

2.2. Schema.org

Schema.org is built on the idea of a global vocabulary that is centrally managed by

some authority, and that data producers and publishers use to annotate their data

with. But the idea of semantically annotating data on the Web started much earlier.

The first standardized concept that implemented the approach of open data anno-

tations is called microformats21.

Microformats started as a project in 2005, with the goal to integrate semantic

information into HTML code for making it machine readable. For this purpose mi-

croformats use existing HTML tags e.g. class, indicating the class or format name, rel

19 http://oaei.ontologymatching.org/

20 http://www.instancematching.org/oaei/

21 http://microformats.org/

2.2 Schema.org 21

(relationship) providing the description of the target address in an anchor-element

and rev (reverse relationship) providing the description of the referenced document.

Out of these, class is by far the most useful tag for microformats. As the name

suggests, microformats are organized in formats. Each format covers one specific

topic. Currently, there are 35 different formats22. Most of them cover locations,

products or social annotations. A classic example of microformats (presented in Fig.

9) is the annotation of an address, with the help of the adr format specified with the

HTML class tag. There are however, disadvantages to using microformats. They re-

quire the implementation of additional markup throughout the websites. Further-

more, since there are a limited set of data types supported by microformats, the

data type may not even be fully supported.

Another technology for annotating Web data is Resource Description Framework

in Attributes (RDFa). It is a W3C specification23 for integrating RDF data into several

web-formats, such as HTML, XHTML or XML. It was introduced in 2008 and refined
in 2012 to version RDFa 1.1 which is now fully supported even by HTML7. RDFa is

built on top of RDF, the well-known semantic web basic technology and it represents

the vision of the semantic web community on how to semantically annotate data in

Web pages. An example of an RDFa annotation for a person using schema.org as a

source for the ‘person’ vocabulary is presented in Fig. 10. In contrast to microfor-

mats, RDFa uses vocabularies that allow users to create their own schemata. RDFa

is quite flexible, offering for instance the possibility to combine multiple vocabularies,

for mixing types of entities based on the needs. While it offers much more flexibility,

RDFa was originally too complex. For this reason, in 2009, another technology de-

signed as a simple subset of RDFa and microformats was proposed. Called micro-

data, this technology is primarily focusing on the core features of RDFa.

22 http://microformats.org/wiki/Main_Page#Specifications

23 http://www.w3.org/TR/rdfa-syntax/

Fig. 9. Example of microformats in HTML code.

Fig. 10. Example of RDFa in HTML code with schema.org vocabulary.

22 Related Work

Microdata24 was introduced in 2009 as a part of HTML5 specifications. It uses

hierarchical vocabularies as a data model to provide the semantics, or meaning of an

item. It also allows Web developers to design a custom vocabulary or use vocabu-

laries available on the Web. It was built for HTML5 and uses the following HTML5

tags for semantic annotations:

 itemscope – Indicates the annotation of the item. The descendants of this
element contain information about it.

 itemtype – A valid URL of a vocabulary that describes the item and its

properties context.

 itemid – Indicates a unique identifier of the item.

 itemprop – Indicates that its containing tag holds the value of the specified
item property. The properties name and value context are described by

the items vocabulary. Properties values usually consist of string values, but

can also use URLs using the a element and its href attribute, the img ele-

ment and its src attribute, or other elements that link to or embed external

resources.

 itemref – Properties that are not descendants of the element with the item-

scope attribute can be associated with the item using this attribute. It pro-
vides a list of element ids (not itemids) with additional properties else-

where in the document.

On the example of an event annotation with schema.org vocabulary, in Fig. 11 we

show how these tags are used in microdata.

All three technologies have advantages and disadvantages. Microformats intro-

duces the least complexity but it is also the least powerful. RDFa 1.1 is the most

flexible but the most complex. Microdata seems to offer a tradeoff although some

constructs like an item having multiple types (a business can be both an ‘Au-

toPartsStore’ and a ‘RepairShop’) are difficult to express.

At the same time when these technologies were being introduced, web search

companies were struggling to get past the 10 blue links, they had offered for the last

24 http://www.whatwg.org/specs/web-apps/current-work/multipage/microdata.html#microdata

Fig. 11. Example of microdata in HTML code with schema.org vocabulary.

2.2 Schema.org 23

decade, to provide for better user experience. Proposed in 2008, Yahoo! Search

Monkey was the first service which allowed web site owners to use structured data

to make Yahoo! Search results more useful and visually appealing, and drive more

relevant traffic to their sites. Yahoo! Search Monkey relied on both microformats

and RDFa technologies for data acquisition. Following on Yahoo!’s initiative, in mid-

2009 Google introduced Rich Snippets, a search result presentation technique de-

signed to summarize the content of a page making it easier for users to understand

what the page is about. An example of a rich snippet generated for the IMDb page

of movie ‘Iron Man 3’ is presented in Fig. 12. Like Yahoo’s tool also Google’s snippets

relied on the Microformats, RDFa and Microdata data annotations embedded in

HTML code.

The benefits of annotated data became clear to search engine companies very

soon. However, neither Microformats nor RDFa or Microdata gained real traction

amongst web site owners. Furthermore, the vocabularies used were heavily frag-

mented: different sources may use different vocabulary to describe the same data.

This hindered the process of automatically interpreting or querying data as a whole.
To increase the acceptance of such technologies, and solve the problem of frag-

mented vocabularies, in 2011 Bing, Yahoo and Google joined forces. They launched

the schema.org initiative to “create and support a common set of schemas for struc-

tured data markup on web pages.”25,26,27 Schema.org is a set of extensible schemata,

shared vocabularies which webmasters can use to mark up their pages in ways that

can be understood by the major search engines. The main incentive for page owners

is a better presentation of content in the web search result list. This way, the Web

page has a higher chance of being found by users interested in that very specific

content. For search engines, motivating page owners to annotate their data with

schema.org vocabulary has the advantage that complex queries with Web data are

possible, ultimately replacing keyword driven, with semantic enabled search. For en-

tity centric search, schema.org presents the advantage that the structure is centrally

managed and data can be queried globally without complicated alignment operations

like in the case of LOD.

25 http://blogs.bing.com/search/2011/06/02/introducing-schema-org-bing-google-and-yahoo-unite-to-build-the-

web-of-objects/

26 http://googleblog.blogspot.de/2011/06/introducing-schemaorg-search-engines.html

27 http://www.ysearchblog.com/2011/06/02/introducing-schema-org-a-collaboration-on-structured-data/

Fig. 12. Google rich snippet for movie ‘Iron Man 3’ for IMDb page.

24 Related Work

But the fact that the schemata are managed by a central authority, a board of

members representing the major search engine companies, has also attracted criti-

cism from the semantic web community. To show flexibility, schema.org is continu-

ously being updated and anybody can suggest a new schema or extend an existing

one. For instance, in early-2013 there were about 300 schemata on schema.org. One

year later more than 500 schemata were available. Furthermore, experts from vari-

ous fields were actively engaged in developing schemata. For instance, schemata re-

lated to medicine have been developed on the model of the Medical Subject Head-

ings (MeSH)28, and with support from the US National Library of Medicine. Schemata

related to movies have been developed with the help of IMDb who was afterwards

amongst the early adopters of schema.org.

Overall, the underlying technology has reached maturity and schema.org is used

as the de-facto vocabulary for microdata markup, which is already used by all the

major search engine. It covers a large number of hierarchically organized entity

types29, extensively described with an average of about 33 attributes, and a maximum

of 71 attributes (for the ExercisePlan schema30). Since the main result of using
schema.org is annotating and structuring entities on the Web with a global and con-

trolled vocabulary, schema.org is interesting for any type of entity-centric search.

For instance, for type-based search one just needs to know the schema.org URL of

an entity type e.g. http://schema.org/Movie for ‘Movie’ and to retrieve all annotations

from a schema.org aware index similar to the one maintained by Digital Enterprise

Research Institute (DERI) at sindice.com. The precision is still high, because data is

annotated by people, and there are no vocabulary issues affecting recall like in the

case of LOD. So is schema.org the technology that enables entity search on the

Web? It certainly seems so. But is schema.org being used? Are there enough Web

pages with schema.org annotations to justify its use for entity type search built on

schema.org? In the following sub-section we analyze the web-scale acceptance of

schema.org.

2.2.1. The Acceptance of Schema.org

There have been other studies analyzing the acceptance of various vocabularies for

annotating data on the Web like for instance the work done by Muelheisen and Bizer

in [86] or Mika and Potter in [83]. However, our work presented in [56] is the first

study that focuses on schema.org.

To assess the acceptance of schema.org we analyzed ClueWeb12, a publicly avail-

able corpus comprising English sites only. ClueWeb12 is part of the Lemur Project31

28 http://www.nlm.nih.gov/mesh/

29 There were 529 schemata available on schema.org in November 2013

30 https://schema.org/ExercisePlan

31 http://lemurproject.org/

2.2 Schema.org 25

initiated in 2000 by the Center for Intelligent Information Retrieval (CIIR) at the

University of Massachusetts Amherst and the Language Technology Institute (LTI)

at the Carnegie Mellon University. It comprises 733 million English Web pages,

crawled between February 10th 2012 and May 10th 2012. These pages come from

about 51 million domains. Considering that the size of the Web is currently esti-

mated at about 60 billion websites32, ClueWeb2012 comprises about 1,5% of the

indexed Web, a reasonable size for a Web scale analysis.

There are also other options for large Web corpora like the Common Crawls

Corpus33, which comprises about 3 billion pages crawled from about 40 million do-

mains. Common Crawls was also crawled in the first half of 2012. Unfortunately,

there is not too much information about the kind of Web pages it comprises or the

rationale behind the crawling process. For this reason, ClueWeb12 is usually pre-

ferred for scientific analysis and has been also our first choice.

ClueWeb12 comprises pages of broad interest: the initial seeds for the crawl con-

sisted of 3 million websites with the highest PageRank from ClueWeb09, a previous

Web scale crawl. To maintain a certain level of quality, several filters were applied
to the crawled pages: first, websites blacklisted for malware, phishing, spyware, virus,

file hosting, file sharing or pornographic content activities were all removed. Second,

all non-English pages have been removed. Finally, pages larger than 10MB or con-

taining more than 1 million terms were also removed. All other pages were saved

in the web archive file format (.warc), split into chunks of 1GB and comprising sev-

eral thousands of compressed Web pages each. In total, ClueWeb12 requires about

6TB hard-drive space when compressed, and about 60TB when uncompressed.

The analysis has been performed on a small enterprise mid-range server with 2 x

8 core x 3.1-3.8 GHz CPU running up to 32 parallel processes with hyper threading,

384 GB of DDR3 RAM and 9 x 480 GB SSD drives. Since there was not enough

space to accommodate the full, uncompressed size of ClueWeb12, the analysis pro-

cess was performed in small iterations focused on each archive file: Basically, each

file was loaded into RAM, uncompressed, analyzed for microformats, RDFa, and mi-

crodata annotations, and then removed. Every annotation found was also persis-

tently stored on the SSD based hard drive for later use. Since archives are independ-

ent from one another, the process could be parallelized up to the hardware limit

and took about 12 days to complete.

Our analysis shows that about a year after its introduction, only 1.56% of the web

pages from ClueWeb12 used schema.org to annotate data. The numbers of pages

annotated with schema.org using the three mainstream data annotation techniques

found in the ClueWeb12 documents are presented in Table 4. The use of different

standards reflects the chronology of their adoption: microformats are the most

32 http://www.worldwidewebsize.com/

33 http://commoncrawl.org/

26 Related Work

spread followed by RDFa, microdata and schema.org. It’s interesting to notice that

while microdata was introduced just a year after RDFa, there is a noticeable differ-

ence between their usage rates. The reason for this behavior is that when it was

introduced, RDFa was presented as the prime technology for semantic annotation.

Many content providers adopted it. Further developments brought by Google in

2009 have been regarded as yet another annotation method. It was only in mid-2011

when microdata became the main annotation technology for the newly proposed

schema.org that microdata started gaining momentum. In fact, 12/15 million docu-

ments annotated with microdata (representing approximatively 80%) are schema.org

annotations.

Table 4: Distribution of annotations by technology in ClueWeb12.

Data Found URLs

Microformats 97,240,541 (12.44%)

RDFa 59,234,836 (7.58%)

Microdata 15,210,614 (1.95)

schema.org 12,166,333 (1.56%)

Out of the 296 schemas available in mid-2012 when ClueWeb12 was crawled, 244

schemas have been used in the annotations. To retrieve the state of schema.org at

that time we used the Internet Archive34. The number of annotations per schemas

(Table 5) follows a power law distribution with just 10 highest ranking schemas

being used for 80% of the annotations and 17 schemas making for already 90% of all

annotations. From the low occurring schemas in the long tail, 127 schemas occur

less than 1000 times and 96 schemas occur even less than 100 times.

Schemas on schema.org are quite extensive. They include on average 34 attrib-

utes. "Thing" is with 6 attributes the smallest schema while "ExercisePlan" with 71

attributes is the most extensive. The annotations however are by far not as exten-

sive as the structure allows. On average over all annotations, only 4.7 attributes

were used. This accounts for about 10% of the attributes available in the corre-

sponding schemas despite remaining data and existing matching attributes. It seems

users are satisfied with just annotating some of the attributes. Most probably, this

behavior is driven by the fact that rich snippets can only present a few attributes. In

consequence users annotate only those few attributes that they consider should be

included in the rich snippet. This way, from a user perspective, both the effort of an-

notating additional information and the risk that the rich snippet would present a

random selection out of a broader number of annotated attributes are minimized.

34 web.archive.org/web/20120519231229/www.schema.org/docs/ full.html

2.2 Schema.org 27

In conclusion, relatively to the number of Web pages in ClueWeb12, there are

not too many annotations. The existing ones are also not very extensive. Therefore,

an entity search system relying on schema.org will suffer from massive recall prob-

lems returning just a fraction of all relevant entities. Still, the absolute number of

annotations per schema is quite large. Furthermore, all attributes of all schemata

found in ClueWeb12 have been covered, in different annotations. Hence, we have

reason to believe that automatically recognizing and maybe annotating unstructured

data with schema.org schemata is possible. Can we learn models from the annotated

data to empower high quality annotations? We discuss such a possibility in the fol-

lowing sub-section.

2.2.2. Learning to Annotate Unstructured Data with Schema.org

Unfortunately, as we have seen, schema.org annotations are not yet used broadly.

The main reason invoked insistently on technology blogs on the Web is that the

Table 5: Top-20 schema.org annotations from the ClueWeb12 corpus.

Schemata Occur-

rences

Average Nr. of

Attributes

Percentage

(Schema.org)

http://schema.org/Blog 5,536,592 5.56 19.57%

http://schema.org/PostalAddress 3,486,397 3.62 12.32%

http://schema.org/Product 2,983,587 2.28 10.54%

http://schema.org/LocalBusiness 2,720,790 3.29 9.62%

http://schema.org/Person 2,246,303 4.97 7.94%

http://schema.org/MusicRecording 1,580,764 2.77 5.59%

http://schema.org/Offer 1,564,257 1.32 5.53%

http://schema.org/Article 1,127,413 1.04 3.99%

http://schema.org/NewsArticle 823,572 3.81 2.91%

http://schema.org/BlogPosting 767,382 3.32 2.71%

http://schema.org/WebPage 659,964 4.11 2.33%

http://schema.org/Review 470,343 3.20 1.66%

http://schema.org/Organization 407,557 1.35 1.44%

http://schema.org/Event 400,721 2.69 1.42%

http://schema.org/VideoObject 396,993 0.47 1.40%

http://schema.org/Place 380,055 2.50 1.34%

http://schema.org/AggregateRating 342,864 1.66 1.21%

http://schema.org/CreativeWork 232,585 2.30 0.82%

http://schema.org/MusicGroup 223,363 1.15 0.78%

http://schema.org/JobPosting 168,542 4.38 0.60%

28 Related Work

actual process of annotating Web data with schema.org is quite demanding35. In par-

ticular, the structure is centrally managed by schema.org and not at the liberty of

annotators. This means that when annotating pages one has to:

a) repeatedly switch between the Web page to annotate and schema.org,

b) to browse through hundreds of schemas with tens of attributes each trying

to find those schemas and attributes that best match the data on the Web

page,

c) and finally to write the microdata annotation with corresponding sche-

ma.org URL resources into the HTML code of the page.

With such a complicated process it’s no wonder that 1.1% of all found annotations

are erroneous. Most frequent errors were bad resource identifiers caused by mis-

spelled schemas or attributes or by schemas and attribute names incorrectly re-

ferred through synonyms.

But given the large number of annotations found in ClueWeb12, one could exploit

these annotations to extend the coverage of schema.org. This would solve the recall

problem entity type search with schema.org support. But the downside is that au-
tomatic methods may introduce “false negatives” (data that is being annotated in-

correctly). The goal is in this case to increase recall, but without losing too much

precision. The idea is to automatically match schemata form schema.org to relevant

parts of unstructured data from web pages. If possible, such a system could even

automatically map schema attributes to corresponding values from the text. All this

is feasible if we are able to match schemata to pieces of page content. Imagine a

system with the following basic workflow: given a Web page, it finds matches be-

tween schemata and pieces of page content, using models that have been trained

with machine learning techniques on data annotated in ClueWeb12. Theoretically,

any selection comprising consecutive words from the page content is a possible can-

didate for the matching. But considering all possible selections of page content is not

feasible. Fortunately, the layout expressed through HTML elements says much about

how information is semantically connected. With the help of the Document Object

Model (DOM) API the HTML page is represented as a logical structure that connects

HTML elements to page content in a hierarchical DOM tree node structure. These

nodes envelop the pieces of content that are matched to the schemas. The matching

method follows a greedy strategy, finding the smallest DOM nodes that best match

a certain schema. Starting from the most fine-granular nodes (nodes are processed

in the reversed order of the depth-first search) the content of each node is checked

for possible match with all schemata from schema.org. The process continue until

all nodes have been considered.

The fundamental task that needs to be solved first is matching schemata to un-

structured data.

35 See for example http://readwrite.com/2011/06/07/is_schemaorg_really_a_google_land_grab

2.2 Schema.org 29

Matching Schemata to Unstructured Data

From a sequence of words (the content of a DOM node) and the list of schemas

from schema.org, the matching process finds those schemas that “best” match the

content. More formally, given Wn={w1, w2, …, wk} the sequence of words represent-

ing the content of node n, and S, the set of URIs for schemata from schema.org, the

schemata that best match Wn are:

 𝑆𝑊𝑛
= {𝑠𝑖 | 𝑠𝑖 ∈ 𝑆 ⋀ 𝑚𝑎𝑡𝑐ℎ(𝑊𝑛, 𝑠𝑖) ≥ 𝜃} (1)

where 𝜃 is a quality regulating parameter (for our experiments 𝜃 was set to 0.5),

and match:{Words × URIs} → [-1,1] is the function for computing the confidence

that a certain schema matches the given set of words. The expression of this function

depends on the method that is chosen to perform the matching. There are various

such methods. For instance, given that schemata published on schema.org describe
various types of entities, one of the first approaches that come to one's mind for

binding these schemata to unstructured data is entity recognition and named entity

recognition. This has proven to work well for some entity types like products, per-

sons, organizations or diseases [128]. However, considering the popular entities an-

notated on the ClueWeb12 corpus (Table 5), most of them describe more abstract

entities e.g. “Blog”, “Review”, “Offer”, “Article”, “BlogPosting”, etc. In fact, out of

the top-20 entity types, entity recognitions systems like OpenNLP36 or Standford-

NER [39] recognize less than half of them. Given an observation Wn, and the anno-

tations extracted from ClueWeb12 as a training set comprising a large number of

observations whose category of membership is known (the annotated schema) this

becomes a problem of identifying the class for observation Wn. Machine learning

methods like Naïve Bayes classification or Support Vector Machines have proven

successful for text classification tasks even for more abstract entity types ([55, 58]).

Naïve Bayes classifiers rely on probabilities to estimate the class for a given obser-

vation. It compares the “positive” probability that some word sequence is the ob-

servation for some schema to the “negative” probability that the same word se-

quence is an observation for other schemas. In this case the matching function is:

 𝑚𝑎𝑡𝑐ℎ𝐵𝑎𝑦𝑒𝑠(𝑊𝑛, 𝑠) = P(𝑠|𝑊𝑛) − P(𝑠̅|𝑊𝑛) (2)

But neither of the two probabilities can be computed directly from the training set.

With the help of Bayes’s Theorem P(s|Wn) can be rewritten in computable form as

P(s|Wn) =
P(𝑊𝑛|𝑠)∗P(𝑠)

P(𝑊𝑛)
. Since Wn is a sequence of words that may get pretty long

(Wn={w1, w2, …, wn}), and this exact same sequence may occur rarely in the training

corpus, to achieve statistically significant data samples “naive” statistical independ-

ence between the words of Wn is assumed. The probability of Wn being an observa-

tion for schema s becomes: P(s|Wn) =
∏ P(wj|𝑠)j=1 ∗P(𝑠)

∏ P(wj)j=1
, and all elements of this formula

36 opennlp.apache.org

30 Related Work

can be computed based on the training set: P(s) can be computed as the relative

number of annotations for schema s, P(wj|𝑠) the number of annotations for schema

s that include wj relative to the total number of annotations for s, and P(wj) as the

relative number of annotations including 𝑤𝑗 . The negative probability 𝑃(𝑠̅|𝑊𝑛) is
computed analogously and the matching function on the Bayes classifier can be re-

written as:

 𝑚𝑎𝑡𝑐ℎ𝐵𝑎𝑦𝑒𝑠(𝑊𝑛, 𝑠) = ∏ P(wj|s)
j=1

∗ P(s) − ∏ P(wj|s̅)
j=1

∗ P(s̅) (3)

Being common to all matching involving Wn, ∏ P(wj)j=1 can safely be reduced with-

out negative influence on the result. Probabilities for all words from the training set

comprising annotations from ClueWeb12 (excluding stop words) build the statistical

language models for all schemas, which are of course efficiently pre-computed be-

fore performing the actual Web site annotations.

Support Vector Machines use a different approach for classification. For each
schema, a training set is built. It comprises annotations of the schema (“positive

annotations”) and annotations of other schemas (“negative annotations”) in equal

proportions. Each training set is represented in a multidimensional space (the Vector

Space Model) with terms from all annotations as the space axes and annotations as

points in space. In this representation, SVM finds the hyperplane that best separates

the positive from the negative annotations for each schema. In the classification pro-

cess, given observation Wn, and a schema s, SVM represents Wn in the multidimen-

sional term space and determines the side Wn is positioned in with respect to the

hyperplane of s. If it’s the positive side then there is a match. The normalized distance

from Wn to the hyperplane reveals the confidence of the assignment. The closer Wn

is to the hyperplane of s, the less reliable the assignment. In this case, the match

function is:

 𝑚𝑎𝑡𝑐ℎ𝑆𝑉𝑀(𝑊𝑛, 𝑠) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑊𝑛, 𝐻𝑠) (4)

Evaluation

For evaluating the schema matching functionality we prepared two data sets. Each

has about 60,000 annotated web pages randomly harvested from ClueWeb12 com-

prising annotations with about 110 different schemas each. One of them is used as

a training corpus for the classification methods. The other one is used as a test set.

The test set is stripped of all annotations and provided to the system. We compare

the pages annotated by the system for both Naïve Bayes and SVM, to the pages from

the original test set and measure the schema matching effectiveness in terms of pre-

cision and recall.

On inspection over the results, about 5% of the schemas were not detected at all.

The reason for this behavior is the fact that these schemas are present in the test

set but they have no or almost no occurrences (up to 10) in the training set. In-

2.2 Schema.org 31

creasing the size of the training set helps reducing the number of undetected sche-

mas. In fact, initial experiments with 10,000 and 30,000 web pages as training sets,

with smaller schema annotation coverage, showed higher numbers of undetected

schemas.

Overall, on the 110 schema annotations the system achieves on average 0.59 pre-

cision and 0.51 recall for Naïve Bayes and 0.74 precision and 0.76 recall for SVM,

Simply matching schemas at random, as a comparison method, results in precision

and recall lower than 0.01. The result values vary strongly from schema to schema.

In Table 6 we show the results for 15 schemas. The goal of the schema matching

system is to improve recall while maintaining precision under control. For this rea-

son, the 15 schemas presented in Table 6 are chosen to cover the whole spectrum

of F2-measure values, given that the F2-measure weights recall twice as much as pre-

cision.

No correlation between the number of occurrences in the training set and results

could be observed. Having hundreds of schema annotations seems to lead to results

similar to having tens of thousands of annotations. A few schemas, especially in the
case of Naïve Bayes, have catastrophic precision and recall values (less than 0.01),

despite occurring more than 4,000 times in the training set. These are schemas with

very broad meaning e.g. “WebPage” or “Thing”. Overall, SVM does better than Na-

ïve Bayes. But it is interesting to notice that for many schemas the two approaches

seem to complement each other: schemas where the Bayes achieves bad results are

handled much better by SVM and vice versa. Taking this into consideration, it is

Table 6: Precision and recall values for the matching of schemata with Bayes and SVM.

32 Related Work

probable that approaches relying boosting meta-algorithms like the well know Ada-

Boost [40] will provide even better results. But for the moment, such a system is

able to match schemata correctly on average in 2 out of 3 cases. However, the

overall quality of the results doesn’t encourage us to believe in the feasibility of a

fully automatic system extending the coverage of schema.org. Instead we believe

that interactive user support is necessary. Following on this idea, in [56] we present

SASS (Schema.org Annotation Support System) an approach that goes beyond the

GUI tools offered by Google’s Structured Data Markup Helper or state-of-the-art

systems like presented in [67] to offer users the necessary support for annotating

data with schema.org.

In conclusion, until schema.org gains traction, its contribution to entity search is

minor. Even so, like in the case of LOD, using annotated data for entity search re-

quires that duplicate entities can be identified. There are quite a few systems which

have achieved remarkable results for this classical instance matching task ([89, 133]),

subject we discuss in more detail in the following section.

2.3. Instance Matching

The problem of finding identity links (owl:sameAs) between identifiers of the same

entity in various data stores has been heavily researched (see [15, 61, 64, 89, 118,

124]). Various systems have been proposed and the reported results are, with pre-

cision and recall of over 0.9 very promising. As such, we are encouraged to believe

that the problem of instance matching can be solved with any of these “out-of-the-

box” systems. There is plenty to choose from, so we started looking for an instance

matching approach to integrate into our entity retrieval system.

At their core, instance matching systems build on one or more of the following

techniques: probabilistic matching, logic-based matching, contextual matching, or

heuristic matching based on natural language processing (NLP). Each approach

shows strengths and weaknesses. But these particularities are hard to assess, since

each system was evaluated on different data samples. The choice of data for the

evaluation has a big influence on the results. For instance, there is a large number of

class equivalence links between DBpedia and YAGO. If these two data sources build

a large portion of the evaluation data then approaches like the one presented in [15]

are favored. The verbose nature of the URIs also helps shallow NLP techniques

favoring for in-stance the system presented in [89]. The situation is different for

other selections like LinkedMDB and YAGO since the URIs provided in LinkedMDB

are more cryptic and links to and from YAGO are rare.

Of course, instance-matching approaches have to be able to work with all kinds
of entities from multiple data-stores. Again, this may boost the performance of some

systems, since different aspects of an entity can be learned iteratively from various

stores. On the other hand it can be detrimental to the overall data quality, since the

more entities and entity types are available, the more probable it becomes for sys-

2.3 Instance Matching 33

tems to generate incorrect identity links. Take for instance LINDA [15] which heav-

ily exploits transitive links to support the inter-linking process. When it was evalu-

ated on the Billion Triple Challenge corpus comprising entities from various stores

the respective precision was about 0.8. For relaxed similarity constraints the preci-

sion even drops to 0.66. But with every third identity link being incorrect, this level

of quality does not seem satisfactory. It will lead to wrong type connections in the

LOD heavily affecting the precision of retrieved entities and it will falsely remove

entities it wrongly identifies as duplicates. In contrast, SLINT+ [89] reports an aver-

age precision of 0.96 on DBpedia and Freebase data.

But does this really mean that SLINT+ performs better? The respective precision

was achieved on a biased set, representing a highly inter-linked extract from DBpedia

and Freebase! It is therefore impossible to directly compare the performance of the

two systems. To make systems comparable to one another, the Ontology Alignment

Evaluation Initiative (OAEI) organizes a yearly evaluation event including an Instance

Matching track. For the last year’s evaluation there were evaluation tests involving

data value differences, structural heterogeneity and language heterogeneity. With
small data value and structure alterations and involving a small extract (1744 triples

and 430 URIs) from a single high quality data source (DBpedia), we will show that

the tests do not accurately reflect the problems encountered in real-world data.

Actually, judging by the 2013’s OAEI evaluation results (showing again a sustained

precision of over 0.9), instance matching systems seem to work very well. But con-

sidering the modest precision achieved by systems like LINDA on real-world data,

this raises the question: Is instance matching ready for reliable data inter-linking? To

answer this question, we perform extensive real-world experiments on instance

matching using a system which has proven very successful in OAEI tests. Published

in [57], ours is the first study that provides an in depth analysis over how effective

instance matching systems are on real-world data.

Putting Instance Matching to the Test

Instance matching is about finding and reconciling instances of the same entity in

heterogeneous data. It is of special interest to LOD because the same entity may be

identified with different URIs in different data stores and the owl:samesAs property

useful for interlinking URIs of the same entity is not as wide-spread as needed.

In the context of LOD, given multiple sets of URIs D1, D2, …, Dn, with each set

comprising all unique URIs of a data store, matching two instances of an entity can

formally be defined as a function match:URI×URI→{false, true} with:

𝑚𝑎𝑡𝑐ℎ(𝑈𝑅𝐼𝑖 , 𝑈𝑅𝐼𝑗): = {

𝑡𝑟𝑢𝑒, 𝑖𝑓 𝑠𝑖𝑚(𝑈𝑅𝐼𝑖 , 𝑈𝑅𝐼𝑗) > 𝜃

𝑓𝑎𝑙𝑠𝑒, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑤𝑖𝑡ℎ 𝑈𝑅𝐼𝑖

∈ 𝐷𝑖 , 𝑈𝑅𝐼𝑗 ∈ 𝐷𝑗

(5)

where 1 ≤ 𝑖, 𝑗 ≤ 𝑛, and sim() is a system dependent, complex similarity metric in-

volving structural, value-based, contextual and other similarity criteria, and 𝜃 is a
parameter regulating the necessary quality level for a match.

34 Related Work

Based on this function, instance matching systems build an equivalence class for

each entity. An equivalence class comprises all URIs used by any source to refer to

some corresponding unique entity. For instance, considering only DBpedia, Free-

base, YAGO and LinkedMDB, the equivalence class for the entity “Martin Scorsese”

is:

{http://dbpedia.org/resource/Martin_Scorsese,

 http://yago-knowledge.org/resource/Martin_Scorsese,

 http://rdf.freebase.com/ns/m.04sry,

 http://data.linkedmdb.org/resource/producer/9726,

 http://data.linkedmdb.org/resource/actor/29575,

 http://data.linkedmdb.org/resource/editor/2321}.

It’s worth noticing that in contrast to general purpose knowledge bases like Free-

base or DBpedia, specialized data stores like LinkedMDB have finer granularity, dif-

ferentiating between Martin Scorsese as actor, editor, or producer. According to

the owl:sameAs property definition in the OWL standard, all URIs referring to the

same real world object should be connected through owl:sameAs. In consequence,
all six URIs from the previous example should be linked by owl:sameAs relations.

Of course one could argue that finer, context-based identity is required and that

“Martin Scorsese, the producer” may not be the same as “Martin Scorsese, the ac-

tor”. For further discussions regarding context-based similarity and identity see [48].

Here we adopt the definition as provided by the OWL standard for the owl:sameAs

property.

Instance matching is an iterative process. Once some of the instances are matched

either manually or by some system and owl:sameAs links have been established,

more identity links can be found by exploiting the transitivity inherent in identities:

Given that URIA and URIB represent the same real world object, the same applying

for URIB and URIC implies that also URIA and URIC represent the same real world

entity. Consequently, an owl:sameAs link between URIA and URIC can be created.

However, the actual process of discovering sameAs links is based on some similarity

function and not on identity. Similarity functions, however, are usually not transitive!

Let us give a simplified example where the matching function relies on the Le-

venshtein distance on the rdfs:label property as similarity metric. Consider that a

URI with rdfs:label “Scorsese, Martin” referring to the well-known movie producer,

is matched with a URI with rdfs:label “Scorsese, Cartin” (which could be a typo).

This last URI matches a URI with rdfs:label “Scorsese, Chartin” and the match pro-

cess goes on up to a URI with rdfs:label “Scorsese, Charles”. Charles Scorsese is an

actor known for his role in Goodfellas and actually Martin’s father. This problem is

well known in the area of single link clustering: similarity clustering may lead to

chains of URIs where neighboring URIs in the chain are similar, but for long enough

chains the ends of the chain have almost nothing in common. Linking the URIs of

Martin and Charles Scorsese with owl:sameAs would obviously be incorrect. Of

course this example is constructed, but the danger of transitively matching unrelated

2.3 Instance Matching 35

instances in the context of large amounts of data is real. In consequence, evaluation

data involving triples from multiple stores is necessary for exposing such weak-

nesses.

From the instance matching systems we found that only LINDA specifically ad-

dresses the problem of transitivity and selects only those matches consistent with

transitivity as follows: on the example in Fig. 13, considering that sim(URIA, URIB) >

sim(URIB, URIC), the equivalence class of URIA comprises only URIB and vice versa, i.e.

both URIs refer the same entity and all properties valid for URIA are also valid for

URIB and all properties valid for URIB are also valid for URIA. To express this we can

denote the entity referred by URIA and URIB through URIAB. Even though URIA and

URIC don’t show a large enough similarity, they are considered to refer the same

entity if match(URIAB, URIC) is true. Then, URIC will also be added to the equivalence

class. The process of finding identity links continues iteratively up to convergence.

Borrowing from hierarchical clustering, also the complete-linkage criteria could

for instance be easily adopted to enforce transitivity. Assume after pairwise com-

paring all URIs we find three URIs matching in a chain like presented in Fig. 13. Any

set of n linked URIs satisfies the complete-linkage criteria, iff all n URIs match in a

pairwise. Obviously this is not the case for chains. In consequence, chains are broken

up by removing the weaker links. In the case of links of equal strength one of them

is broken at random. Consider sim(URIA, URIB) > sim(URIB, URIC). Since match(URIA,

URIC) is false, the link between URIB and URIC has to be removed. As a rule, the list

of URIs being weakly linked to an URIx is:

𝑊𝐿𝑈𝑅𝐼𝑥
= {𝑈𝑅𝐼𝑦|∃ 𝑧: 𝑚𝑎𝑡𝑐ℎ(𝑈𝑅𝐼𝑥, 𝑈𝑅𝐼𝑧) = 𝑡𝑟𝑢𝑒

∧ 𝑚𝑎𝑡𝑐ℎ(𝑈𝑅𝐼𝑦, 𝑈𝑅𝐼𝑧) = 𝑓𝑎𝑙𝑠𝑒

∧ 𝑠𝑖𝑚(𝑈𝑅𝐼𝑥, 𝑈𝑅𝐼𝑧) ≥ 𝑠𝑖𝑚(𝑈𝑅𝐼𝑥, 𝑈𝑅𝐼𝑦)}.

(6)

After all weak links are broken for all URIs, the equivalence class of an URI is given

by a function E:URI→{URIs} where:

 𝐸(𝑈𝑅𝐼𝑘): = {𝑈𝑅𝐼𝑙|𝑚𝑎𝑡𝑐ℎ(𝑈𝑅𝐼𝑘, 𝑈𝑅𝐼𝑙)} (7)

Instance Matching - State of the Art

Instance matching is crucial for several applications like data integration, identity

recognition and more important, for entity type alignment. Recognizing the lack of

evaluation data, OAEI provided a reference benchmark for ontology alignment since

Fig. 13. Three URIs matching in a chain (URIA and URIC don’t match). The similarity

between URIA and URIB is stronger than the similarity between URIB and URIC.

URIA URIB URIC

URIAB

36 Related Work

2004. Probably fostered by advances in Linked Data, four years later, [3] is one of

the first publications to address this problem for instance matching. The authors

discuss the particularities of instance matching and name main challenges. Based on

these challenges, they design a benchmark with movie data from IMDb that empha-

sizes on data value differences, structure and logical heterogeneity. Finally, they com-

pare the results for two instance matching algorithms to show the applicability of

the data set.

In 2009, OAEI introduced an instance matching track and provided first generated

benchmarks37: one comprising three datasets with instances from the domain of sci-

entific publications built on Digital Bibliography & Library Project (DBLP), one with

three datasets covering several topics, structured according to different ontologies

from DBpedia and one generated benchmark obtained by modifying a dataset ac-

cording to the data value, structure and logical heterogeneity criteria introduced in

[3]. Evaluation data has gradually improved and last year’s benchmark comprised five

test cases: One for value transformation, where the value of five properties was

changed by randomly deleting or adding characters; one for structure transfor-
mation, where the length of property paths between resources and values has been

changed; a languages test where comments and labels were provided in French in-

stead of English; one set combining value and structure transformation using French

text and one where besides the value, structure and language challenges, some en-

tities have none or multiple counterparts (a cardinality test). The data for the tests

was extracted from DBpedia: it comprised 1744 triples, 430 URIs and only 11 pred-

icates. It involves only one type of entity: personalities from the field of computer

science like Alan Turing, Donald E. Knuth, or Grace Hopper and is limited to triples

having such personalities as a subject. Four instance matching systems have been

evaluated on this benchmark. Out of the four, SLINT+ [89] and RiMOM [118, 119,

133] achieved outstanding results with an average precision and recall over all test

of more than 0.9.

While these results are quite promising, similar systems have proven weaker per-

formance on real-world larger in size and involving multiple data stores. To assess

the performance of such systems with real-world data, we built an evaluation set

comprising 90,000 entities, from four domains, extracted from five data stores. In

contrast to the OAEI test cases, all domains were included in all tests rendering

cross-domain false positive matches (e.g. person being matched to movie) possible.

The data stores were all-purpose knowledge bases like DBpedia and Freebase as

well as domain focused stores like LinkedMBD and DrugBase. Some sources have

cryptic URI naming conventions while some are more explicit. Also the granularity

of properties varies between sources. We believe this is a more appropriate way of

measuring the success of instance matching algorithms.

37 http://oaei.ontologymatching.org/2009/instances/

2.3 Instance Matching 37

Evaluation

For evaluating instance matching systems we rely on real-world data comprising en-

tities of types Person, Film, Drug and Organization. The data was extracted from

five stores: Freebase, DBpedia, LinkedMDB, DrugBase and NewYork Times. A de-

tailed description of the data set is presented in Table 7. Instance matching systems

are quite resource demanding ([15, 89]). For this reason, the evaluation data has a

manageable size of about 90 thousand entities. This translates to about 4.9 million

triple representing all relations having one of the selected entities as a subject. Such

volume can be matched in a matter of minutes on commodity hardware. A similar

number of entities was selected from each data store. The size difference between

entity types was considered, too: overall, the data set comprises about 35 thousand

entities of type person, 30 thousand entities of type film, about 15 thousand drug

entities, and about 8 thousand organizations. To emphasize data value problems,

entities were selected after alphabetically ordering them on their labels. This way,

almost all entities have labels starting with the letter ‘A’. Due to the small number

of entities, DrugBase and NewYork Times have been selected in full. The number
of properties per entity type is, with a maximum of 2,537 unique properties for

persons, notably higher than in the OAEI tests. This stresses out structure hetero-

geneity of real-world data. The ontology differences between data sources, different

aggregation levels introduced by LinkedMDB, or the fact that persons are being

matched with actors add to the challenges this data set poses. Furthermore, in con-

trast to OAEI tests, having data form multiple stores increases the risk of building

wrong transitive links. At the same time, the fact that multiple domains are com-

pared, the possibility of creating bad links between entities of different types also

exists. Finally, the selected data is not heavily interlinked. There are 5,855

owl:sameAs links between entities in our data set. 5,264 of them are between DBpe-

dia and Freebase entities, 548 between DBpedia and LinkedMDB entities and 43

between entities from DBpedia and the NewYork Times.

To assess the quality of instance matching systems, we performed instance match-

ing on the data presented in the previous chapter and measured sampled precision.

Table 7: Number of entities and properties per data store and entity type.

Types Freebase DBpedia LMDB NYT DrugBase

#entities / properties

Person 10,000 / 1,006 10,000 / 2,537 10,000 / 10 4,979 / 11 0

Film 10,000 / 465 10,000 / 565 10,000 / 48 0 0

Drug 5,000 / 435 5,000 / 247 0 0 6,712 / 36

Org. 5,000 / 641 0 0 3,044 / 11 0

#entities 30,000 25,000 20,000 8,023 6,712

#triples 1,749,433 2,461,263 264,902 90,850 314,108

38 Related Work

We computed the transitive closure of the resulting owl:sameAs links and measured

the quality of the newly created links. We paid special attention to the resulting

equivalence classes as well as to entities of different types that have been matched.

All tests were performed for high to low similarity thresholds. Since one of the

characteristics of the data set was that it is not highly interlinked, there were not

enough owl:sameAs links available to also measure recall.

The instance matching system is a black box from our perspective. Any domain

independent system can be used. SLINT+ is one of the systems to achieve excep-

tional results in instance matching tasks. It is training-free and domain-independent.

It builds on thorough predicate alignment and selection, shallow NLP and correlation

based instance matching. It has already been successfully tested on selections from

DBpedia and Freebase and it is available online for download38.

For a similarity threshold of 0.95, SLINT+ creates 8,020 owl:sameAs links (see

Table 8). 33 of them link drugs or movies to persons. They are obviously wrong.

Overall, we observed a sampled precision of 0.91 for this threshold. The lower the

similarity threshold, the more links are found. For a similarity threshold of 0.25,

25,113 links are found. Even for such a low similarity threshold the precision is with

a value of 0.67 quite impressive. According to the OWL standard, owl:sameAs links

are transitive. Like most instance matching systems, SLINT+ ignores this aspect,

probably because few bad links may lead to an explosion of bad links through tran-

sitivity. On the other hand completely ignoring transitive links is dangerous since any

query engine using the links created by SLINT+ may transitively link sources to solve

join queries. Computing the transitive closure of the owl:sameAs relations discov-

ered by SLINT+ for a threshold of 0.95 we obtained an additional 2,055 links. How-

ever, the precision measured for these transitive links is only 0.20.

But how is this possible? Due to the non-transitive nature of the similarity func-

tion, long chains of entities belonging to the same equivalence class may be created.

The longer the chain, the higher the probability that URIs that are far apart in the

38 http://ri-www.nii.ac.jp/SLINT/index.html

Table 8: The number of owl:sameAs links, the number of owl:sameAs links between en-

tities of different types, and the precision of the links created with SLINT+ and by com-

puting the transitive closure of links created by SLINT+, respectively.

θ

SLINT+ clTR

#sameAs Inter-domain Prec. #sameAs Inter-domain Prec.

0.95 8,020 33 0.91 2,055 89 0.20

0.75 16,739 119 0.71 5,498 216 0.15

0.50 17,436 230 0.76 7,038 396 0.09

0.25 25,113 1,734 0.67 14,879 2,408 0.02

2.3 Instance Matching 39

chain refer different entities. Even for high precision oriented similarity thresholds

like 0.95, SLINT+ produces 11 equivalence classes with more than 10 URIs each.

Actually, the largest equivalence class has 23 URIs, while for lower similarity thresh-

olds there are equivalence classes with 38 URIs (see Table 9). One false owl:sameAs

link connecting two smaller equivalence classes in such a large class creates a huge

explosion of false links. Assuming two equivalence classes each having 10 URIs, one

false link created by SLINT+ connecting the two classes may generate up to 100

incorrect links (all pairwise combinations developing between the two classes: 𝐶2
20-

2 ∙ 𝐶2
10). Considering the high precision for 8,020 links but the low precision for all

transitive links, the real, overall precision achieved by SLINT+ for a threshold of 0.95

is
8,020∗0.91+2,055∗0.20

8,020+2,055
= 0.77 and thus quite comparable to LINDA and not accepta-

ble of connecting type URIs in LOD.

Not knowing all owl:sameAs links for all entities from our data set it is impossible

to accurately measure recall. However, if we take into consideration that 25,113

entities were found with a precision of 0.67 and that an additional 14,879 were found
with a precision of 0.02, we can assume that the data set should have, when correctly

interlinked, at least 17,123 links (25,113 * 0.67 + 14,879 * 0.02). Assuming that 8,020

* 0.91 + 2,055 * 0.20 = 7,709 correct links have been discovered for a threshold of

0.95, this translates into a recall of at best 0.45. This is much lower than the results

observed on the OAEI benchmark. We observed similar results for other instance

matching systems too. In Table 10 we present the precision values obtained by

PARIS [115], another leading instance matching system.

40 Related Work

Table 9: Number of equivalence classes per number of URIs in the equivalence class,
for various similarity thresholds.

#URIs per class # equivalence classes

θ=0.95 θ=0.75 θ=0.5 θ=0.25

2 4,168 5,054 7,008 8,180

3 529 1,160 2,023 2,781

4 54 222 315 648

5 15 110 136 303

6 7 49 67 167

7 1 24 38 89

8 4 22 22 52

9 5 12 17 43

10 2 11 12 27

11 2 4 8 13

12 2 8 9 9

13 0 1 3 12

14 0 3 1 7

15 1 6 4 6

16 1 1 3 5

17 0 1 3 7

18 1 1 2 4

19 1 1 2 1

20 1 2 2 4

21 1 1 2 2

22 0 1 2 3

23 1 1 1 2

24 0 0 2 1

27 0 1 0 1

29 0 1 1 1

31 0 0 0 1

38 0 0 1 1

2.4 Conclusions 41

To sum up, on first sight, the results for today’s instance matching systems seem

quite impressive. But if the problem of transitivity is not properly considered, even

for very high similarity thresholds the precision on links obtained through transitivity

is catastrophic. This has a high impact on the overall quality of the created links,

making instance matching useless for LOD type alignment purposes as well as entity

duplicate detection.

2.4. Conclusions

Entity search on structured data is a trivial task. LOD and schema.org are the prime

candidates that come to mind when it comes to structured Web data. However,

some particularities of these data sources make entity centric search on LOD and

schema.org more difficult than anticipated:

 For LOD, access to entity data is provided through URIs. Unfortunately,
URIs are not unique within the LOD. For this reason it is difficult to retrieve

entities from the LOD as a hole. Our analysis on the example of entity type

queries shows that without proper type alignment, for a given type, the user

ultimately receives but a small fraction of the entities. Assuming that type

alignment is possible for example through ontology alignment or type wit-

nesses, another problem is reconciliation the resulting entities: coming from

different data sources which may overlap in terms of entities, duplicates rep-

resented with different URIs may exist. They have to be detected and elimi-

nated. Unfortunately, although it was recently claimed to be a solved prob-

lem, instance matching still faces major issues in that respect.

 Schema.org did not gain any traction. Machine learning techniques have long
been used to compensate the lack of human input in tasks like automatic text

classification. One could imagine a solution to extend the coverage of

schema.org by learning from existing annotations. However, our experi-

ments show that human input is still required in order to provide for a higher

level of quality. Furthermore, like in the case of LOD, in order to put to-

gether a set of resulting entities, one has to eliminate duplicates. But without

Table 10: The number of owl:sameAs links created with PARIS, the corresponding pre-

cision value, and the links obtained by computing the transitive closure of links created

by PARIS, respectively.

θ

PARIS clTR

#sameAs Prec. #sameAs Prec.

0.95 24,771 0.93 2,194 0.54

0.75 29,098 0.84 3,401 0.54

0.50 34,077 0.78 5,427 0.38

0.25 36,423 0.64 6,523 0.25

42 Related Work

reliable instance matching, this task represents an important source of er-

rors.

In consequence, until LOD is more strongly interlinked and the various vocabu-

laries are better integrated, entity search on LOD should be limited to single data

stores. Since data stores offer internal data consistency (URIs should be unique

within one data store), and types are curated manually, this will result in high preci-

sion (ideally 100%), but probably low recall results for type based search. Schema.org

could be interesting for entity search, if it reaches web scale. As we have shown in

[56] machine learning is quite useful in that respect if used together with user feed-

back. But even so, the use of schema.org will always be hindered by instance match-

ing issues that are even more difficult to solve that in the case of LOD because there

are no owl:sameAs links and multiple instances of the same entity are not connected

in any way between different Web sites.

Overall, we believe the approach followed by the Knowledge Vault to integrate

data from all available Web sources including unstructured data to build a Web-scale

knowledge base is a more promising approach. Each fact is associated with confi-
dence values, allowing for questionable facts to be manually checked in a crowd-

source fashion. Building on state-of-the-art OpenIE systems, in this thesis we follow

a similar approach to prepare Web data for entity-centric search. A detailed de-

scription of the system is presented in Chapter 5.

43

Entity Search Based on the Entity Type

Entity type queries are the most basic form of entity-centric search. The users state

the entity kind and the system has to retrieve all entities of the given type. Running

such queries on structured data is trivial. Initiatives like the LOD or schema.org aim

to provide for a machine readable source of structured information that captures as

much Web data as possible. But as we have seen in the previous chapter, both ap-

proaches have shortcomings. Furthermore, they both rely on ontologies to struc-

ture data. At the top level, their ontologies have few, abstract and all-encompassing

entity types. For instance the top level in the DBpedia and the schema.org ontologies

comprises just one entity type: ‘Thing’. Each type is narrowed down in hierarchical

fashion (see Fig. 14) to a more detailed entity type in the next level. According to
the theory established by Eleanor Rosch [81, 103–106], one can distinguish between

three concept levels and therefore three entity types: the superordinate level or the

level of categories of entities e.g. ‘furniture’, ‘vehicle’, ‘communication device’; the

basic level e.g. ‘chair’, ‘car’, ‘cell phone’; and the subordinate level further specifying

the categories of entities below the basic level e.g. ‘kitchen chair’, ‘sports car’ or

‘business cell phone’. Connecting this hierarchical representation to the principle of

economy and informativeness trade off introduced by Loyd K. Komatsu in [69] for

concept hierarchies, there are few entity types at the superordinate level (increasing

economy). They are general entity types that group together entities having few

things in common (decreasing informativeness). At the subordinate level, entities of

the same type show similar characteristics, (increased informativeness). However,

at this level there are much more entity types (decreasing economy).

Indeed, if we pay closer attention to the hierarchical structure of schemata on

schema.org, the 406 schemata are organized on 5 levels. About 84% of the schemata

(levels 4 and 5 in Fig. 15) are subordinate entity types. They comprise very specific

Fig. 14. Excerpt from the schema.org hierarchy.

44 Entity Search Based on the Entity Type

entity types like ‘medical scholarly article’ or ‘day spa’. But despite the fact that

schema.org is strongly oriented towards structuring product data for enabling prod-

uct aware rich snippets, its structure provides no subordinate level entity types for

any of our previous examples i.e. ‘kitchen chair’, ‘sports car’ or ‘business cell phone’.

And this is not an isolated case. The large number of possible subordinate entity

types, makes it is impossible to include all or most such entity types in the ontology.

But is there a need to support subordinate entity types? To answer this question,

in [53] we studied the AOL Web search query logs (comprising logs of all searches

done by 650,000 AOL users over the course of three months in 2006), with regard

to our sample domain of cell phones. In particular, we extracted 21,650 cell phone

relevant entries through the use of regular expressions. After manual inspection we

classified all queries into six base categories (see Fig. 16). The resulting categories

deal with:

 Products: represents about 22% of the queries. It contains queries related
to brands, product prices, product features, specifications, and types e.g.,

‘Motorola Razr’, ‘cell phone battery’, or ‘cell phone for kids’.

 Telecom & Pricing Plans: for example ’Verizon cell phones’ or ‘compare

cell phone plans’. This category represents about 30% of the cell phone

related queries.

 Accessories: represents 17% of the queries, and refers to products for cell
phones e.g., ‘sexy phone wallpaper’ or ‘ringtones’.

Fig. 15. The distribution of schemata from schema.org on hierarchy levels.

Level 1 Level 4Level 3 Level 5Level 2

2.4 Conclusions 45

 Phonebook: 13% in size refers to cell phone numbers, or reverse phone-

book lookups, e.g., ‘cell phone number lookup’.

 Unspecific Queries: about 15% of all queries representing too general que-
ries, usually simply ‘cell phones’.

 Other: about 3% containing more exotic queries like ‘help finding lost cell

phone’, or ‘cell phone health risk’.

Focusing on the category with references to products, we observed that the ma-

jority of queries are either concerned with a specific brand (e.g., ‘Motorola’ or ‘Sony

Ericson phone’) or the price (e.g., ‘Nokia 5300 price’). Still, the amount of queries

on subordinate entity types e.g., ‘cell phone for kids’, ‘cell phone for seniors’, ‘busi-

ness cell phone’, ‘fashion cell phone’, ‘camera cell phone’, etc. is about 30% of all
product queries for the ‘cell phone’ domain.

To summarize, on one side, the principle of economy and informativeness trade off

strikes and sources for structured data on the Web can only provide for partial

coverage of the sheer number of subordinate entity types, but on the other side,

users do search for such entity types in volumes that cannot be neglected.

Another relevant finding is that some of the subordinate entity types represent

simple attribute/value constraints over basic entity types. For instance the entity

type ‘science fiction movie’ is composed out of the basic type ‘movie’ and the ‘sci-

ence fiction’ genre constraint. If genre information is available, such a type can be

constructed with the help of the ‘movie’ basic type. But things can get complicated

pretty fast: such types can span over multiple attributes, without a clear definition

of the weights of each attribute. For instance, the ‘business’ aspect of a ‘cell phone’

as an entity type is most certainly related to technical capabilities like the ‘organ-

izer/calendar’, the ‘email client’, the ‘battery life’ or the ‘qwerty keyboard’. But while

Fig. 16. Types of queries relevant to the ‘cell phone’ domain from the AOL query log.

Telecom. & Price Plans

Accesories

Unspeciffic

Phonebook Related Topics

Brands

Product Prices

Subordinate
Product TypesProducts

46 Entity Search Based on the Entity Type

users agree on which cell phones are fit for business use and which not, it is practi-

cally impossible to automatically construct the ‘business cell phone’ entity type from

a structured data source comprising for instance technical specifications of ‘cell

phones’ alone. We argue that a more sophisticated method mining entity types from

both structured and unstructured data from the Web is required for solving this

problem. In the following section we provide an elaborate description of a system

that is able to cope even with such difficult entity types.

3.1. Mining Entity Types from the Web

In this section we analyze the possibility of using besides structured, also unstruc-

tured data to improve results. The main assumption is that recall can be improved

by bridging structured data with the massive amount of unstructured data available

on the Web. Furthermore, this allows for a more flexible approach in terms of un-

known entity types: in the case of subordinate entity types, the problem for LOD

and schema.org data is that most such types were not present in the underlying

ontologies or vocabularies. With the integration of unstructured data, we expect

that such types are also being used and appear in unstructured data.

Entity-type queries are simple and concise keywords. They bear information that

is easy to understand for people due to common sense and background knowledge.

But machines require complicated methods and large amounts of data to mine this

implicit information from. This is especially important for supporting subordinate

entity types, where concepts imply additional constraints over a basic entity type. In

this chapter, we introduced the basic problem of supporting queries on implicit in-

formation on the example of the cell phone domain, where discussion boards regu-

larly refer to flowery subordinate entity types like ‘ideal for social networkers’, ‘per-

fect for fashionistas’, ‘tough as nails’, or ‘multimedia marvels’. But this is a general

problem in entity centric search: recent results have been observed also in other

domains like the predominant tagging of explicit media features, in contrast to the

high number of queries on implicit (usage-based) features in online image reposito-

ries or music stores (see [12]). Therefore, being able to transform implicit infor-

mation needs into explicit terms for querying is generally of vital importance for

supporting entity type queries.

The challenge of implicit information needs has been discussed before and is di-

rectly addressed by some retrieval paradigms. However, experiments on real world

data have shown that classical IR techniques like the vector space retrieval model

(VSM [108]) and latent semantics (LSI [32]) don’t achieve satisfying results [29]. On

the other hand, query expansions, i.e. augmenting user queries with relevant seman-
tically related terms, show promising results, if only the expansion terms are chosen

in a sophisticated manner. While first approaches only focused on synonymy and

term disambiguation, today, domain knowledge is incorporated. Expansion algo-

rithms range from using simple lexical databases [125] like WordNet [84], ex-

isting domain ontologies [113] like the MeSH controlled vocabulary (a thesaurus

3.1 Mining Entity Types from the Web 47

used for indexing medicine related articles), to extracting language models e.g., prob-

abilistic models based on term co-occurrence [97] directly from text.

The main challenge here to find those terms implied by the query entity type,

which are appropriate for expansion. For instance, following on our running example

from the domain of cell phones, a clear semantic connection between the ‘business

cell phone’ concept and technical features like ‘email clients’, ‘organizer’, ‘calendar’,

‘notepad’ and ‘file browser’ could be established. Revisited in this section in detail,

in [53] (extended in [54]) we present a novel query expansion method, which is able

to solve the expansion problem for entity centric search based on entity types. With

recall in mind, at its core, our approach builds on a self-supervised learning technique

using both structured and unstructured data. But before going into more detail, in

the following section we will lay the foundation of our approach providing a formal

description of the problem at hand.

3.1.1. Task Definition

We rely on shallow semantics, a few simple, yet suitable, heuristics taking advantage

of entity-related data available online in both structured and unstructured form. By

unstructured data we mean entity related documents on the Web. In the best case

these should be articles describing one entity each. For structured data sources we

already met LOD and schema.org. The plan is to connect structured and unstruc-

tured data, for a complete view of entities, to ultimately boost recall. But, connecting

linked data to Web documents, a process similar to the approach of matching sche-

mata to pieces of text is, as we have shown in Section 2.2, an error prone process.

Introducing errors at such an early stage, in the source data, would have severe

impact on the end results and has to be avoided at all costs. Regarding schema.org,

if it would be adopted on large scale, we wouldn’t have this problem in the first

place. Unfortunately, as previously shown, there is not too much annotated data.

However, looking at Web pages presenting various entities like for instance the

description of some product, a cell phone, one can observe that more often than

not, tables comprising information in structured form complement the textual de-

scription of the entities. Such tables are easy to recognize due to the HTML tag

making it easy to extract. Web scale table extraction systems like the one presented

in [24] confirm the success of this approach and large Web tables’ corpora, com-

prising more than 147 million tables, are already available for public access39. In con-

sequence, for this approach, we consider unstructured data in form of some textual

description of an entity and structured data in form of tables corresponding to the

same entity. The entities represent in this way the common ground between its

unstructured and structured data.

39 http://webdatacommons.org/webtables/

48 Entity Search Based on the Entity Type

The task at hand is to support subordinate entity type search with a focus on

recall, while keeping precision under control. Information in subordinate entity type

search is implied through concepts. Although many real world queries use concep-

tual information, it is difficult to define what a concept actually is, and how it can be

reliably spotted in queries. Psychology defines concepts as a cognitive unit of mean-

ing, typically associated with a single meaning of a term [87]. Any term can therefore

be the representation of a concept. The major importance of specific concepts in

practical life comes with the generally consensual notions humans connect with

some concepts: each concept carries connotations that immediately create an intu-

ition about what is meant, and thus enable efficient communication. For example

asking about a ‘cell phone for kids’ will immediately bring up ideas like robustness,

ease of use, fun colors, security features, and parental control pricing plans. Explicitly

adding exactly these connotations to a query is what makes applying a semantic

query expansion technique so promising for good retrieval quality. However, lacking

a clear definition, detecting conceptual features in queries is a serious problem.

Whereas for explicit features like ‘weight’, ‘size‘, or ‘display type’, new developments
in declarative query languages already allow a mapping of previously unknown attrib-

utes to actually existing attributes in the underlying data (e.g., using malleable sche-

mas [135]), the recognition of implicit conceptual features40 like ‘for kids’, ‘portability’

or ‘design’ is much harder. Still, even if implicit conceptual features cannot be clearly

defined and the exact disambiguation is beyond the scope of this thesis, detecting

queries on entity types with implicit conceptual features is important for dealing with

subordinate entity types.

With structured and unstructured data in mind, implicit features obviously can

never be attribute names of structured data (otherwise they are simple, explicit

constraints on entity types like ‘science fiction movie’). Also in the respective set of

values they should rarely occur for the same reason. Similarly, in unstructured text

documents an implicit concept should occur not too often, either. But since texts

are the usual way to communicate connotations and tie concepts to entities, any

important implicit concept definitely should occur at least sometimes. In the follow-

ing we consider that any noun (<N>) and nominal phrase (<NP>) from the query,

is an implicit conceptual feature if it complies with Observation 1.

Observation 1: Implicit Conceptual Feature

Let x be any query term, S be the collection of structured data, fS(x) be the per-

centage of entities for which x occurs in values of structured data, D the set of

documents presenting entities and f
D
(x) the percentage of documents grouped by

entities explicitly mentioning x.

40 We call such features implicit conceptual features because their main merit is that of implying and transmitting

information to the user. It is exactly this implied information (product features in our running example), which

has to be mined and made explicit to reach the relevant entities.

3.1 Mining Entity Types from the Web 49

An implicit conceptual feature q is any query term for which 0 ≤ fS(q) ≤ r and s ≤
f
D
(q) ≤ t, where r, s and t are domain specific parameters.

For our cell phone example and the later experiments, we tried different values

for r, s, and t. We found that occurrences under 5% in structured data and occur-

rences in between 2% and 10% of unstructured reviews are sufficient for detecting

most implicit conceptual features without generating too many false positives. These

parameters are collection/domain-specific, minor adjustments being necessary for

other data collections and domains. Such adjustments may be for example per-

formed on the run, by manually inspecting frequently posed queries from the query

log.

Entity-related data available online comprises both structured and unstructured

data. This only seems to complicate the problem to solve. But for our retrieval task

this is not a problem, but rather a feature. This is on one hand because most con-

cepts will only be explicitly tied to entities in unstructured texts, thus descriptive

vocabularies can be derived by co-occurrence analysis. But also because many con-

cepts are to some degree affected by certain structural characteristics, thus the sta-

tistical analysis and exploitation of value distributions can point to similar entities

(e.g., ‘portable’ items will definitely show a bias towards smaller sizes and lighter

weight). In fact, starting with a seed vocabulary for some relevant entities, and learn-

ing their structured characteristics to find similar entities, which in turn are used to

expand the vocabulary and learn even more about the structural bias, will lead to a

boosting like, cyclic improvement of a model that subsequently can be used for ef-

fective querying.

In summary, for implementing the query expansion of some initial implicit query

term our approach requires the extraction of terms relevant to the intended con-

cept from the underlying data, and thus has to bridge the gap between structured

and unstructured information. The retrieval task can be formalized as follows:

Problem Statement: Query Expansion for Implicit Features

Given: A relational database S containing data with respect to entities P
1
, ..., P

N
.

For each entity P
i
, there also are text documents D

i,1
, ..., D

i,n(i) describing Pi.

Task: Given a user query Q containing an implicit conceptual feature q, derive an

expanded query Q’:= q ∪ {q
1
, q

2
, ..., q

k
}, where q

1
, q

2
, ..., q

k are terms from S and D

which explicitly describe q (with corresponding weights w
1
, ..., w

k
).

3.1.2. The Query Expansion Process

The problem of querying for implicit conceptual features is typically solved by using

a query expansion technique. The key task however, is the selection of the right

terms for expanding the query. An intuitive approach would be to consider for the

expansion all the terms occurring together with the queried concept in the entity

data. But the number of such terms is quite high, and although the query expanded

50 Entity Search Based on the Entity Type

in this manner leads to high recall, the precision is catastrophic with almost any

product qualifying as a result. In consequence, to avoid such behavior, we first

choose a set of candidates that appear together with the query in entity data, then

we calculate the weight of each candidate term based on a function similar to the

term co-occurrence and finally we select only those terms with the highest weights.

Choosing the Candidate Terms for Query Expansion

Each entity is described through one or more text documents and one or more

Web tables. Of course any term appearing in documents or the tables could be of

interest for the expansion. But particularly in the case of the documents, it’s obvious

that many of the terms have no relation with the query. Actually, in the case of our

‘business cell phone’ example, concepts mostly relate to some product features.

Thus any term expressing a feature and co-occurring with the queried concept in

the entity data is considered a candidate for the query expansion. Two steps have

to be performed for choosing the candidate terms: first, select the query relevant entity

data (data in which the queried concept appears) and second extract the entity features

from the selected data.

a) Selecting the query relevant entity data. A document is likely to be relevant if

the query is mentioned in it. But not the same can be said about the structured data.

For products, we found numerous cases where a product manufacturer would in-

clude some task based concept in the product name, model or series, although the

product is not a good candidate for the concept. However, if the query is explicitly

mentioned in a document, then the technical specification of the corresponding

product is also relevant with respect to the query.

The process of selecting query relevant data works as follows: documents con-

taining the query are selected and considered relevant. Then the entities described

by those documents are selected as well together with the corresponding structured

data. This way, relevant documents, entities and structured data are selected. In a

second pass, in a boosting fashion, unstructured data being similar (by means of clas-

sic string similarity functions, specified later) to documents already found as relevant,

are also added to group in transitive fashion along with the corresponding entities

and their structured data. All data is separated this way in two classes: class c rep-

resenting data - documents (Dc) and tuples from the structured data (Sc) - being

highly relevant with respect to the query and 𝑐̅ representing the remainder of the
data. In technical terms, in order to distinguish between relevant and irrelevant doc-

uments we represent each document as a vector according to the vector space

model: terms of all documents represent axes of the space and projections of doc-

uments on each axis are computed with the help of the Term Frequency-Inverse

Document Frequency (TF-IDF) measure [44]. The similarity between two docu-

ments is computed according to the well-known cosine metric (further denoted as

cos) [108].

This being said, we can proceed to elaborating on Dc and Sc:

3.1 Mining Entity Types from the Web 51

 𝐷𝑐 = {𝑑𝑖|𝑑𝑖 ∈ 𝐷 ∧ ∃𝑑𝑗 ∈ 𝐷′
𝑐 s. t. 𝑐𝑜𝑠(𝑑𝑖, 𝑑𝑗) ≥ 𝜃} (8)

where 𝜃 is a collection specific parameter regulating the precision of c, and cos rep-

resents the cosine similarity measure;

 𝐷′𝑐 = {𝑑𝑗|𝑑𝑗 ∈ 𝐷 ∧ 𝑑𝑗 contains 𝑞} (9)

𝑃𝑐 is the set of entities whose textual descriptions have been found as relevant to

the query and 𝑆𝑐 are the corresponding structured data:

 𝑃𝑐 = {𝑝𝑖|𝑝𝑖 ∈ 𝑃 ∧ ∃𝑑 ∈ 𝐷𝑐 𝑤𝑖𝑡ℎ 𝑑 𝑑𝑒𝑠𝑐𝑟𝑖𝑏𝑖𝑛𝑔 𝑝𝑖} (10)

 𝑆𝑐 = {𝑠𝑖|𝑠𝑖 ∈ 𝑆 ∧ ∃𝑝𝑖 ∈ 𝑃𝑐 s. t. 𝑠𝑖 𝑡𝑒𝑐ℎ. 𝑠𝑝𝑒𝑐𝑠. 𝑜𝑓 𝑝𝑖} (11)

Accordingly 𝑐̅ comprises 𝐷𝑐̅ = 𝐷 − 𝐷𝑐 and 𝑆𝑐̅ = 𝑆 − 𝑆𝑐.

b) Extracting entity features. In the case of unstructured data product features

are usually represented through nouns and nominal phrases [60]. Some adjectives

can also imply product features e.g., ‘heavy’ may imply the ‘weight’, but these are

rather infrequent cases. Consequently, in order to extract the candidate terms, we

applied standard natural language processing (NLP) techniques like part-of-speech

tagging (POS) and chunking. Word inflections have been eliminated by means of

stemming.

In structured data, entities are described through table attributes and the corre-

sponding values. While all attributes are entity features, from the values we only

considered the ones corresponding to categorical attributes. Obviously all values in

define a certain aspect of the entity but the categorical attributes bear most of the

differentiating force. Typical examples of such values are ‘nokia’, ‘apple’, etc., for the

‘brand’ attribute, or ’candy bar’, ‘clam shell’ for the ‘form factor’ attribute. Numerical

values like in the case of the ‘price’ or ‘weight’, have dynamically been reduced to

the ordinal values ‘low’, ‘average’ and ‘high’. We established the ‘average’ interval of

the values for an attribute as being between [average of the values – one standard

deviation, and average of the values + one standard deviation]. We then set the ‘low’

and ‘high’ intervals accordingly. Although they are not candidate terms, and will not

be included amongst the query expansion terms, these ordinal values allow us to

establish the weight of their corresponding attribute. In this manner we can for ex-

ample find out that the ‘weight’ is an important factor since most of the devices

which are explicitly relevant toward the conceptual query, fall into just one of these

intervals (say ‘low weight’), while the remaining products are spread amongst, or fall

into the other two intervals.

Finally, after establishing what entity features and query relevant data stand for, we

can formally define the set of candidate terms:

Definition 1: Candidate Terms (CT)

Let CTD and CTS be the set of query expansion candidate terms from documents
and structured data respectively, with:

52 Entity Search Based on the Entity Type

𝐶𝑇𝐷 = {𝑡𝑖|(𝑃𝑂𝑆(𝑡𝑖) =< 𝑁 > ∨ 𝑃𝑂𝑆(𝑡𝑖) =< 𝑁𝑃 >) ∧ (𝑡𝑖 ⊆ 𝑑, with 𝑑 ∈ 𝐷𝑐)} and

𝐶𝑇𝑆 = {𝑡𝑖|𝑡𝑖 𝑡𝑎𝑏𝑙𝑒 𝑎𝑡𝑡𝑟. 𝑓𝑟𝑜𝑚 𝑆} ∪ {𝑣𝑡𝑖
|(∃𝑣𝑡𝑖

 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎𝑡𝑡𝑟. 𝑡𝑖 𝑖𝑛 𝑆𝑐) ∧

 ∧ (𝑡𝑖 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑎𝑡𝑡𝑟.)}

where, POS (ti) represents the part of speech of term ti, and <N> and <NP> tags

represent the noun and respectively nominal phrase parts of speech.

We define the set of candidate terms as: 𝐶𝑇 = 𝐶𝑇𝐷 ∪ 𝐶𝑇𝑆.

Calculating the Weight of Candidate Terms

Associating the candidate terms with the right weights is crucial for the entire pro-

cess. The weight of a term must reflect the term’s contribution to describing the

queried concept. We estimate the weight of a candidate term by relying on a docu-

ment classification approach introduced in [131]. The basic idea is to give higher

weight to candidate terms appearing quite often in data from c and not that often in

data from 𝑐̅.

NB: For the candidate terms which were extracted from structured data, the weight

of an attribute is calculated by considering also the corresponding attribute values.

cti is being extended in this case to the attribute-value pair. To clarify, the weight of

the ‘price’ attribute, which may be selected as a candidate term, will be calculated

as the maximum out of three weights, one for ‘low price’ one for ‘average price’ and

one for ‘high price’. Of course in the case of numerical attributes, this is only possible

if the values have previously been transformed to ordinals based on their average

values and standard deviation (as previously discussed in this section).

The key factor in the weighting function is that the weight of each term is normal-

ized with respect to typical terms (the most frequent entity features) from both c

Definition 2: Weighting Function (W)

Let 𝑐𝑡𝑖 be any candidate term from the candidate list CT. 𝑛𝑐(𝑐𝑡𝑖) and 𝑛𝑐̅(𝑐𝑡𝑖)

represent the number of documents (if 𝑐𝑡𝑖 was extracted from unstructured data)

or tuples (if 𝑐𝑡𝑖 was extracted from structured data) that contain 𝑐𝑡𝑖 from c and

respectively 𝑐̅.

The weight of 𝑐𝑡𝑖 , denoted 𝑊(𝑐𝑡𝑖) is estimated by calculating the difference

between the normalized frequencies of 𝑐𝑡𝑖 in c and 𝑐̅:

 𝑊(𝑐𝑡𝑖) =
𝑛𝑐(𝑐𝑡𝑖) − 𝑚𝑖𝑛𝑐

𝑚𝑎𝑥𝑐 − 𝑚𝑖𝑛𝑐
−

𝑛𝑐̅(𝑐𝑡𝑖) − 𝑚𝑖𝑛𝑐̅

𝑚𝑎𝑥𝑐̅ − 𝑚𝑖𝑛𝑐̅
, (12)

where the components of the normalizing factors 𝑚𝑎𝑥𝑐 and 𝑚𝑖𝑛𝑐 are the number
of documents, or by case tuples, containing the most frequent and respectively

least frequent entity feature from 𝑐. 𝑚𝑎𝑥𝑐̅ and 𝑚𝑖𝑛𝑐̅ are analogously defined, with

the most frequent and respectively least frequent feature from 𝑐̅.

3.1 Mining Entity Types from the Web 53

and 𝑐̅. This is critical because |𝑐| ≪ |𝑐̅|. In this way important candidate terms with
implicit connection to the queried concept aren’t severely penalized despite appear-

ing also in 𝑐̅.

But since we have split the data into two classes why not apply classical supervised

machine learning techniques on this automatically generated training set and train a

classifier? As argued in [43] and as shown later on in the evaluation section, classical

IR techniques like VSM are not able to retrieve many of the eligible products. There-

fore both 𝐷𝑐̅ and 𝑆𝑐̅ contain data which is implicitly relevant regarding the query.

For this reason, classifiers like SVM or decision trees are not an option (see [131]

for further details). Furthermore, typical weight measures associated with discrimi-

native feature weighting like term co-occurrence, mutual information or information

gain tend to excessively penalize important terms due to the noisy initial classifica-

tion.

Selecting the Expansion Terms

Having calculated the weight of all candidate terms we are now ready to choose the

most appropriate terms for query expansion. Taking a closer look at the weighting

function, the candidate terms are associated values between [-1; 1]. As intuitively

expected, there are few very week candidate terms, with weights close to -1, many

general terms, with similar normalized appearances in c and 𝑐̅ and weights close to

0, and some strong candidate terms with values closer to 1. For the query expansion,

we chose the candidates with the highest weights according to the ‘three-sigma rule’

[95] (average plus three standard deviations).

3.1.3. Evaluation

Evaluation methodology

Query expansion is a classical method for improving the retrieval performance of IR

techniques. For evaluating purposes, we compared results with the well-known VSM

featuring TF-IDF with cosine similarity. LSI is a promising technique for indexing and

retrieving documents in a low-dimensional concept space by making use of semantic

connections between terms. We address queries containing implicit concepts and

as such we considered LSI is an important reference for our tests. Since the pro-

posed approach is a query expansion technique, we also compared our method

against Stephen Robertson’s best match (BM25) [102] with Kullback-Leibler Diver-

gence (KLD) [72] as probabilistic term weighting scheme, a widely accepted ap-

proach as being the standard method for weighting terms in query expansion. As

metric we relied on the well-known Precision/Recall curves [123] emphasizing on

precision/recall ratios at k (with k iterated from 1 to the number of all returned

entities).

The evaluation process was the following: for each conceptual query, candidate
terms for expansion were extracted according to Definition 1. All candidates were

weighted with the function presented in Definition 2 and only those terms having

54 Entity Search Based on the Entity Type

weights greater than average plus three standard deviations were considered for the

query expansion. With the query in expanded form, all products were ranked based

on their relevance to the expanded query. The relevance of a product was computed

as the sum of weights of the query expansion terms appearing in the unstructured

data associated with the entity. As a gold standard we had domain experts tagging

products with respect to prevalent concepts in the respective domain.

Evaluation Data

Consistent with our running example for subordinate entity types, for evaluating the

query expansion method introduced in the previous section, we rely on product

data from the field of cell phones. The structured part of the data comprises in this

case, technical specifications of the products (an example of such data is presented

in Fig. 17). For the unstructured data, text documents come in more flavors like for

example editor’s reviews, user reviews or blogs. Analyzing these information

sources we observed that they offer different perspectives of the products. If edi-

tor’s reviews presented the features and facts in a more objective manner, with

extensive but field-relevant vocabulary, the user comments were smaller in size,
concentrated on a reduced number of features, and were strongly influenced by the

user’s interests and point of view towards the entity. Blogs were even more emo-

tional than user reviews making sentiment analysis an absolute requirement. Senti-

ment analysis however remains very unreliable when the text uses slang, sarcasm,

emoticons, prolonged letter usage, capitalization, punctuation, etc. For this reason,

we performed the query expansion process on a collection of 350 products with

the corresponding technical specifications and 500 editor’s reviews. The data has

Fig. 17. Structured data table comprising technical specifications for Sony Ericsson Xperia

X10 extracted from phonearena.com.

3.1 Mining Entity Types from the Web 55

been crawled from phonearena.com, a top Web publication in the field.

To test the quality of the expansion terms for different queries, we built a gold

standard, comprising 50 products with corresponding technical specifications and

200 user reviews crawled from CNET41. We chose to evaluate on the more chal-

lenging user reviews to question the suitability of the expansion terms for non-ex-

pert typical user language. These products were manually labeled by experts in the

field, as either being relevant or not with respect to three most important42 subor-

dinate entity types: ‘business cell phone’, ‘social networking cell phone’ and ‘camera

cell phone’ based on their user reviews and technical specifications. We chose these

features to cover different levels of clarity regarding the meaning of the query terms:

‘business’ represents ambiguous, classical concepts; ‘social networking’ stands for

emerging concepts with well-defined use and finally ‘camera’ represents clear cut

technical characteristics.

Discussion of the Results

Baseline: first we tested the base line methods i.e. VSM with TF-IDF, LSI and BM25

with the available data. To our surprise, LSI always obtained poor results even com-
pared to VSM (see Fig. 18). Varying the number of dimensions for LSI (we evaluated

with 10, 20 and 100 dimensions which according to [32] typically provide for good

results) for all our test scenarios, didn’t bring any improvements. The reason for this

behavior is the small amount of data available for training the LSI. The collection of

41 http://www.cnet.com - a leading technology oriented Web site offering large amounts of both editor and user

reviews for different products

42 According to field experts, article presented on msn.com at http://tech.uk.msn.com/features/photos.aspx?cp-

documentid=149711759

Fig. 18. ‘Business Cell Phone’ – LSI vs. VSM vs. BM25.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

BM25

VSM

LSI

56 Entity Search Based on the Entity Type

500 documents seems rather limited for the latent semantics needs. Editor’s reviews

are rather scarce resource, so we then increased the document base for LSI to 6000

documents, supplementing with user reviews. However, user generated documents

do not offer similar advantages as editor’s reviews do. Even with this large collection,

LSI is still unable to achieve notable results. Collecting editor’s reviews over long

periods of time is also not a solution. The cell phone domain is a great example in

showing how fast concepts evolve with time.

The TF-IDF based VSM retrieved all the products for which the conceptual query

is explicitly mentioned in the description of products. This provided for quite good

precision for low recall rates. But the precision deteriorated heavily in the case of

products for which the query concept is only implied in the description. In the case

of conceptual query ‘business’ presented in Fig. 18, VSM achieved good precision up

to a recall of about 40%. The behavior of VSM becomes clear after taking a closer

look at the data: 43% of the reviews the experts labeled as relevant towards the

‘business’ concept, explicitly mentioned the conceptual feature. VSM identified with

a high precision exactly these documents. It is interesting to notice that there was a
drop in precision at a recall of about 15%. The reason for this drop is that the word

‘business’ appeared in the description of some non-business products, e.g., “allows

you to locate businesses nearby” tricking VSM into retrieving the product as rele-

vant.

The BM25 ranking model assigns weights to all terms according to the KLD prob-

abilistic weighting scheme. Only terms having the KLD weight above a certain

threshold are used for expansion. In order to establish this threshold, we conducted

a series of tests. Expanding the query with terms weighting more than the average

KLD weight of all terms, provided the best results in terms of precision and recall

for BM25. For the case presented in Fig. 18, BM25 with KLD identified 192 expan-

sion terms out of which the top 10 terms were: ‘business’, ‘bold’, ‘nexus’, ‘pure’,

‘webo’, ‘she’, ‘exchange’, ‘control’, ‘offer’ and ‘storm’. In terms of precision and

recall, BM25 achieved less precision than VSM in the low recall area (up to 40%

recall), but compensated more than enough by obtaining pretty high precision (about

50%) for recall rates as high as 80%. Since LSI doesn’t even come close to the results

of the other two techniques, in any experiment we performed, in the following

graphs we will display only the more successful VSM and BM25.

Also worth mentioning is the ‘saw-tooth shape’ effect [19], common in preci-

sion/recall curves.

The query expansion technique: our query expansion comprises terms which have or-

thogonally been extracted from structured and unstructured data. But is using both

of the underlying sources boosting recall or is using structured data just as good?

To answer this question, we evaluated the results obtained by expanding the query

with terms originating from structured data only, then from unstructured data only,

and then from both data sources. In Table 11 we present the query expansion terms

3.1 Mining Entity Types from the Web 57

extracted from the technical specifications, along with the top 10 out of a total of

153 terms extracted from the unstructured data.

As shown in Fig. 19, expanding the query only on the technical specifications

(Structured data Query Expansion, further denoted as SQE), leads to poor results

in terms of precision and recall. The same test performed with the expansion terms

from the unstructured data (Unstructured data Query Expansion, further denoted
as UQE) already delivers much better results. Finally, since the structured and un-

structured data cover different aspects of products, by considering both data

sources, Conceptual Query Expansion (further denoted as CQE) achieved even bet-

ter results. Not only did the precision for low recall values drastically improve, but

Fig. 19. ‘Business Cell Phone’ – CQE vs. UQE vs. SQE.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

CQE

UQE

SQE

Table 11: Query expansion terms.

Structured Data Unstructured data

Phone type Windows mobile

Smart phone Business

Phonebook features Work

Picture id Letters

Multiple numbers Notes

Phonebook capacity Fileds

 Qwerty keyboard

 Navigation

 Outlook

 Task

58 Entity Search Based on the Entity Type

it was also maintained above 50% up to a recall above 90%. Also worth mentioning

is the fact that at 100% recall, precision was of approximately 40%. In fact, CQE has

consistently achieved better results than considering only structured or unstruc-

tured data alone for all experiments. This confirms our assumption that bridging

structured and unstructured data will have a positive effect on the results. Taking

this into consideration, for the subsequent experiments we present the results for

CQE only.

Comparing the results to the baseline methods (Fig. 20), besides some marginal

cases in low recall conditions, VSM was always dominated by CQE. On the other

hand, BM25 achieved results that were quite comparable with our approach. Be-

tween the recall rates of 30% to 60% (middle area of the recall range) it even man-

aged to obtain higher precision. However, for the low (up to 30%) and high (above

80%) recall areas, CQE was superior. Taking a closer look at the results we observed

that the behavior of BM25 was much more similar to the results we obtained by

expanding the query based only on the unstructured data (UQE in Fig. 19). By con-

sidering also the structured data, the precision is then improved in low and high
recall areas, at the cost of precision in the middle recall area.

The positive behavior of BM25 confirms that query expansion is indeed a suitable

and most powerful technique for dealing with more sophisticated queries as is the

case for concepts. However, as we will present in the following section, BM25

doesn’t always achieve such good results.

The ‘social networking cell phone’ query is an exceptional example of how the

syntactical representation of some concepts can be misleading. From a linguistic per-

spective this type is represented by a nominal phrase with strong syntactic relation

Fig. 20. ‘Business Cell Phone’ – CQE vs. VSM vs. BM25.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

CQE

BM25

VSM

3.1 Mining Entity Types from the Web 59

to the ‘networking/network’ technical feature. This relation however doesn’t reflect

human perception. For instance, the concept of ‘social networking’ and the ‘UMTS

network’ technical specification show no semantic connection whatsoever. In such

cases, both VSM and BM25 have a very difficult time in providing for correct results

(Fig. 21). In fact looking into the behavior of both methods, we observed a very

powerful topic drift towards the ‘networking’ features of products.

Since the number of such conceptual queries relying on nominal phrase constructs

is not neglectable (e.g., ‘tough as nails’, ‘packed with value’, ‘multimedia marvel’ to

mention just a few) we decided to take a closer look at the ‘social networking’ case.

In the case of VSM, every product containing the terms ‘social’ or ‘networking’ in its

textual description was considered relevant. Of course, products for which both

terms co-occur in the textual description were ranked higher. This way VSM was

able to identify the explicit cases, achieving some precision for the top 20% of the

entities. Unfortunately, the remainder of the entities was ranked based on their

mentioning of the term ‘networking’. This led to catastrophic precision.

BM25 was also not able to provide notable results. Similar to the case of VSM,
most of the products were considered relevant, due to their description containing

the term ‘networking’. As a consequence, the query expansion terms seemed to

have been selected randomly. Besides ‘social’ and ‘networking’, other top expansion

terms were ‘nexus’, ‘hero’, ‘release’, ‘widget’ and ‘bluetooth’.

In the case of CQE first, the set of documents containing the complete concept

were selected. In a boosting fashion, this set of documents was expanded to include

all other documents being highly similar to them. At this stage however the topic

drift doesn’t take place for two reasons: on the one side documents selected in the

Fig. 21. ‘Social Networking Cell Phone’ – CQE vs. VSM vs. BM25.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

CQE

BM25

VSM

60 Entity Search Based on the Entity Type

first stage are relevant since they include the complete concept as a noun phrase

and not a part of it; on the other side the highly selective threshold 𝜃 (from Eq. 8)
for the similarity between selected documents and the rest, prohibits from expand-

ing the relevant document base with product descriptions which are only vaguely

similar to relevant documents.

As shown in Fig. 21, our results were, in this tricky case indeed much better than

the ones achieved by VSM and BM25. The curve is also different from the ‘business’

concept. This is due to the fact that more user reviews share the same strength, i.e.

the recall was improved without notably lowering precision. Actually, it is a conse-

quence of the reduced number of terms selected for query expansion, which char-

acterizes this entity type.

Finally, inspired by the contradicting terms obtained when considering also the

‘network’ feature as seed for expansion, the last of our tests, investigated a query

purely based on a technical feature. The results show that our approach is at the

present time indeed limited to expanding implicit conceptual features (see Fig. 22).

The retrieval performance for technical features was merely comparable to VSM

and BM25. The reason is that technical features are always explicitly mentioned in

most of the editor reviews, as well as the technical specifications, regardless of the

product. For example, the ‘camera’ technical feature was present in 80% of the doc-
uments from the collection used for query expansion. This clearly calls for standard

techniques and our approach cannot offer any additional benefits here.

Performance results: since query expansion should be conducted in real time, we in-

spected the feasibility of the proposed method also in terms of performance. As

Fig. 22. ‘Camera Cell Phone’ – CQE vs. VSM vs. BM25.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

o
n

Recall

CQE

BM25

VSM

3.1 Mining Entity Types from the Web 61

expected, the NLP techniques, respectively the chunking process and the POS de-

tector represent important performance killers. Considering a collection of 500

documents with an average of 1500 words each, the parsing process took about 100

seconds, which is not acceptable for real-time constraints. By comparison BM25

needed about 7 seconds to prepare the documents (The preparation includes text

tokenization, word stemming and building inverted indices). Even if by comparison

the time of 7 seconds seems quite good, it still doesn’t fulfill real-time expectations.

Surely by optimizing the implementation of the NLP components or by means of

parallelization, one could achieve better performance. The solution we propose is a

system which makes use of the caching principle. Two major components are nec-

essary: an on-line retrieval component which establishes the workflow and performs

the actual Web search, and one off-line component, which maintains a database of

entities together with structured and unstructured data. It goes beyond the scope

of this work, but such a database could easily be put together by applying WebTables

(the system presented in [24]) to the ClueWeb12 corpus. The off-line component

also performs NLP tasks on the documents, storing the resulting noun phrases into
the database. This reduces the computation time of a query expansion model to less

than 2 seconds on regular hardware (for our tests we used a Core I7 QM with 2.4

Ghz and 16 GB RAM). Run on the same collection of preprocessed documents, also

BM25, also needed 2 seconds for query expansion.

Building further on the caching solution, one could even store the expansion mod-

els (expansion terms and corresponding weights) of the most queried concepts, just

by periodically inspecting query logs for the most frequent terms complying with

Observation 1. This reduces the on-line process to ranking new entities based on

pre-cached models, operation which can be easily executed in real-time.

3.1.4. State-of-the-Art

Recently, several search engines have been proposed, which can retrieve entities,

and especially products even if the query keywords don’t match the product tuples

in the database [2, 91]. Such engines extract the entities which co-occur with key-

words from the query, in documents on the web. But for concept driven querying

this approach is likely to suffer from incompleteness since most of the concepts are

mentioned only in a few documents. The reason is that concepts are rather implied

by means of related terms. We tackle this problem by further expanding the query

with terms related to the concept. Such search engines may also suffer from impre-

ciseness of the results. In some of the documents the concept may be present but

with a different meaning than the one intended by the user. Searching for a ‘business’

cell phone, one would also encounter cell phones with a description similar to ‘…it

has GPS, so you can locate businesses nearby!’. By adding weights to the query ex-

pansion terms we are able to maintain a higher precision even for high recall.

On the other hand, approaches like [43, 109] follow a query transformation tech-

nique. They translate the user query to a SQL statement to be executed on the

62 Entity Search Based on the Entity Type

product database. The query terms are mapped to predicates on the table attributes.

This approach is able to tackle queries like ‘small IBM laptop’ with clear meaning

(map on the size and brand attributes). However complex concepts i.e. ‘business’

for which the meaning is rather ambiguous, are associated with a textual predicate

(‘contains’) over attributes like the product name or description. Again this approach

suffers from incompleteness and impreciseness.

Our work is also related to the field of product feature extraction. In this context,

Hu and Liu [79], introduce a method for considering product features implied

through adjectives like ‘heavy’, or ‘big’. For this purpose, they use a human labeled

training set, and generate rules with association rule mining for the features and

adjective mappings. As in the case of approaches translating the user query to SQL,

this method is only feasible for queries where a clear-cut mapping between the query

and table attributes can be performed. This is not the case for conceptual queries.

Turning to the field of concept extraction, in [127], Weld Hoffman and Wu pro-

pose Kylin, a self-supervised open information extraction technique. Kylin relies on

information from Wikipedia to learn extractors for concepts. Wikipedia is only used
as a seed, with the extractors being learned by means of bootstrapping on the Web

and with the support of WordNet providing for the semantic term relations. But

the extracted concepts are rather general and cannot cope with the closed vocabu-

lary of product descriptions.

An interesting approach is presented in [28]. The authors build on the theory of

Formal Concept Analysis introduced by Rudolph Wille in [42] and caching mecha-

nisms to improve precision and recall for conceptual queries. This approach assumes

that a shared, domain-specific vocabulary is available and known to the user. How-

ever, in the context of web search, and especially in the case of users who can’t

express their needs in clear cut feature language, such vocabularies have to be ex-

tracted first. The method we presented in this section is not affected by such prob-

lems as it dynamically extracts the needed vocabulary if enough structured and un-

structured data is available.

3.2. Conclusions

In this chapter we have presented an in-depth analysis on the topic of entity type-

based query type for entity-centric search. Such a query type is essential for entity

retrieval systems as it poses the least cognitive burden on users. One just needs to

state the entity kind and the system does the rest. Structured data is, if available,

always the first choice for querying data. Also in the case of entity search, data

sources like linked data or schema.org represent a great opportunity. The process
of retrieving entities of a certain type from this data sources is simple enough: the

user gives an entity type, and the entity search system building on either LOD or

schema.org or even both, to return all entities of that type.

3.2 Conclusions 63

However, there are some problems severely affecting the benefits of the struc-

tured data on the Web for entity-centric search tasks: in the case of linked data,

each data source may use its own vocabulary. This has the effect that entities and

types are represented through different URIs in different sources. We observed

thousands of different URIs for the same type. For this reason, it is difficult to re-

trieve entities based on type from more than one sources. In the case of schema.org,

our web scale analysis shows that, one year after being launched, with an acceptance

rate of about 1.5% of the Web pages in ClueWeb12, it didn’t gain traction. Extending

its coverage with for example machine learning tasks also didn’t produce satisfactory

results. Another problem that is relevant for entity type-based queries is the support

for subordinate entity types. As discussed in this chapter, structured data on the Web

is organized with the help of type hierarchies covering the few superordinate and

basic entity types. However, there are so many possible subordinate entity types,

that one can hardly expect to include all of them in this static hierarchy.

Overall, we believe that at the present time, the contribution of schema.org for

entity type based search is completely neglectable. Search on structured data on the
Web is in our opinion limited to one data store search only and to superordinate and

basic entity types. This has sever effects on the recall and on the number of sup-

ported queries. In the future, we believe that, boosted by manual (crowd-sourced)

or semi-manual effort to align types and interlink entity instances, linked data will

play a major role in accessing entities from the Web. This would have positive impact

in the recall. But we don’t believe that subordinate entity types, will ever be properly

supported by static vocabularies. Instead, we think that a system that is able to mine

new, unknown types out of Web data makes more sense. It has been shown times

and again, that for information retrieval, especially for keywords carrying consider-

able knowledge easy to understand by people, query expansion is the best approach.

Combined with a self-supervised vocabulary learning technique built on both struc-

tured and unstructured data, such an approach is able to achieve a good tradeoff

between precision and recall, with about 70% precision for 70% recall. Perfect recall

can also be reached at the cost of precision (about 40% precision for perfect recall).

The evaluation presented in this section was focused on the example of cell phones,

however we have observed similar results on experiments also for the laptops and

cars domain. This doesn’t allow us to claim the generality of this approach for all

kind of entities. But at least for entities having abundant structured and unstructured

data on the Web, like it is the case for consumers’ products, such an approach seems

promising.

Reviewing the discussed possibilities, an interesting approach would be to com-

bine the strength of linked data with the flexibility of query expansion. Such a hybrid

system would benefit from the high precision that isolated data sources can deliver,

while entity retrieval on query expansion on the Web could cater for better recall

values and support for ad-hoc types not known to the LOD vocabularies. But in

order to compile a list of resulting entities, duplicate detection is required, a problem

that instance matching has yet to master. For this reason, we believe that for the

64 Entity Search Based on the Entity Type

moment, the decision between tapping linked data as a source or querying the Web

with IR techniques like proposed in this chapter depends on the user requirements.

If precision on common entity types is required, than tapping Freebase or DBpedia

is more sensible. If subordinate entity types are the target and a tradeoff between

precision and recall is acceptable, than our take on query expansion is definitely the

better choice.

Of course entity type-based entity search is but one way of searching for entities.

In the following chapter we continue our quest for approaches enabling entity-cen-

tric search by focusing on the entity properties. Our experience from working with

both structured and unstructured data, elaborately presented in the course of this

chapter has shown that both types of data sources are valuable. Combined they

bring added value to the quality of the results. For this reason, we believe it is im-

portant that solutions for the remaining entity-centric query types be able to work

with both types of data. In consequence, all other systems presented in the subse-

quent chapters will work on triples of the form (subject, predicate, object). This is

perfectly aligned with linked data which can directly be used as a data source. For
unstructured data, we rely on an information extraction system we have developed

to extract facts from text and store it as a triple based knowledge base. This triple

extraction system is presented in detail in Chapter 5.

65

Property-based Entity Search

When searching for a certain type of entity, users have some mental representation

of “things” they are looking for. Discussed in Chapter 1 in detail, it is common

knowledge in cognitive psychology (imported in information science [114]) that con-

cepts take the place of thoughts. They are represented through symbols (words,

sounds, etc.), defined intensionally by a set of properties, and extensionally by a set

of entities. The goal in entity search on Web data is to easily access the entities that

correspond to a concept the user thinks of. This concept may easily be expressed

by its symbol, a word label a subject we have extensively discussed in the previous

chapter.

Another way of expressing the user information needs in entity search is through
the intension: the set of properties prototypically defining the kind of entity that the

user is searching for. We call such queries property-based entity search queries. But

there is not much research involving property-based entity search, or any kind of

data access building on properties for that matter. Recently, there have been some

proposals to adopt property-based models for accessing data for programming pur-

poses. Sketched first in [110] and extended in [111] the entity type information for

the newly proposed programming paradigm is given by properties: a type is defined

by a set of required properties, and every entity with at least those properties is

part of that type. But besides these visionary publications, not much has been done

to show how property-based entity access can actually be implemented. So why isn’t

there more being done in this respect? Are properties too weak for entity search?

In [70] the authors measure the conditional probability that an entity has a specific

property set given a certain type, and vice versa. The analysis was performed on the

BTC’12 data set and it shows that properties bear more information than types. So

this cannot be the reason.

Obviously, providing a property based description of the entities to be searched

for is not as easy as providing types. Maybe the cognitive load put on the user is too

high to make such queries feasible. After all, our analysis on the acceptance of

schema.org (presented in Section 2.2 on the example of articles in ClueWeb12)

shows that people used at best an average of about 4.6 attributes, which is about

15% of the attributes available for annotation. This is despite the fact that the content

comprised data for many more attribute annotations. This shows users are not keen

on providing too many properties even though a more accurate description would

have clear and direct benefits like directing more users to own pages. In conse-

quence, one can safely assume that also for entity search by means of properties,

users will most probably provide on average about 4 properties as a description of

66 Property-based Entity Search

the intended entity type. Indeed, the cognitive load can be a problem for this kind

of entity search. Consequently, a system accepting this kind of queries has to be able

to work with only a subset of the actual intentional description. For instance, a user

with movies in mind, may provide {‘Title’, ‘Director’, ‘Genre’, ‘Language’} as an in-

tension. But this description, is rather broad, as it may refer to movies, audio books

or even video games. Ultimately, the quality of the retrieved entities is poor.

Nonetheless, we believe that property based entity retrieval is a promising take

on the problem of entity centric search. The first step towards a working solution

is to acknowledge that the provided properties are a mere subset of an intensional

definition of the entity type, and that the choice of properties has severe impact on

the quality of the retrieved entities. Building on these observations, our work pre-

sented in [59], is the first research paper to address the problems of property-based

entity retrieval. Starting from properties provided by users as a query, we propose

a method for estimating the quality of the selected entities and if necessary, identi-

fying additional properties that have a high positive impact on the quality. The system

we propose, works in an iterative fashion to assist users to extend the property-
based type definitions while checking that the extended definition still matches their

intentions.

The contribution of our work, discussed in more detail in this chapter, can be

summarized as follows: an extensive inspection of property-based entity search; the

presentation and evaluation of a quality metric enabling transparency for this entity

search approach; and the presentation and evaluation of a property selection

method for improved data quality.

4.1. Use Case

To assess the feasibility of the property-based paradigm for retrieving entities from

the Web, we conducted an experiment on the example of movies. When searching

for movies, users will most probably query on a few properties (up to four if we

consider people’s behavior observed for annotating data with schema.org attributes)

they usually associate with movies. These properties are used in the property-based

entity access approach as filters such that all entities having those properties are

considered to represent movies. Inspecting the selected entities one can measure

the quality of the property-based entity search approach by computing the percent-

age of entities which actually are movies. But first, what are the properties people

typically associate with movies?

Our analysis on schema.org annotations presented in Section 2.2 on the example

of articles in ClueWeb12 is again helpful also for answering this question. For mov-
ies, we observed about 40,000 annotations. On average, each movie annotation

comprises 4.6 movie properties. Amongst the properties used to annotate data, the

‘Title’, ‘Description’ an ‘URL’ of the movie page, the ‘Director’ and the ‘Genre’ are

the most frequently used. In Table 12 we present a list of the properties appearing

in at least 30% of the movie annotations. We assume that these properties or at

4.1 Use Case 67

least most of them, were not annotated by chance with such high frequency, but

rather because they are typically associated with movies. In this case, for the ‘Movie’

entity type, most probable property-based definitions are a subset comprising three,

four or at best five properties from the most frequent ones, e.g. {Title, Description,

URL}, {Title, Description, URL, Director}, {Title, Description, URL, Director,

Genre}.

According to the idea of property-based entity retrieval, all entities fulfilling these

properties represent movies. To put this approach to the test we inspected its use

on the BTC12 linked data corpus, introduced in the previous chapter in Section 2.1.

The process of selecting data for a set of properties provided in natural language

works as follows:

 Property URIs are identified for each property. For this purpose, all sub-
jects from tuples of the form (*, rdfs:label, p) are selected for each prop-

erty p (* is a wildcard which may be substituted by any URI). Synonym sets

provided by WordNet or obtained through the owl:sameAs predicate are

used to extend the coverage of each property (more details in Section

4.2.1).

 With p’ as the URI of each property p, the entities to be selected are the

set of all distinct subjects s for which there are tuples of the form (s, p’, *)

in the BTC dataset (* is a wildcard which may be substituted by any URI

or literal in this case).

An overview of the selectivity for different property sets is provided in Table

13(a). While Title, Description and URL are quite general (1.5 million entities of

various types are selected), Director, Actors and especially Genre notably reduce

the number of relevant entities.

Table 12: Top ‘Movie’ properties (with frequency above 30% of all movie annota-

tions) from the ‘Movie’ schema from schema.org used for annotating movie data on

Web pages from ClueWeb12.

Property Movies anno-

tated with

property

Title 78 %

Description 56 %

URL 44 %

Director 39 %

Genre 38 %

Actors 38 %

AggregateRating 33 %

68 Property-based Entity Search

Precision and recall are the standard measures for evaluating the quality of re-

trieved information or, in our case, the quality of selected entities. Precision repre-

sents for this use case the proportion of entities being movies out of all retrieved

entities, while recall represents the proportion of retrieved movies out of all movies

present in the BTC dataset. Computing precision and recall is not trivial in this case

since it requires recognizing entities that are movies. A problem we already raised

awareness on, in linked data, URIs are not unique over all data stores. In conse-

quence, the rdf:type property which connects entities to their types, is in this case

impossible to rely on without further action. In the previous chapter, in Section 2.1

we invested much effort to manually build a long list of URIs comprising 4,336 URIs

all representing the ‘Movie’ entity type. With these types we identified a total of

169,469 movies in the BTC dataset. It’s important to mention that this is just an

approximation of the exact number of movies in BTC, therefore the recall presented

in Table 13(b) has to be taken as an estimation of the actual value.

As shown in Table 13(b), the choice of properties has notable impact on the

quality of the selected entities: precision increases from a mere 0.02 to 0.78 by

adding one single property to the definition of ‘Movie’ entity type. Precision values

of 0.92 are possible if the “right” properties are chosen. Recall is, with 0.3 for the

first three most frequent properties, quite low. The main reason is the sparseness

of the data. This becomes extreme in the case of ‘Genre’ with just a few movies

having this property.

Overall, the property-based entity retrieval can lead to high quality/high precision

entity selection if properties are well chosen. A major obstacle in the process is the

lack of transparency: the user has no idea about the quality of the selected entities.

Properties belonging to the entity type definition are mandatory: since they are pro-

vided by the user one can be certain of their correctness. In consequence, none of
the entities missing on any of these properties should be retrieved. But this has a

high impact on recall. Combined with the sparse nature of Web data, the more

elaborate the definition, the smaller the number of selected entities. In the case of

entity type-based queries, and especially for linked data, we mostly focused on recall,

since high precision was ensured by the fact that data was manually curated. As we

have seen in the use case presented in this section, in the case of property-based

Table 13: Number of entities from the BTC12 data corpus fulfilling each property set

(a). The corresponding precision and recall values (b).

Property Set (a) Nr. of Enti-

ties from BTC

(b) Precision /

Recall

{Title, Description, URL} 1,447,813 0.018/0.3

{Title, Description, URL, Director} 29,328 0.78/0.26

{Title, Description, URL, Director, Genre} 2,266 0.35/0.01

{Title, Description, URL, Director, Actors} 21,531 0.92/0.23

4.2 Property-based Entity Retrieval – System Description 69

entity retrieval this doesn’t apply anymore as the choice of properties and property

based type definition has a high impact on precision. We believe that if precision and

selection quality can be controlled, one can improve recall by building on structural

similarity or by extending the selection to cover types discovered with high precision

through the property-based retrieval. For this reason, we focus here on improving

the quality of the selection throughout precision first, by extending the entity type

definition with a set of well-chosen properties.

4.2. Property-based Entity Retrieval – System Description

Starting from a property-based entity type definition with properties expressed in

natural language and a large collection of data organized as (subject, predicate, ob-

ject) triples, the entity retrieval system that we propose, helps the user to obtain

high quality selections: relying on a measure of property-based data homogeneity, it

measures the quality of the entities that fulfill the property-based definition. If the

quality is low, key properties contributing the most to better data quality are found.

The user has to finally decide if those properties are part of the entity type or not.

The definition of the intended type is extended to include the user feedback and the

process is repeated until the quality reaches a satisfactory level. For this purpose,

the following functionality is required:

 identify and select those entities that fulfill the property-based type definition;

 compute the quality of a collection of entities;

 find properties that, if added to the set of properties defining the type, con-

siderably improve the quality of the selected data.

4.2.1. Property-based Data Access

As previously mentioned we aim for a system that is able to work with both struc-

tured and unstructured data. But working with triples like provided in linked data is

enough since (as we will show in Chapter 5) information presented in text form can

be extracted into triples to build an additional data store made available in the LOD

cloud. In consequence, in the following we discuss about data as being organized

only in triple form and refer the whole data through LOD.

According to the property-based entity retrieval approach, the system selects all

entities from the data having all properties from a given set. In our triple stores, like

in linked data, properties are represented through URIs. Hence, a mapping between

the properties in natural language and the URIs is necessary. For this mapping, we

rely on the rdfs:label property, an instance of rdf:property providing a human-read-

able name for a resource. For better coverage, and especially for data coming from

text, where there are no owl:sameAs relations, each property is automatically ex-

tended beforehand with a list of synonyms from WordNet.

70 Property-based Entity Search

For some entities the rdfs:label property may be missing. Furthermore, the same

property may be present in different data stores under different URIs, possibly con-

nected to each other through the owl:sameAs property. In consequence, in a dic-

tionary-like fashion, each property is actually mapped to a set of URIs all considered

synonyms. This is especially important for the triples extracted from text.

Mapping Expansion Algorithm:

By repeatedly linking elements through synonyms, two or more properties from the

definition set may end up being represented by the same set of URIs. Such cases are

reported to the user.

At the very core of the property-based approach, an entity is relevant with respect

to a specific property if there is a statement or fact asserting that the entity has this

property. In the context of linked open data, we define the binary relevance of an

entity w.r.t. a property as a hit function:

According to the semiotic triangle, concepts and thus entity types are defined in-

tensionally by a set of properties, and extensionally by a set of entities. Aiming for

simple yet effective access to entities we define concepts expressing entity types, as

the set of properties that intensionally define the entity type given by the concept.

Definition 3 (mapping): Given a property p ∈ Properties, 𝑃𝑆𝑌𝑁𝑝
 its set of syn-

onyms from WordNet (including p) and LOD a large set of 3-tuples of the form

(subject, predicate, object), we define map as a function map : Properties →

℘(URIs) with:

 𝑝 ⟼ {𝑠|∃𝑝𝑖 ∈ 𝑃𝑆𝑌𝑁𝑝
: (𝑠, rdfs: label, 𝑝𝑖) ∈ 𝐿𝑂𝐷} (13)

With Δ𝑝,1 ≔ 𝑚𝑎𝑝(𝑝) define

Δ𝑝,𝑖+1 ≔ {𝑠𝑗′|∃𝑠𝑗 ∈ Δ𝑝,𝑖: (𝑠𝑗 , owl: sameAs, 𝑠𝑗

′)

∈ 𝐿𝑂𝐷 ∨ (𝑠𝑗′, owl: sameAs, 𝑠𝑗) ∈ 𝐿𝑂𝐷}
(14)

 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦(𝑝) ≔ ⋃ Δ𝑝,𝑖

∞

𝑖=1
 (15)

Definition 4 (hit): Given some entity 𝑒 ∈ E represented by its URI, a property

in natural language p ∈ Properties and LOD defined as above, we define hit as a
function

hit : (URIs × Properties) → {0, 1} with:

 ℎ𝑖𝑡(𝑒, 𝑝) = {
1 iff ∃ 𝑝′ ∈ 𝐷𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑟𝑦(𝑝): (𝑒, 𝑝′,∗) ∈ 𝐿𝑂𝐷
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (16)

where * is a wildcard that may be substituted by any literal or URI.

4.2 Property-based Entity Retrieval – System Description 71

This type definition may iteratively evolve based on user feedback. Because the user

feedback may be negative w.r.t. to some properties (by negative we mean properties

that all entities corresponding to the type definitely shouldn’t possess), we define an

entity type as follows:

While here all properties (initial as well as positive and negative extensions) are

treated equivalently, the fact that not all properties extending the definition are re-

quired is a starting point for future work. As in the case of properties, in the LOD

cloud the same entities may end up having multiple URIs. For the sake of simplicity,

we refer to one entity as being uniquely identified by an URI.

More often than not, the number of properties provided by users to describe

some type of entity is much smaller than the intension of that entity type. Extensive

experiments presented in Section 2.2 show that on average only 4.6 (out of an av-

erage of 34 existing) properties have been used to describe entities. This suggests

that the user provides a sub-set of properties meant to represent the intended (to

us hidden) type. This set of properties is one of the many possible super-types of

the intended type. Starting from a property set that builds a type or a super-type for

some concept, all entities having all these properties are selected as being relevant

for the type or super-type:

Definition 5 (type): Given a concept c, representing an entity type extensionally

defined through the set of entities given by their URIs, Ec, we define the type of

concept c denoted Tc as the set of properties Tc = 𝑃𝑐+
∪ 𝑃𝑐−

 with 𝑃𝑐+
 the set of

positive properties and 𝑃𝑐−
 the set of negative properties (𝑃𝑐+

∩ 𝑃𝑐−
= ∅), such

that:

(𝑖) ∀𝑒 ∈ 𝐸𝑐 , 𝑝 ∈ 𝑃𝑐+
: ℎ𝑖𝑡(𝑒, 𝑝) = 1

(ii) ∀𝑒 ∈ 𝐸𝑐, 𝑝 ∈ 𝑃𝑐−
: ℎ𝑖𝑡(𝑒, 𝑝) = 0

(𝑖𝑖𝑖) ∀𝑒 ∉ 𝐸𝑐 ∃𝑝 ∈ 𝑃𝑐+
: ℎ𝑖𝑡(𝑒, 𝑝) = 0

(17)

Definition 6 (property-based data access): Given a set of properties Tc=

𝑃𝑐+
∪ 𝑃𝑐−

 representing either a type or super-type for a concept c as before, the

set of entities selected according to the property-based data access paradigm Ec

is the set of entity URIs that fulfill all properties from Tc:

 𝐸𝑐 = ⋂ 𝐸𝑗

|𝑇𝑐|

𝑗=1
 (18)

where 𝑬𝒋 = {𝒆|𝒉𝒊𝒕(𝒆, 𝒑𝒋) = 𝟏 𝒊𝒇 𝒑𝒋 ∈ 𝑷𝒄+
∧ 𝒉𝒊𝒕(𝒆, 𝒑𝒋) = 𝟎 𝒊𝒇 𝒑𝒋 ∈ 𝑷𝒄−

}

72 Property-based Entity Search

In the ideal case, for a concept c the set of properties Tc represents the intension

of c. Then, the set of selected entities Ec also extensionally defines concept c and

should fit the user needs. However, there is a high probability that Tc is a subset of

the intension. Since the type intended by the user is hidden to the system and entities

have no clear types, there is no trivial way for checking if the selected entities cor-

respond to the intended concept and thus entity type. The user also has no feedback

whatsoever regarding how good the retrieved entities match the intended entity

type. This has grave effects on the applicability of the property-based entity retrieval

approach. Aiming for better transparency of the whole approach, in the next section

we introduce a measure of quality for the selected entities.

4.2.2. Quality of the Selected Entities

We measure the quality of entities selected through the property-based model as a

function of entity homogeneity. The basic assumption is that the user describes sim-

ple concepts (like ‘Movies’ or ‘Books’) with all corresponding entities having the

same or almost the same properties and not ad-hoc or composed concepts (like “all

things having a geo-location”). Consider for example that the user provides three

properties: {‘Title’, ‘Description’ and ‘Genre’}. Based on these properties a set of

eight entities is selected. Besides the three properties, each entity is described by

other additional properties like in Table 14. Properties p4, p5 and p6 may be, for

instance, ‘Duration’, ‘Actors’ and ‘Director’ while p7, p8 and p9 could represent

‘ISBN’, ‘Pages’ and ‘Editor’. As you may have intuited, entities e1, e2, e3 and e4 repre-

sent movies while the remaining entities represent books. Properties in Web data

and in the LOD cloud may be missing. This is reflected also in this artificial example

with movies e1, e3 and e4 providing no values for properties p4 and respectively p6.

Analogously, for the entities representing books. The rest of the missing values are

attributed to the fact that properties p4, p5 and p6 are proper to movies while p7, p8
and p9 are proper to books.

Table 14: On rows - the entities that are selected for the property set {p1, p2, p3}. On

columns – all properties describing any of the selected entities.

p 1 p 2 p 3 p 4 p 5 p 6 p 7 p 8 p 9

e 1         

e 2         

e 3         

e 4         

e 5         

e 6         

e 7         

e 8         

4.2 Property-based Entity Retrieval – System Description 73

More generally, starting from the set of properties, the system selects a set of

entities as described in the previous section. In a relational sense, together with the

union of all their corresponding properties (stop properties like rdfs:label,

owl:sameAs, rdf:type, etc. are first removed) these entities form a relational schema

(as in Table 14). Especially in the field of schema extraction and discovery, the num-

ber of null values has successfully been used for establishing the quality of the schema

[22] – the better the schema, the fewer null values, the more homogeneous the

data. Thus, if the data is homogeneous in terms of structure - their properties -

these properties intensionally define a single entity type. As a measure of homoge-

neity we measure the property-based similarity between all entities. But there is a

problem: Entities may be selected from different data sources (DBpedia, LMDB,

etc.). Entities with the same type and from the same source tend to share the same

properties, usually due to the focus of each data store. Different sources have dif-

ferent sizes, and small data sources with many properties can introduce null values.

These null values are artificially amplified by the size of the data source. To handle

this problem, we reduce all entities having the exact same properties to just one
witness. This way, for the example presented in Table 14, e3 and e4 are both repre-

sented by one witness: 𝑤𝑒3𝑒4
 having the same properties as e3 or e4. The same for

e6 and e7. The rest are their own witnesses. Based on this observation we define the

quality of a set of entities as follows:

While the Jaccard index is most suitable for measuring structural similarity between

entities, any other similarity measure may be used here.

For the example introduced in Table 14, the quality of the selected entities is

0.55. If however, additional information were provided, like the fact that the entity

type that the user has in mind also has property p5, or doesn’t have property p7, the

entities selected by the property based model restrict to movies only (entities 1 to

4). The quality in this case increases to 0.78, the result being slightly affected by the

noise (missing values) in the data. In the following subsection we present how to find

properties better separating various types of entities in the result set.

Definition 7 (quality): With the notations of Tc and Ec as above and Wc as the

set of witnesses represented by URIs of entities from Ec, the quality of the selected

entities is a function, Q : ℘(URIs) → [0, 1] with:

 𝑄(𝐸𝑐) =
1

𝐶2
𝑛 ∙ ∑ ∑ 𝑆𝑖𝑚(𝑤𝑖, 𝑤𝑗)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (19)

∀𝒘𝒊, 𝒘𝒋 ∈ Wc, n=|Wc| and 𝒔𝒊𝒎(𝒘𝒊, 𝒘𝒋) =
|𝑷𝒘𝒊

∩ 𝑷𝒘𝒋
|

|𝑷𝒘𝒊
∪ 𝑷𝒘𝒋

|
 is the Jaccard index [10].

𝑷𝒘𝒊
 is the set of properties of 𝒘𝒊 and 𝑷𝒘𝒋

 is the set of properties of 𝒘𝒋.

74 Property-based Entity Search

4.2.3. Property Selection

Finding the list of properties best distinguishing different types is similar to the prob-

lem of induction of an optimal decision tree in data classification, which is a hard

task. It has been shown that finding a minimal decision tree consistent with the set

of labeled entities provided as data is NP-hard [49]. Consequently, greedy algorithms

like the C4.5 are applied for solving this problem [98]. When it comes to selecting

some property that better discriminates between different types of entities, infor-

mation gain from the field of information theory is the standard measure for deciding

the relevance of a property [99]. Generally speaking, the information gain is the

change in information entropy from a prior state to a state that takes some infor-

mation as given. Computing this entropy change is only possible for entities that

have class labels (entity types) attached. Types are provided in the LOD cloud by

means of the rdf:type property, however entities may have multiple types partly with

different granularities e.g., the movie “Gangs of NewYork” has types owl:Thing,

schema.org/CreativeWork, dbpedia-owl:Film, yago:VictorianEraFilms and 15 other

types. For other movies, types owl:Thing, or schema.org/CreativeWork are missing.
All these types are obviously related to each other but without an upper ontology

or global type hierarchy, it’s difficult to make use of the type property to compute

the information gain.

But as shown in [47], the type information strongly correlates with the entity

properties: in the example presented in Table 14, it’s obvious that entities having

properties ‘Duration’, ‘Actors’ and ‘Director’ on top of ‘Title’, ‘Description’ and

‘Genre’ are movies while entities having ‘ISBN’, ‘Pages’ and ‘Editor’ are books. The

type information is latent in the properties. But the missing values for some entities,

as well as the heterogeneity of data sources make it difficult to fold all movies to-

gether to just one witness – a property set representing the movie type. Actually

what happens is that more witnesses, with more or less similar properties, exist for

a single type. The problem of reducing similar witnesses to a dominant type is similar

to the problem of dimension reduction.

Principal component analysis (PCA) is the best, in the mean-square error sense,

linear dimension reduction technique [65]. In essence, PCA is a basis transformation

that seeks to reduce the dimensionality of the data by finding a few orthogonal linear

combinations (called principal components) of the original variables capturing the

largest variance. Given Ec the set of entities selected according to the property-

based data access paradigm, and Wc the set of witnesses of entities from Ec, let X be

a n × p matrix, where n and p are the number of entity witnesses and the number

of properties of all witnesses, respectively. Let the matrix decomposition of X be

 𝑋 = 𝑈𝐷𝑉𝑇 (20)

Y=UD are the principal components (PCs), where the p × p matrix U is the matrix

of eigenvectors of the covariance matrix 𝑋𝑋𝑇, matrix D is a p × n rectangular diag-
onal matrix of nonnegative real numbers on the diagonal with customary descending

4.2 Property-based Entity Retrieval – System Description 75

order, and the n × n matrix V is the matrix of eigenvectors of 𝑋𝑇𝑋. The columns of
V are called loadings of the corresponding principal components. Usually the first

PCs (capturing the highest data variance) are chosen to represent the dominant

dimensions.

For the example introduced in Table 14 (first all data is reduced to binary values

and centered on the columns such that the mean of each column is equal to 0), the

first PC shows the strongest variance of 1.16. This PC is also considered relevant.

The next two components show a variance of 0.2 and the rest are 0 or close to 0

and can be neglected. With respect to the properties, the coefficients of the first PC

are clustered together according to their variance (Table 15). For this example, the

three property clusters that build on the relevant PCs show the existence of two

dominant types that differentiate in terms of properties p4, p5, p6 and p7, p8, p9. Show-

ing no variance, properties p1, p2 and p3 can be ignored since they belong to both

dominant types.

In general, depending on the selected entity set, more PCs may be relevant. To

dynamically establish which of them show notable variance, we rely on the ISO-

DATA algorithm, an automatic thresholding approach [5] that identifies thresholds

in one dimensional spaces that best separate a set of data points. With the PCs that

show variances above the threshold, one dimensional clusterings (agglomerative hi-

erarchical clustering with average inter-cluster similarity) on the coefficients are built

for each PC. This way each property is assigned to one cluster for each relevant PC.

Each set of properties belonging to the same clusters on all relevant PCs are grouped
together and represent abstract dominant types we will further refer to as latent

types. For the example in Table 15, considering that only PC1 is relevant, the ex-

tracted latent types are t’ ≡ {p1, p2, p3, p4, p5, p6} and t’’ ≡ {p1, p2, p3, p7, p8, p9}. With

these types we can now label entities according to the property-based model. This

way, e2 will be labeled with t’ and e5 with t’’. In this manner a set of labeled entities

Table 15: Coefficient values (component loadings) for each property, for the first

three principal components.

 PCs

Props. PC1 PC2 PC3

p1 0.00 0.00 0.00

p2 0.00 0.00 0.00

p3 0.00 0.00 0.00

p4 0.35 -0.71 0.00

p5 0.50 0.00 0.00

p6 0.35 0.71 0.00

p7 -0.50 0.00 0.00

p8 -0.35 0.00 0.71

p9 -0.35 0.00 -0.71

76 Property-based Entity Search

is created. Entities that fulfill properties for multiple types (‘Audiobooks’ in the con-

text of our example) are automatically associated with multiple labels.

With the set of labeled entities, the information gain for a property can be com-

puted as follows:

The entropy (denoted H) represents a measure of the amount of uncertainty in the

data and is usually computed as follows:

 𝐻(𝐸𝑐) = − ∑ 𝑝(𝑡𝑖) log 𝑝(𝑡𝑖)

𝑛

𝑖=1

 (22)

where n represents the number of latent types and p(t) represents the probability

(relative frequency) of latent type t in 𝐸𝑐.

However in our case, an entity may have multiple types. Known as the multi-label

learning problem, this poses difficulties for most learning and classification methods.

The information gain - entropy based approach from the C4.5 decision tree algo-

rithm is no exception [121]. To overcome this problem, we employ a modified ver-

sion of the entropy proposed in [30] that considers multiple labels by introducing

the probability of an entity not belonging to a certain type:

 𝐻(𝐸𝑐) = − ∑((𝑝(𝑡𝑖) log 𝑝(𝑡𝑖)) + (𝑞(𝑡𝑖) log 𝑞(𝑡𝑖)))

𝑛

𝑖=1

 (23)

with n and p(t) as before and q(𝑡𝑖) = 1 – p(𝑡𝑖) the probability of not having type 𝑡𝑖.

4.2.4. System Evaluation

The system presented in this chapter has two major objectives: to provide transpar-

ency regarding the quality of the entities retrieved through the property-based par-

adigm and to improve the quality of the selected data by iteratively, and with user

feedback, extending the property-based type definition with chosen properties. To

evaluate how well these objectives have been fulfilled we performed the following

experiment: starting from different entity types presented in structured form with

schemata on schema.org, as in the use case presented in Section 4.1, we build an

initial type definition for each concept. This initial definition embodies typical prop-

Definition 8 (information gain): With the notations of Tc and Ec as previously

defined and 𝑃𝑈 the set of all properties of all entities from Ec, the information gain

of a property 𝑝 ∈ 𝑃𝑈 − 𝑇𝑐 w.r.t. the entity selection Ec is:

 𝐺𝑎𝑖𝑛(𝑝, 𝐸𝑐) = 𝐻(𝐸𝑐) − ∑
|𝐸𝑐|𝑝𝑣|

|𝐸𝑐|
∙ 𝐻(𝐸𝑐|𝑝𝑣)

𝑣∈{0,1}

 (21)

where 𝐸𝑐|𝑝𝑣 = {𝑒 ∈ 𝐸𝑐|ℎ𝑖𝑡(𝑒, 𝑝) = 𝑣}.

4.2 Property-based Entity Retrieval – System Description 77

erties most users associate with each entity type. It comprises the first four proper-

ties that have been most frequently annotated in ClueWeb12 for the corresponding

schema.org schemata. The property-based data access is applied to these four prop-

erties and a set of entities from the BTC data corpus is selected. The quality score,

precision and recall are computed for the selected entities. If the quality score is

lower than 0.65 (our experiments have shown that a threshold of 0.65 brings satis-

fying data quality), a property is chosen based on its information gain. The user is

asked whether this property belongs to the entity type or not. We simulate the user

feedback by relying on information from schema.org: If the property with the highest

information gain is part of the schema that describes the corresponding concept on

schema.org (considering synonymy), then the user feedback is positive. The type

definition for the entity type is in this case extended with this property and all enti-

ties having this property are kept. If, however, the property with the highest infor-

mation gain is not part of the schema, then it is considered a negative property and

all entities not having this property are kept. The process is repeated until the quality

score reaches the quality threshold. Using schema.org to simulate user feedback is
convenient but it has some drawbacks that will be addressed in future work: some

properties that are part of schema.org may be irrelevant from a human perspective.

At the same time, schema.org doesn’t claim full completeness. In consequence one

can’t be sure that properties not being part of schema.org are negative properties.

In order to measure precision and recall, a gold standard is required. The gold

standard represents, in this case, clear type information w.r.t. the entity types: In the

context of movies, is a given entity a movie or not? We build the gold standard by

bootstrapping on a set of 1,000 seed entities that we know are of the entity type:

We extract all rdf:type types for each of the seed entities. On average, about 500

types are found. Types that are not related to the concept or that are too general

(e.g. owl:Thing or schema.org/CreativeWork) are manually pruned. In a second it-

eration, all entities having those types are selected and 100 entities are randomly

chosen. Only those entities that, on manual inspection show the correct type are

kept. Their rdf:type types are extracted, and unrelated or general types are again

manually pruned. The process is repeated one more time. The resulting list of

rdf:type values represents the description of a concept type according to the rdf:type

property. Any entity that has one of the types in the list is considered to be of the

respective type. Of course, only a subset of the actual expressions of a certain type

is found. As a result, the precision and recall values computed on this gold standard

underestimate the actual values.

Our system chooses key properties to improve the type definition based on in-

formation gain. As a baseline, we built Rand, a system choosing properties at random

(without replacement). The randomization process is repeated 10 times for each

property selection step. Average quality, precision and recall values are considered

for each iteration. The property that is closest to the average scores of all 10 random

picks is chosen to extend the definition for the next iteration.

78 Property-based Entity Search

We evaluated our property based entity retrieval system (named ProSWIP –

short for Property based Semantic Web Interactive Processing) on multiple con-

cepts from various fields, with different characteristics. In Table 16 we present the

results on the example of three chosen concepts. The base iteration (0) is common

to both systems and corresponds to the most frequent four properties used for

annotating the corresponding schema in ClueWeb12. For Movie, this iteration al-

ready produces good precision but it is quite restrictive in terms of recall. ProSWIP

requires in this case 4 iterations to reach quality above 0.65 and perfect precision.

With 0.93, precision is already very good after the first iteration. Further iterations

isolate well defined movies from the ones with missing values. This in turn affects

recall. Benefitting from high quality entity selection from the base iteration (78% of

entities selected from the start are movies), the random approach is also able to

obtain good results. Primarily guided by average scores and with high quality seman-

tic feedback, the baseline method achieves 0.95 precision and a quality score of 0.59

after 4 iterations. Recall however is severely affected by the random choice of prop-

erties. For Music the base iteration is, with a precision of 0.44, of lower quality.
Various types of entities are selected. The probability for the random selector to

choose some irrelevant property is higher in this case. This is also reflected in the

poor performance of Rand for Music. In contrast, ProSWIP achieves the desired

level of quality after only two iterations. For Books, the base also has low precision

with negative consequences on the performance of Rand. The quality metric we

introduced is highly correlated to precision on all experiments (Pearson’s linear cor-

relation coefficient of 0.94) denoting its expressiveness for the quality of the data

selection. Precision rapidly increases towards values above 90%, showing the success

of the whole approach.

Table 16: Quality, precision and recall for three chosen entity types and multiple

iterations.

Iteration

Movies ProSWIP Rand ProSWIP Rand ProSWIP Rand

0 0.49 0.49 0.78 0.78 0.26 0.26

1 0.57 0.5 0.93 0.78 0.25 0.26

2 0.55 0.51 0.91 0.74 0.12 0.03

3 0.58 0.53 0.96 0.89 0.11 0.03

4 0.65 0.59 1 0.95 0.07 0

Music

0 0.34 0.34 0.44 0.44 0.82 0.82

1 0.58 0.34 0.99 0.43 0.82 0.78

2 0.67 0.34 0.99 0.43 0.62 0.78

Books

0 0.21 0.21 0.37 0.37 0.71 0.71

1 0.32 0.21 0.83 0.38 0.07 0.07

2 0.52 0.22 0.93 0.39 0.07 0.07

3 0.59 0.25 0.89 0.43 0.04 0.07

4 0.65 0.25 1 0.43 0.03 0.07

Quality(Q) Precision Recall

4.2 Property-based Entity Retrieval – System Description 79

From a technical perspective, ProSWIP is a component implemented in Scala43,

which maps variable names to properties from the BTC data set. While classical

relational databases are not suitable for querying on RDF data, graph databases like

Neo4j44 have limited performance for our approach. In comparison, Lucene45 has

proven much faster in both the time needed for initially loading the data (building

the index) as well as in terms of querying. With an off-the-shelf commodity com-

puter with Intel I5-3550 quad-core CPU with 3.3 GHz. 32 GB RAM and 8.5 ms

access hard drive, the index creation for the complete BTC data set took about 39

hours (only one core was used). The resulting index was about 1T in size including

data. One simple entity search takes about 16 seconds. But the complete process of

property-based data access may take up to hours as multiple queries, entity and

property retrievals are being performed. It was possible to speed up the process by

introducing caching mechanisms, for instance for the property synonymy dictionar-

ies. Computing the quality, principal components, latent types and information gain

for all properties on large data samples takes under 2 seconds. Nonetheless, we

believe that in order to realize all operations in real-time a Lucene-based distributed
index leveraging Hadoop like for instance Elastic Search46 is necessary.

4.2.5. State-of-the-art in Property-based Entity Retrieval

Property-based entity selection has recently been discussed in [111, 112] in the con-

text of programming the Semantic Web. Challenges and open questions concerning

a property based approach are discussed in these papers. Sharing their view, we

inspect the practical feasibility of such an approach and address one of the main

challenges: The data quality problem.

Property-based data access has been an important research topic especially for

programming purposes. For instance, property-based interfaces have been studied

for object oriented languages [46] or extensible record systems for different lan-
guage settings [18, 68]. But additional challenges like discovering, comprehending

and extending property sets to match the intended use arise in the context of re-

trieving entities from Web data.

From a broader perspective, systems like Tipalo [41] performing automatic typing

for DBpedia entities are also relevant to our approach. Tipalo extracts types for

entities based on their corresponding Wikipedia pages. But there are several entities

in the LOD cloud having no article on Wikipedia that would hence remain untyped

43 http://www.scala-lang.org/

44 http://www.neo4j.org/

45 http://www.lucene.apache.org/

46 http://www.elasticsearch.org/

80 Property-based Entity Search

(there are about 14,199 diseases according to the International Statistical Classifica-

tion of Diseases47 most of them documented through PubMed but only about 3,000

of them featuring an actual article on Wikipedia). High precision knowledge bases

like YAGO [116] relying on the Wikipedia category system and Infoboxes suffer

from the same problem. In contrast, we build on structural similarity independent

of all-encompassing information sources to find latent, contextually relevant types.

4.3. Conclusions

In this chapter we presented an in-depth analysis on the topic of property-based entity

search. The user expresses his/her information needs through the intension, respec-

tively the set of properties prototypically defining the kind of entity the user is

searching for, and the system retrieves all entities having the given properties. While

not as simple as querying by entity type, property-based entity search has the ad-

vantage that properties carry more information than types do. If proper types are

not provided or cannot be extracted than properties may be an interesting option.

But the cognitive load put on the user is higher, and as we have seen on the example

of Web data annotations, users are not keen on providing too much properties.

Therefore, such an entity retrieval system has to be able to work with a small subset

of properties defining the intended entity type to be accepted by users.

Retrieving entities based on a small subset of properties and not on a full blueprint

of the entity type is challenging. Our experiments show that all kinds of entities can

easily make their way into the result set. To make matters worse, the user doesn’t

even have a clue of the bad quality of the entity selection, and simple property-based

entity retrieval systems can’t detect such problems since type information is missing

or it is not reliable.

Motivated by positive examples in the field of programming, were duck typing48

has already been successfully applied, we believe that property-based data access

represents a cornerstone in retrieving entities from the Web. The key to its success

is extending the property-based type definition with well-chosen properties that lead

to high quality entities, while keeping the user informed on the quality of the se-

lection. For this purpose we propose ProSWIP a system that builds on user feedback

in order to ensure that it captures correctly the user’s intentions. ProSWIP asks the

user if some property is, or is not relevant regarding the intended entity type and

extends the property set for the entity type definition in this way. However, entities

have hundreds of properties. Asking more than a handful of questions is not feasible.

ProSWIP cleverly solves this problem with the help of information theory concepts

47 http://www.who.int/classifications/icd/en/

48 A style of typing in which an object's methods and properties determine the valid semantics and not – the

naming is attributed to James Whitcomb Riley who coined the duck test: “When I see a bird that walks like

a duck and swims like a duck and quacks like a duck, I call that bird a duck.”

4.3 Conclusions 81

choosing to ask user feedback on but a few properties showing the highest infor-

mation gain. Our experiments show that within a maximum of four iterations the

system achieves very good quality. With an entity homogeneity-based quality metric

the level of quality for the selected data can also be measured. Being highly corre-

lated to precision, the quality measure we introduced provides for transparency.

With additional feedback on chosen properties, precision easily reaches values

above 0.9, confirming the success of this approach.

For the time being, all entities not showing a certain property that has been in-

cluded in the entity type definition are not included in the result set. Corroborated

with the sparse nature of data extracted from the Web, this severely affects recall.

But even an entity doesn’t possess all properties, defining the entity type, it can still

be relevant if it possess at least those properties being typical for entities of the

intended kind. Leveraging high quality property-based definitions, together with the

concept of attribute typicality (introduced in Section 6.3.1) the recall problem can

be tackled: we plan to use properties that have been found suitable to extend the

concept definition, not as filters, but as features for entity ranking on structural sim-
ilarity. Applied only to properties not being typical for the intended entity type, this

condition relaxation should increase the robustness against missing values and have

a positive effect on recall.

Another way of searching for entities is through instance-based search. Instance-

based search is also known under the name of query by example and it has primarily

been used in multimedia information retrieval systems. Systems like Shazam49 or bet-

ter yet Midomi50 like systems, stand as a proof of their success. In the following

chapter we analyze different possibilities for supporting this kind of queries for entity

search.

49 http://www.shazam.com/ is a mobile app that recognizes music being played around the user starting even

from a few seconds of noisy piece of sound

50 http://www.midomi.com/ is a system for audio query by humming. The user can hum or whistle a song and

midomi finds the respective song in a large library of music pieces

83

Instance-based Entity Search

When searching for entities, users may think of some examples best representing

the entity types that they search for. For instance, when searching for ‘sports cars’,

some users may already visualize a red Ferrari or an orange Lamborghini. One can

exploit such automatic associations between entity types and representative entities

to empower yet another type of entity search: instance-based entity search. For this

type of search, users provide one or more example of entities and the retrieval

system returns entities being similar to the ones given by the users.

But there are two major concerns with this type of queries: first it is very im-

portant that the examples are well chosen. To pick up on the example of American

presidents, with “Ronald Reagan” as a query entity and “Clint Eastwood” as addi-
tional example, the user will be referring to American actors rather than American

presidents. However, the user might also have more restricted entity types in mind

like Western actors, actors from California, American actors with political ambi-

tions, and so on. The more examples, the better a query can be disambiguated,

however increasing query complexity. This brings us to the second main concern

which is, how exactly should the query look like? How many examples should it

contain? Obviously, there is a tradeoff between better disambiguation strength (the

more examples the better the disambiguation) and the cognitive load put on the

user (it’s not realistic to expect that users will be able or willing to provide more

than a handful of examples).

Learning from the experience of state-of-the-art entity search tasks presented in

more detail in Section 5.1, in Section 5.2 we discuss the problem of query formula-

tion and propose a satisfying solution requiring low effort from the user. Finally, in

Section 5.3 we introduce our system for instance-based entity search along with the

underlying theoretical foundations and corresponding evaluation. But before going

into any more detail, in the following section we give an overview of the state-of-

the-art in example-driven entity search.

5.1. State-of-the-art in Instance-based Entity Search

In contrast to all other entity-centric query types, instance-based entity search has

been extensively researched and it is today one of the core tasks of information
retrieval. Acknowledging its importance, the Text Retrieval Conference51 (TREC),

51 http://trec.nist.gov/tracks.html

84 Instance-based Entity Search

an on-going series of workshops focusing on important information retrieval chal-

lenges (tracks), introduced an entity track starting 2009. The aim of the entity track

is to encourage research on entity-centric search on Web data. It proposed a stand-

ard set of queries and corresponding results extracted from ClueWeb09 and later

the Sindice-2011 corpora [25] to make the system results comparable to one an-

other.

When the entity track was first introduced, the entity search task was defined as

follows: “Given an input entity, by its name and homepage, the type of the target

entity, as well as the nature of their relation, described in free text, find related

entities that are of target type, standing in the required relation to the input entity”.

This task is known today as Related Entity Finding (REF). Some example of REF

queries from TREC 2011 are presented in Fig. 23. As observed in these examples,

entity URLs representing the entity homepages are extracted from the ClueWeb09

corpus. To offer better entity description, in REF-LOD (related entity finding on

linked data) the entity and homepage are provided as URI from the LOD and refer-

enced from the Sindice-2011 corpus.

Many approaches have been proposed as a solution to REF. Systems like TongKey

[94], PRIS [126], FDWIM [34], and many others, stand as a proof of the effort in-

vested in supporting this kind of queries. However, the quality of the results was

poor. Out of 14 systems submitted until 2011 to the REF challenge, the best achieve

a disappointing mean normalized discounted cumulative gain (mean nDCG) of under

0.4. An overview of the results achieved by these systems is presented in Fig. 24.

Analyzing the problem in more detail, on a query basis, some queries have been

supported much better than others (see Fig. 25). For instance, query 36, focused on

searching for companies that build parts for Ford cars has shown the worst results

52 http://trec.nist.gov/data/entity/11/11.topics-2.txt

Fig. 23. Example of REF queries from TREC 201152.

5.1 State-of-the-art in Instance-based Entity Search 85

while query 51 searching for national institute of health organizations was supported

better by all systems. It seems that the <narrative> section describing some kind of

an association relation between the query entity and the result has a big influence

on the quality of the result. If it is complex and has to be reasoned out of data, like

in the case of query 36 then the results are poor. However, if the required entities

are already linked to the query entity with the given relation on some page on the

Web, like in the case of query 5153, the results are much better.

53 http://en.wikipedia.org/wiki/National_Institutes_of_Health#Institutes_and_Centers

54 http://krisztianbalog.com/files/talks/smer2011-ref.pdf

Fig. 24. Mean nDCG of 14 REF systems on TREC REF queries54. Results per system. – Ba-

log et al. [6].

Fig. 25. Mean nDCG of 14 REF systems on TREC REF queries54. Results per query – Ba-

log et al. [6].

86 Instance-based Entity Search

The entity relation given in the <narrative> tag is complex and difficult to consider

for entity selection. To provide for more information, a pilot task called Entity List

Completion (ELC) was introduced in 2010 for the entity track of TREC. In addition

to the information provided in REF queries, ELC queries comprise examples of tar-

get entities. The basic idea is that the positive examples of result entities be of some

help in mining the user intentions if the narrative part of the query is too complex.

Furthermore, besides the broad entity type of the target entities, a more specific

type, usually from the DBPedia Ontology is also provided to narrow down the result

list. An example of an ELC query from TREC 2011, comprising besides the query

entity also seven exemplified target entities, is presented in Fig. 26. With this addi-

tional information, systems extended to support ELC queries like PRIS [132], or LIA-

iSmart [17] already show better results with an average precision at 10 retrieved

entities (further denoted as precision@10) of about 0.7.

In conclusion, queries formulated like in the case of ELC, comprising many more

entities and having a specific target entity type, allow for results of better quality

than REF. However, looking back at our problem of supporting entity centric search
by means of instances, our experience in developing systems building on user input

and user feedback ([56, 59]) shows that it is improbable that users provide such

elaborated queries. With this in mind, our task is more similar to REF. But without

55 http://trec.nist.gov/data/entity/11/11.elc.topics.txt

Fig. 26. Example of ELC queries from TREC 201155.

5.2 The Instance-based Entity Query 87

examples of the expected entities, systems performing REF seem to have issues in

fully understanding the requirements.

However, REF is more general than what we intend with our instance-based entity

search system. With REF, one can freely express various constraints that are difficult

to understand without further support. In our case, we are interested in finding

entities of the target type, showing a high similarity towards the provided entity (the

user given instance). In this respect, we consider that instance-based entity search,

is a simplified REF task. Is this enough to provide for good quality results? Learning

from the experience of both REF and ELC, in the next section we provide a detailed

description of an instance-based entity search query that is both user friendly and

effective in transmitting the user intentions.

5.2. The Instance-based Entity Query

The task in instance-based entity search is to find entities that are similar to a given

example. With this task in mind, there are few important things to be learned from

REF and ELC:

 Both REF and ELC are built to search for entities that are in a given relation

to a given entity. Even if complex, in the case of ELC, this relation is made

accessible with the help of positive examples of entities having that relation

towards the query entity. For our task, we are interested in just one relation:

entities that are highly similar to the query entity. If for instance, the user

were to search for sports cars, with ‘Ferrari 599‘ as an example, one would

expect other Ferrari, Lamborghini, Aston Martin, or Maserati models to be

returned rather than the Volkswagen Golf or the Ford Mondeo. In conse-

quence, there is no need for a <narrative> tag or any other specification of
the relation between the query entity and the target entity, as this is a con-

stant component of the query.

 Both REF and ELC were meant to be used by advanced users with deeper

knowledge of the Semantic Web or by information retrieval systems to im-

prove search results. But neither of the two was intended for the large pro-

portion of normal Web users. As such, the required information is not really

user friendly: every piece of information that one has to provide in order for

entity search to work, increases the cognitive pressure on the user. Our goal

is to keep this load as low as possible. For this reason, we aim at a system

that is able to work even with queries comprising just one entity. As learned

from ELC, examples of target entities help to better understand the user

intentions. Using a frequentist approach, systems like PRIS performing ELC,

use these positive examples to derive a bag of words like vocabulary that is

representative for these positive examples. Using this vocabulary as a model,

such systems search for other entities using more or less the same vocabu-

lary. At its core, this approach extracts the essence of the target entities and

builds a prototypical representation. We argue that, especially for our task

88 Instance-based Entity Search

of instance-based entity search, one does not require multiple examples of

entities. Instead, we believe that one well-chosen example, which people usu-

ally associate with the intended entity type, is enough for a system to retrieve

suitable entities.

 Both REF and ELC require that the user provides a target entity type. The
entity type is also beneficial for disambiguation purposes. Can we spare the

user from providing the entity type? According to our experiments it seems

that without the entity type, it is difficult to disambiguate the user intentions.

Even providing more than one entity as an example is less beneficial than

providing an entity and the type. This problem will be discussed in more

detail in the experimental section.

Picking up on the example of query 36 (presented in Fig. 25) from the REF track,

which is not well supported by entity search systems, adapted to our task of in-

stance-based entity search, the query in natural language would be to search for

‘organizations like the Ford Motor Company’. The instance is ‘Ford Motor Com-

pany’ and the target entity kind is ‘Organization’. The user query becomes in this

case ‘Ford Motor Company: Organization’.

The instance-based entity search query has the pattern ‘Instance: Entity Type’ and

no further relation, narrative, or target entity examples are required. The relation

is always the same (similar to), and since the instance is typical for the entity type,

no other examples should be necessary. But if the entity type is provided, why also

demand an entity? One could just retrieve all entities of the entity type given in the

query like presented in Chapter 3. Indeed entity types are very useful in organizing

entities. Actually, all information in Wikipedia, whose articles describe entities, is

organized based on a hierarchical category system56 built on entity types. This way,

articles describing entities of the same type belong to the same category, bearing

the entity type name. Manually inspecting articles on Wikipedia having the same en-

tity category it can be observed that for entities of the same type, the structure of

Wikipedia articles is often very similar with nearly identical first-level headings. En-

couraged by this observation we analyzed a larger number of entities. For instance,

starting from the list of 3,000 diseases featuring an article on Wikipedia we extracted

the headings of all articles (purely structural headings of Wikipedia like “References”

and “External Links” were pruned). Indeed, even over large samples of entities, a

common structure can be extracted (see Fig. 27). A similar result holds in the case
of American presidents, yet with lower percentages. Both entity types form homo-

geneous groups. However, this is not always the case: the same experiment per-

formed on all companies from the S&P 500 list shows that, with the exception of

only two headings (Products and Acquisitions) there is no common article structure

for this category. Going a step further and inspecting the article headings and topics

56 http://en.wikipedia.org/wiki/Wikipedia:Categorization

5.2 The Instance-based Entity Query 89

for companies from the same business field, the structure becomes more homoge-

neous. For instance, articles for automotive companies often cover topics like ‘Alli-

ances’ or ‘Motorsport’, in contrast to articles for pharmaceutical companies, where

topics like ‘Clinical Trials’ and ‘Litigation’ are more common.

In consequence, entity types, and especially superordinate or basic entity types

which are more general, may group heterogeneous entities together. Providing only

the entity type, e.g., ‘Organization’ will return all kinds of companies and not only

‘Ford Motor Company’ and alike. In this case, in order to find a sweet spot between

the more general entity type, and the user information needs, an entity example is

required. Similar to an anchor, the entity fixates the focus of the user needs even

within heterogeneous entity types. One could argue that tailored, subordinate entity

types, like ‘Car making companies’ produce better results. Unfortunately, the prin-

ciple of economy and informativeness trade off introduced by Loyd K. Komatsu, dis-

cussed in Chapter 3, strikes. The more specific the types the less chance that entities

are categorized labeled or associated with them. In consequence less entities can be

extracted from Web data. While systems like presented in Section 3.1, building on

entity mining, have proven quite successful for subordinate entity types, it’s difficult

to know beforehand what kind of entity type the user will provide. We believe that

in this respect, an example entity is valuable for fixating the user intention while

allowing the system to be more robust and tolerant towards user input. Considering

all this, in this chapter we inspect the value of an entity example plus entity type, for

dealing also with more general entity types referring heterogeneous entities.

Of course the success of this approach is influenced by the choice of the query

entity. While there is room for flexibility (e.g. providing ‘Apple: Fruit’ or ‘Pear: Fruit’

wouldn’t make much difference), it’s difficult to systematically support such queries

if the entities provided by the user are but poor examples of the intended entity

Fig. 27. Wikipedia article structure – percentage of entities (y-axis) belonging to the same

category and sharing a certain heading (x-axis, values less than 10% are omitted).

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Diseases US Presidents Large Companies

90 Instance-based Entity Search

type (e.g. ‘Olive: Fruit’ or ‘Tomato: Fruit’). Therefore, avoiding outliers, or better

yet, aiming for entities that are typical for the entity type is in our opinion the basic

requirement for instance-based entity search to work. Fortunately, experiments

concerning typicality from the field of cognitive psychology have shown that people

have no difficulty in remembering examples of typical entities if the entity type is

known to them ([105]), so this requirement should not pose any difficulty to users.

With the query given as presented in this section, we are now ready to proceed

to describing our instance-based entity search system.

5.3. System Description

The task is to find entities similar to a user provided example, and the query pro-

vided by the user is of the form ‘Instance: Entity Type’. This is a simplification of the

more general REF task. Our claim is that with this simplified type of query, but with

a well-chosen entity as an input, being typical for the intended entity type, one can

obtain acceptable results similar to ELC systems and much better than achieved by

systems performing REF tasks, even with simple heuristics.

At the core of this claim lays the concept of typicality, which we will discuss in

more detail in the following subsection.

5.3.1. Theoretical Foundations

Since its formal introduction in [104], the psychological concept of typicality has

been widely researched and is now well established in cognitive psychology litera-

ture. It has been shown times and again that some instances of a semantic domain

are more suitable than other instances to represent that domain: For example Jimmy

Carter is a better example of an American president than William Henry Harrison.

Leading the quest for defining the psychological concept of typicality, Eleanor Rosch

showed empirically that the more similar an item was to all other items in a domain,

the more typical the item was for that domain. In fact, the experiments show that

typicality strongly correlates (Spearman rhos from 0.84 to 0.95 for six domains) with

family resemblance a philosophical idea made popular by Ludwig Wittgenstein in

[129]. For family resemblance Wittgenstein postulates that the way in which family

members resemble each other is not defined by a (finite set of) specific property(-

ies), but through a variety of properties that are shared by some, but not necessarily

all members of a family. Based on this insight, Wittgenstein defines a simple family-

member similarity measure based on property sharing:

 𝑆(𝑋1, 𝑋2) = |𝑋1 ∩ 𝑋2| (24)

where X1 and X2 are the property sets of two members of the same family. How-

ever, this simple measure of family resemblance assumes that a larger number of

common properties increase the perceived typicality, while larger numbers of dis-

tinct properties do not decrease it. But large numbers of distinctive properties for

a family member should definitely not lead to the member’s selection as a good

5.3 System Description 91

example. Therefore, the model proposed by Tversky in [122] suggests that typicality

increases with the number of shared properties, but to some degree is negatively

affected by the distinctive properties:

 𝑆(𝑋1, 𝑋2) =
|𝑋1 ∩ 𝑋2|

|𝑋1 ∩ 𝑋2| + 𝛼|𝑋1 − 𝑋2| + 𝛽|𝑋2 − 𝑋1|
 (25)

where α and β ≥ 0 are parameters regulating the negative influence of distinctive

properties. In particular, when measuring the similarity of a family member X2 to the

family prototype X1, a choice of α ≥ β poses the same or more weight to the prop-

erties of the prototype itself. For α = β = 1 this measure becomes the well-known

Jaccard coefficient. For α+β ≤ 1 more weight is given to shared features, while for

α+β > 1 diverse properties are emphasized, which is useful when dealing with more

heterogeneous families.

Using either model allows to determine the pairwise similarity between all family

members. The typicality score for each member is obtained by summing up its sim-

ilarity values to all other members but this is not the focus here. The goal is to

identify those entities that are similar to the entity provided in the query given that

the query entity is typical for the intended entity type. Relating to the concept of

family resemblance coined by Wittgenstein, the goal is to find the family of the entity

provided as a query. To do this, we rely on Tversky’s similarity measure (eq. 25) to

find those k-nearest neighbors to the query entity. These entities not only have the

same entity type as the query entity, but they also share similar structure.

The value of θ has to be established dynamically, based on the start entity and the
entities falling into the same category. For this purpose, we employ automatic

thresholding methods, in particular the ISODATA algorithm [5], a 1-dimensional

form of the k-means clustering algorithm. Applied to the entities falling into the

same category as the query, this method identifies the similarity threshold that splits

the entities in two groups: one comprising homogeneous entities with high similarity

to the query entity, which is the entity set that we want to return to the user, and

one containing all the less similar entities.

The instance-based entity search is now reduced to finding the family of a given
entity being representative for the intended entity type. With the task defined, in

Definition 9: Family. Let Q be an instance-based entity query, Q:=X: T(X), with X

the instance entity, and T the entity type. Let C be the set of entities of type T. The family

of X w.r.t. entity type T, denoted FX,T, is a subset of entities from C, with:

𝐹𝑋,𝑇 = {𝑌|𝑌 ∈ 𝐶 ⋀ 𝑆(𝑋, 𝑌) > 𝜃}

where 𝑺(𝑿, 𝒀) represents the similarity between entities X and Y (see eq. 25) and θ is
a family specific threshold.

92 Instance-based Entity Search

the following subsection we proceed to describing the entity retrieval system in

detail.

5.3.2. System Architecture

The main task to be handled by the system is the computation of the family set

according to the heuristics described in Definition 9. But from a technical stance,

the main challenge lies in preparing the available data such that the results are satis-

factory. As shown in [20] on the example of ELC tasks, approaches relying on both

structured and unstructured data achieve results that are far superior to using only

structured data for entity search. Our evaluation on entity type queries with both

structured and unstructured data presented in Section 3.1.3, supports this observa-

tion. Building on state-of-the-art information extraction, for the prototype system

we invest considerable effort to extract information from unstructured data and

make it available in triple form, to ultimately ensure the best setting for instance-

based entity search. Fig. 28 shows an overview of the system. In brief, the system

works as follows:

 Information Extraction: Documents crawled from the Web, are pro-
cessed with Open Information Extraction (OpenIE) methods. This results in

a large number of facts represented as triples (subject, predicate, object).

The subject and the object usually contain entities, while predicates repre-

sent attributes of the entities, see [82]. Since the same entity can be ex-

pressed in multiple forms, an Entity Dictionary listing unique entities and their

possible string representations is kept and updated. Similarly, some attribute

may be expressed by synonymous predicates. Therefore, unique attributes

and possible representations are also stored as a Paraphrase Dictionary. All

Fig. 28. Instance-based entity search based on family resemblance. System architecture.

a

RDF
Triples

Web

a

Paraphrase
Dictionary
Extractor

Entity
Dictionary
Extractor

OpenIE

Query Engine

Q = E: T(E)

Members Selector

Type-based
Entity Extractor

Wikipedia
Categories

Information ExtractionResult: FE,T

5.3 System Description 93

extracted facts are cleaned based on these dictionaries. Then, they are

stored in a knowledge base (we use a Virtuoso RDF database in our proto-

type).

 Query Engine: The query engine allows users to provide a query entity
together with the corresponding entity type. Starting from the provided en-

tity type all known entities belonging to this type are extracted either directly

from Web documents or, like in the case of ELC tasks, from special diction-

aries like Wikipedia. In a filtering step only entities being most similar to the

query entity are selected to form the query’s family. This set of entities is

returned to the user.

The remainder of this section will provide a more detailed description of the ar-

chitecture’s main components.

Information Extraction

The information extraction (IE) module is responsible for processing documents

crawled from the Web and for providing a relatively clean triple collection with

disambiguated entities and predicates. Being query-independent, all these operations

are performed offline. While considerable efforts are being made in recent develop-

ments like the PATTY system [88], until now there is no readily available framework

that provides this complete functionality. In consequence, we employ state-of-the-

art OpenIE tools to solve this task. For our implementation we used ReVerb [37],

but basically any OpenIE tool that fulfills a basic level of quality requirements can be

used. The IE component needs two types of dictionaries to work properly: one for

uniquely identifying entities and one for uniquely identifying predicates.

Entity Dictionary: In Web documents (including news, blogs, tweets, etc.) the

same entity is often represented by various strings. Two problems have to be dis-

cussed here: synonymy, i.e. every entity can have more than just one string represen-

tation form, e.g. “Barack Obama”, “B. H. Obama”, etc. and ambiguity, i.e. every string

can refer to different entities e.g. “Clinton” may refer either to “Bill Clinton” or to

“Hillary Clinton”.

For synonymy, we assume that a mapping from different strings to the entity is

provided. For simplicity, our prototype is restricted to Wikipedia entities, and uses

the different string representation forms each entity has been labeled with in Wik-

ipedia. For better coverage, different thesauri like WordNet or MeSH can be used.

Solving the problem of ambiguity is known as Entity Disambiguation. In order to
solve this, we follow the rule of thumb that any ambiguous reference to some entity,

say “Clinton”, is preceded in the document by some clear entity reference like “Pres-

ident Clinton” or “Mrs. Clinton”. If no such clear-cut reference can be found, we

relax our assumption by following on the approach introduced in [82] assuming that

each entity string is uniquely addressing exactly one entity within a document. In this

way, on a document basis, we fill up the entity dictionary with string representations

and the corresponding unique entity identifiers. The entity dictionary is used to clean

94 Instance-based Entity Search

all facts extracted by OpenIE by replacing all entity names with unique, disambiguated

identifiers.

Paraphrase Dictionary: As in the case of entities, predicates are also ex-

pressed by means of synonym terms (president_of, won_elections_in,

was_elected_president_of, etc.). However, in the case of predicates an acceptable

mapping between a meaning and its representation forms has yet to be developed.

The field of paraphrase discovery is concerned with this problem [8]. State-of-the-

art methods rely on a class of metrics called distributional similarity metrics [75] built

on the assumption that similar objects appear in similar context (known as the dis-

tributional hypothesis [52]). In the context of paraphrase discovery, this hypothesis

is applied as: two predicates are paraphrases of each other, if they are similarly dis-

tributed over a set of pairs of entity-types. Furthermore, in contrast to the entity

ambiguity problem, a simplifying assumption is made: predicates can’t have multiple

meanings (single-sense assumption [130]). Following these insights and similar to

approaches like for example in [51], we applied hierarchical clustering to the predi-

cate/entity-type pairs distributions. As a similarity measure we have used the well-
known cosine metric with mean linkage as criteria. Still, despite experimenting with

different similarity thresholds, the success of the paraphrasing process is rather lim-

ited. While in manual inspection the clusters prove good precision, just about 7%

(for 0.9 similarity threshold) actually build clusters. Even lowering the similarity

threshold to 0.7 only increases this number to 16%. The rest of the predicates build

single node clusters although a substantial number of cases show obvious para-

phrases. This is consistent with results from the literature [130], where even with

enhanced information, the recall barely reaches 35%.

For each predicate, the corresponding cluster representative is determined as

the most frequent predicate of the respective cluster. Each predicate and cluster

representative is then inserted into the paraphrase dictionary. The system uses the

paraphrase dictionary to clean the triples regarding predicate synonymy.

Query Engine

The query engine module represents the online part of the system. It is responsible

for extracting the entity family. It accomplishes two tasks: it extracts entities of the

given type, and it restricts the extracted entities to a small collection of entities

having most similar structure to the query entity.

The first step in this direction is to identify all entities of the type given through

the query. To do this, a mapping between the entities and the corresponding entity

types is needed. Such mappings can be extracted directly from text with state-of-

the-art entity class extraction methods. Such approaches build on lexico-syntactic

patterns, like “…an X such as Y…” or “… all X, including Y…” expressing “is-a”

hierarchies between entity category X and entity Y. As the focus of this thesis is not

the technical process of extracting categories, in the same fashion as ELC systems,

we also rely on the entity-category mapping provided by Wikipedia to find other

5.3 System Description 95

entities in the RDF triples having the same category as the query entity. In the second

step, the system filters the entities according to Definition 9.

For better overview of how the quantification of attribute typicality is performed

we present the pseudo-code of our system’s algorithm in Algorithm 1.

Runtime Analysis

Like all other REF systems, for our tests, we also rely on ClueWeb09 as a data set.

ClueWeb09 contains 500 million Web documents. All documents were processed

offline by our IE module and billions of noisy triples were extracted. After filtering

out triples that are infrequent or have low confidence values according to ReVerb,

only approx. 15 million triples, with about 2.2 million entities and 0.6 million predi-

cates remain. On average, the IE module needs about 1 minute to process 8,000

sentences. On commodity hardware, the complete process for all documents took

about 11 days.

For the online part (Algorithm 1), our system requires even for broad entity types

with thousands of entities about 25 seconds per query. For instance, in the case

Algorithm 1: Algorithm for selecting the entity family.

Input: X - query entity, C - set of entities of type T, ϕ - attribute quality threshold, RDF triple

collection

Output: F - set of entities forming the family of X

1: F ← {𝑋}; x_attr ← ATTRIBUTES(X, RDF)
2: foreach Y in C do
3: y_attr ← ATTRIBUTES(Y, RDF)
4: sim←similarity(x_attr, y_attr) // Tversky’s similarity, eq. 25

// computed only once then stored in memory for later use (**)
5: S←S ∪ sim
6: end for
7: θ ← THRESHOLD(S)
8: foreach Y in C do

9: y_attr ← ATTRIBUTES(Y,RDF)
10: sim←similarity(x_attr, y_attr) // (**)
11: if sim ≥ θ then

12: F ← F ∪ Y
13: end if
14: end for
15: return F

16: function THRESHOLD(S) // the ISODATA method

17: θ ← avg(S); found ← false
18: while found = false do
19: low ← avgLower(S, θ) // average of values < θ
20: high← avgHigherEqual(S, θ) // average of values ≥ θ
21: θnew ← (low + high)/2
22: if abs(θnew - θ) < 𝜀 then

23: found ← true
24: end if
25: θ ← θnew
26: end while
27: return θ

96 Instance-based Entity Search

entities of type medical condition or disease, there are 3,513 entities in the disease

category on Wikipedia. For query “hypertension”, our system needs 22.472 seconds

to extract the family of the query entity. This covers the following parts: Extracting

all attributes for all entities (13.350 seconds – an average of 3.8 milliseconds per

entity); pairwise comparing the 1,329 found in the extracted statements (8.917 sec-

onds – an average of 6.7 milliseconds per comparison); computing the family thresh-

old (21 milliseconds). All other operations (assignments, logical, arithmetical opera-

tors) for the family computation require 184 milliseconds.

All tests have been performed single threaded. Since all major operations allow

for parallelization, we have reason to believe that parallelization on a cluster with a

few hundred CPU cores will reduce query time to less than a second.

5.3.3. Evaluation

REF and ELC are the standard tasks which build on example-driven entity search.

But systems performing REF achieve poor results with an average precision@10 of

about 0.4. Profiting from a more elaborate query, comprising numerous target entity

examples, ELC systems achieve acceptable results of about 0.7 average preci-

sion@10. But the query is more complex, and not acceptable for the casual Web

user. The problem for the poor results of REF systems is the complex relation ex-

pressed in natural language that such systems have to support. However, for in-

stance-based entity search supporting such relations is not needed. Actually there is

just one relation, that all target entities are highly similar to the entity given as ex-

ample. We believe that in this case, one can achieve results that are comparable with

ELC, without having to impose complex queries on the user. In Section 5.2 we

claimed that a query comprising a single entity and its type is enough. But is the

entity type necessary or is the entity by itself, or maybe together with a few exam-

ples already enough for a system to disambiguate according to the user intention? In
the following we present an experiment focused on establishing the minimalistic

form of the query. Afterwards, we proceed to evaluating the quality of the entities

extracted by means of family resemblance, for various entities.

Experimental Setup

Dataset: Presented in the previous section under runtime analysis, all our experi-

ments are conducted on the English part of the ClueWeb09, a standard corpus for

entity search tasks in TREC.

Queries. We experiment with three practical types of entities identified in [74] as

most popular entity-centric queries on the Web. Since named entities are of special

interest for most applications, we use two types of named entities in our tests: per-

sons (in the sense of American presidents) and organizations (in the sense of com-

panies). In total we experiment over 544 queries split as follows: 44 American pres-

idents and 500 companies.

5.3 System Description 97

Establishing Ground Truth: TREC provides data samples and gold standards for

evaluation purposes. These data samples are built for either REF or ELC, and they

comprise various complex relations between the provided entity and the target en-

tities. In most cases, the query entity and the target entity don’t even share the same

type. As a consequence the samples from TREC are not useful for our evaluation

and no other suitable evaluation dataset is available. We rely in this case on human

assessment.

Measures. For the disambiguation experiments no entity types are provided. Given

that in family resemblance entities are extracted based on structural similarity, we

compare the success of various query types based on the quality of the extracted

structure. For this purpose we measure the quality of the results in terms of preci-

sion@10 on attributes. Precision@10 is also the measure for the entity retrieval

experiments presented in the second part of the evaluation section, only this time

the quality of the entities found to be similar to the query entity is measured.

Disambiguation of Queries

As previously stated a query consists of two parts: an entity and the entity type for
disambiguation. This is because a single entity is not nearly enough to understand

what the user intended. Still, allowing users to give some examples might also help

disambiguation. The more examples, the better a query can be disambiguated, how-

ever increasing query complexity. On the other hand, following on the example of

REF and ELC systems, a user provided entity type leads to easy and high quality

disambiguation. To establish which query form is better, we performed three ex-

periments:

a) Users provide an entity, without additional information.

b) Users provide five entities of a similar kind - most users are able to provide

three to five examples. The cognitive burden increases heavily beyond that.

c) Users provide an entity together with the entity type.

Evaluation Method: Since our approach relies on resemblance based on structure,

i.e. shared attributes, without an entity type, for experiments a) and b) there is no

entity set to filter the family from. A possible approach would be to consider all

kinds of entities to start with, but with millions of entities on the Web such an

approach is not really practical. Still, in order to evaluate the usefulness of the query,

we measure the quality of the entity structure being extracted starting from a single

entity. Drawing on the ELC literature favoring frequentist methods, we assume that

attributes frequently appearing together with either the query entity for experiment

a), with all entities provided as query for experiment b), and with all entities of the

entity type given in the query for experiment c) define a good structure for their

entity type. Relying on the infrastructure as provided by the information extraction

described in section 5.3.2 we thus implemented the frequency-based baseline ap-

proach.

98 Instance-based Entity Search

In Fig. 29 we present the top 10 attributes for our running example: American

presidents. For just one entity (Fig. 29.a), the frequency-based method’s precision

proves really poor. No disambiguation can be performed and thus, all kinds of at-

tributes are considered. Barack Obama (the blue line in Fig. 29.a) has proven to be

an unlucky choice for the frequency-based approach. Averaging the precision over

multiple American presidents shows an overview of the results (the magenta line in

Fig. 29.a). In the case of five entity examples for disambiguation, the quality of the

results is average at best (the red line in Fig. 29.b). Again, the reason is proper dis-

ambiguation. Finally when the category of American presidents is also provided (the

green line in Fig. 29.c), a single entity is enough for extracting high quality structure.

Hence a query consisting of some entity and a respective category leads to better

disambiguation, while requiring also less effort than a list of examples.

Family-based Entity Extraction

Through this chapter we argued that our approach based on family resemblance is

particularly useful for handling the more difficult queries with entity types grouping

together heterogeneous entities. Our experiment on the Wikipedia article content,

has shown that ‘organizations’ is such an entity type. In consequence, in this section,

we evaluate the quality of the retrieved entities on the example of the S&P 500 list

of companies and ClueWeb09 as a data source.

The query always has the same structure: ‘company name: Organization’. For each

query, the system compares the query entity with all other 499 companies from the

S&P list on structural similarity to ultimately select the family of entities highly similar

to the query entity. For companies like “Toyota Motor Corporation”, “Renault

S.A.”, or “Volkswagen A.G.”, which are typical car makers, our systems builds fami-

lies with 17 to 24 entities, clearly focusing on car companies (30% - 50% of the

selected family members are car makers). For queries like “Apple Inc.”, “Google

 a) b) and c)

Fig. 29. Disambiguation of queries: query comprising a single entity - (a) on the left hand

side, five entities - (b) on the right hand side or an entity and its entity type - (c) on the

right hand side.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10

1 Entity 1 Entity (Avg. on Multiple Entities)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1 2 3 4 5 6 7 8 9 10

b) 5 Examples c) Entity + Type

5.3 System Description 99

Inc.” or “Microsoft” the results are similar, with 40% - 60% of IT companies in the

selected family. The same behavior has been observed also for companies from the

energy, finance, food, medical, and other sectors. This is consistent with our analysis

on Wikipedia, which showed that articles already feature homogeneous content for

companies from the same activity field. Driven by a single entity as an example, our

self-tuning approach focusing around the family of the query entity is quite successful

in finding a semantically meaningful sweet spot between the more general superor-

dinate or basic entity types, and the very specific types.

Our system is not directly comparable with systems performing REF or ELC be-

cause of the different focus in terms of the relation between the query and target

entities. But since these standard entity search tasks are the closest to solving the

problem of instance-based entity search, they may still be useful as reference. To

measure the results of our approach, we computed precision@10 for various enti-

ties by manually inspecting on the entities belonging to the same field as the query

entity. In Table 17 we present the results for entities from the field of automotive

and IT. With an average precision@10 of 0.72 and 0.8 for automotive and IT com-
panies respectively, the results are far superior to the average 0.4 achieved by

bitRFRun (the system achieving the best results for the REF TREC task - Fig. 24).

Even with more simple user friendly queries, our results are more similar to the 0.7

average precision@10 of Pris and LIAiSmart for the ELC TREC task.

Table 17: Precision@10 for organizations from the fields of automotive and IT.

Query Precision@10 Field

BMW: Organization 0.6

A
u
to

m
o
tive

Fiat: Organization 0.7

Toyota: Organization 0.7

Renault: Organization 0.8

Volkswagen: Organization 0.8

Apple: Organization 0.8

IT

Google: Organization 0.8

IBM: Organization 0.8

Microsoft: Organization 0.8

Yahoo: Organization 0.8

100 Instance-based Entity Search

It’s interesting to notice that even though we queried on different entities, the

corresponding company field was always correctly identified. A level of flexibility

regarding the query entity is provided. Throughout this chapter we argued that en-

tities showing high typicality towards the intended entity type are more helpful for

grounding the user information needs. Indeed, our experiment shows that for com-

panies like Honda, an automotive company better known for its motorcycle manu-

facturing (Honda has been the world's largest motorcycle manufacturer since 1959)

with a value of 0.1 achieved precision@10 is rather low. The family is a mix of com-

panies, and Harley Davidson seems to be more related to it than any other car

manufacturer out of the S&P 500 list of companies. As expected and according to

the concept of typicality introduced by Rosch et al, some atypical examples of enti-

ties can be misleading causing poor selection results.

5.4. Conclusions

In this chapter we presented an in-depth view of instance-based entity search. This

type of search is inspired by query by example, a type of search where users give

one or more examples and the retrieval system returns similar objects. Adapted to

entity search, users provide examples of target entities. Up to a handful of examples,

it should not be a problem for most users, since one already visualizes suitable en-

tities when performing the search anyway. Obviously the number of examples plays

an important role: requiring fewer examples, the system is more user friendly. But

fewer examples also capture less information about the intended entity type. This

ultimately affects the power to disambiguate the exact user intentions. In conse-

quence our prime concern regarding this query type is to find an instance-based

entity search query structure that is user friendly, but at the same time allows for

proper disambiguation.

The most basic and user friendly form of instance-based query comprises one

single entity. But our experiments on the example of American presidents show that

a query comprising one single entity leads to poor results. Furthermore, the choice

of the entity greatly influences the outcome in terms of disambiguation. Even for

queries comprising up to five example entities the results were only average. From

our previous work we have learned that only few users are able and willing to pro-

vide more than five examples. In consequence, an instance-based query comprising

examples only, is not sufficient.

Standard entity search tasks based on examples like REF and ELC have more elab-

orate queries. They comprise the example entity, the target entity type, the relation

between the source and the target entity and in the case of ELC also multiple ex-
amples of target entities. Such queries are obviously not adequate for end users. For

our task, from all these elements, the entity type seems to bring the most. Actually,

as we have seen in Chapter 3, the entity type by itself is already enough to perform

entity search. Our experiment on the Wikipedia entity types (which are the standard

types used by ELC systems) has shown that type search works well if the types

5.4 Conclusions 101

provided by the user are homogeneous, classifying together entities that are highly

similar. But the success of the retrieval process should not be tied to the entity type

being homogeneous or not. The system has to be flexible enough such that if the

entity type is heterogeneous, the result still matches the user intentions. Our ex-

periments show that even a single example of a target entity, is very valuable in this

respect. All things considered, we have reason to believe that the minimalistic form

of the instance-based entity search query should comprise only an example and the

corresponding entity type. This is much less than standard example-based entity

search tasks, and offers more flexibility than just entity type-based search.

But the example entity is only valuable if it captures at least to some extent the

user intentions. As a constraint, outliers have to be avoided. Assuming that the entity

example is well-chosen, we build on the concept of family resemblance and provide

a practical way for computing families of entities. These entities are of the type pro-

vided by the user, and together with the example entity form a homogeneous group.

Such an approach achieves impressive results being able to retrieve semantically

meaningful entities even for entity types, which have proven problematic for REF
and ELC (Fig. 25).

 All in all, our analysis on instance-based queries for entity search has shown that

up to five examples are not enough for proper disambiguation. With a query com-

prising an entity and corresponding entity type, and a simple similarity-based system

the results are already practical. Furthermore, the system is more robust, as it can

be more tolerant with the user, in terms of the chosen entity or entity type, as long

as the entity is not an outlier and the entity type still makes sense.

This chapter concludes our presentation of methods for searching for entities.

But lately, in the wake of systems like the Google Knowledge Graph, another kind

of entity-centric search, focused on providing concise entity summaries has received

a lot of attention. In the following chapter we pay closer attention also to this kind

of queries.

103

Entity Summarization

Most queries on Web data focus on searching for entities. We have covered this

kind of queries extensively in the last three chapters. But lately, entity summarization

which is another kind of entity-centric search, has strongly emerged: want to get

some idea about a celebrity, a company or even a disease? Google it! Indeed Google

evolved to accommodate this kind of queries. Today, the popular search engine fea-

tures new entity summarization functionality called the Knowledge Graph. Inte-

grated directly into the Web search page it summarizes knowledge of common in-

terest using some fixed schema to provide a good entity overview. After typing some

entity name into Google’s search field, an entity summary is provided on the right

hand side of the search results, if the Knowledge Graph contains the entity. A sample
entity summary for ‘Barack Obama’ is shown in Fig. 30.

According to Google’s official blog57, the Graph mainly relies on manually curated

data sources like Wikipedia Infoboxes, Google’s Freebase, and schema.org annota-

tions on the Web. But the Knowledge Graph has a major shortcoming: it doesn’t

cope with the number of new entities published daily on the Web. It only provides

information on well-known entities already having a Wikipedia article, Freebase rec-

ord or sufficient schema.org annotations. Our extensive evaluation on the example

of diseases shows that, with just 3,000 out of 14,199 diseases featuring a Wikipedia

article or Freebase entry, this is indeed rather limited. Considering its low ac-

ceptance of only about 1.5% of the websites, schema.org doesn’t contribute much

to extending the knowledge base either. This way, the majority of entities (in par-

ticular, new or more obscure entities) not present in the manually curated Web

resources used by Google’s Knowledge Graph, cannot benefit from data summari-

zation.

We argue that a data-driven approach, of building entity summaries drawing not

only from existing knowledge bases but also directly from unstructured data on the

Web, is more suitable for entity-centric search. Inspecting ClueWeb09, approxi-

mately 11,000 statements regarding Barack Obama can be extracted using entity

recognition and NLP techniques58. But the volume of information is huge and hardly

appropriate for giving an overview of an entity. With the information needs of the

majority of users in mind, when browsing through the large variety of attribute: value

57 http://www.googleblog.blogspot.de/2012/05/introducing-knowledge-graph-things-not.html

58 Like in previously presented analysis on ClueWeb09, the statements are structured as triples of the form

(subject, predicate, object). Predicates represent attributes and objects represent the corresponding values.

104 Entity Summarization

pairs for ‘Barack Obama’, we found that many of them, e.g., visit: Israel, love: Broc-

coli or spent_vacation_in: Hawaii, seem irrelevant for satisfying common infor-

mation needs. Can attributes like visit or love be recognized as irrelevant and pruned

to obtain a suitable, yet concise structure?

The first idea that comes to mind is a frequency-based solution. Approaches like
the count of witnesses as a measure for the importance of attributes have often

proven efficient [27, 82]. Together with the Knowledge Graph, they serve as base-

line for evaluating new approaches. But browsing through the triples for Barack

Obama, one can observe that some of the information is common to all American

presidents. For instance they all share features like their year of election, term in

office, being members of some party, etc. One could say they form a small world

built on characteristics that are typical for American presidents. Intuitively, a data-

driven entity summary for “Barack Obama” as an “American president” would com-

prise a few, good descriptive properties selected from these shared characteristics.

Taking a closer look at how the attributes extracted for Barack Obama are actu-

ally shared among the 44 American presidents (see Fig. 31) a typical power law dis-

tribution can be observed. While the attributes that are common and important for

this small world of presidents fall into the head of the distribution, the tail mostly

comprises trivia about individual presidents. That means, by simply chopping off the

tail, one might already identify common attributes of good quality. Is such a distribu-

tion valid for all types of entities, i.e. can the lessons learned from the small and

Fig. 30. Knowledge Graph – results for Barack Obama.

5.4 Conclusions 105

homogeneous set of 44 American presidents be generalized? And, how can this dis-

tribution efficiently be derived and pruned, i.e. can this also be performed for classes

with thousands of entities?

Motivated by these observations, in this chapter, we present ARES (AttRibute se-

lector for Entity Summaries) a system for extracting data-driven structure for entity

summarization. Regarding the user query, we first considered a query comprising

just the entity of interest. However, our experiments presented in Chapter 4 in

Section 5.3.3, show that disambiguation is best when besides the entity also the

entity type is provided. For this reason, and similar to SCAD [4], the query for the

task of entity summarization presented in this chapter comprises both the entity and

entity type, e.g., “Barack Obama: American President”. After all, under the bonnet,

the Knowledge Graph enriches the query entity with the Wikipedia category system

in a similar way as we do. For such queries, ARES delivers highly typical attributes

for the query entity in the context of the provided type. Finding the attribute values

to complete the entity summary becomes straight-forward once the structure has

been extracted [4, 134].

Exploiting facts extracted from the Web the main task of ARES is to derive a

common entity structure with high quality attributes, typical for entities of the same or

at least similar kind. In the previous chapter we built on the concept of typicality to

extract families comprising entities showing high similarity amongst one another.

Following on this idea, in this chapter we extend the concept of typicality and define

Fig. 31. Distribution of extracted attributes (x-axis) sorted by how many American presi-

dents (y-axis) share each attribute (with zoom-in on the first 100 attributes).

0

5

10

15

20

25

30

35

1 3 5 7 9

1
1

1
3

1
5

1
7

1
9

2
1

2
3

2
5

2
7

2
9

3
1

3
3

3
5

3
7

3
9

4
1

4
3

4
5

4
7

4
9

5
1

5
3

5
5

5
7

5
9

6
1

6
3

6
5

6
7

6
9

7
1

7
3

7
5

7
7

7
9

8
1

8
3

8
5

8
7

8
9

9
1

9
3

9
5

9
7

9
9

0

5

10

15

20

25

30

35

1

1
6

9

3
3

7

5
0

5

6
7

3

8
4

1

1
0

0
9

1
1

7
7

1
3

4
5

1
5

1
3

1
6

8
1

1
8

4
9

2
0

1
7

2
1

8
5

2
3

5
3

2
5

2
1

2
6

8
9

2
8

5
7

3
0

2
5

3
1

9
3

3
3

6
1

3
5

2
9

3
6

9
7

3
8

6
5

4
0

3
3

4
2

0
1

4
3

6
9

4
5

3
7

4
7

0
5

4
8

7
3

5
0

4
1

5
2

0
9

5
3

7
7

106 Entity Summarization

attribute typicality together with a novel and practical rule for actually calculating it.

We evaluate the quality of extracted attributes in terms of precision and recall de-

ploying the basic structure from matching Wikipedia articles as ground truth together

with human assessment.

But what should such a summary comprise and how long should it be? These

questions will be addressed in Section 6.1, followed by the discussion of related

work (Section 6.2) and the presentation of ARES, its theoretical foundation and the

evaluation of the entity summaries produced by ARES for various entities and entity

types (Section 6.3).

6.1. Reverse-Engineering Google’s Knowledge Graph

The Knowledge Graph is the main reference system when it comes to entity sum-

marization. Before going any further, we believe it is important to understand how

this system works and more important what data sources the Graph relies on. While

no scientific works have been published on this topic, according to Google the

Knowledge Graph mainly relies on the Wikipedia Infoboxes, Freebase and

schema.org annotations. As we have shown in Section 2.2 schema.org did not gain

traction. There were but few annotations, and most of them (more than 66%) re-

ferred to products, news articles, movies or music. Unfortunately, for entities not

related to e-shopping and especially for entities of broad interest like medical con-

ditions the number of annotations didn’t reach critical mass. But having at least some

annotations for each entity is crucial for the Knowledge Graph to provide high qual-

ity summaries: the reliability of a piece of information is questionable if found in just

few annotations from some unknown websites.

Schema.org is hardly used on the Web. In consequence it can’t really contribute

to the Knowledge Graph. It seems that the Knowledge Graph is mostly limited to

entities from Wikipedia and Freebase. Similar observations have been made by tech-

nology blogs59 that browsed through entities featuring a Knowledge Graph snippet.

But only entities that reach a certain level of interest make it into Wikipedia or

Freebase. This means that the Knowledge Graph is not able to scale with the thou-

sands of entities hitting the Web each day.

Wikipedia and Freebase largely overlap in terms of the covered entities and entity

structure. Freebase is mainly focused on providing structured information (same as

Wikipedia Infoboxes but more extensive). Wikipedia additionally provides better,

more accurate textual description, each entity being presented in a comprising arti-

cle. Infoboxes are fixed-format tables built on one or more hierarchical Infobox

templates. The purpose of Infoboxes is to consistently present a summary of some
unifying aspects that articles share. The idea is that articles of entities of a similar

kind share the same Infobox structure. In this way, similar entities share the same

59 http://www.mkbergman.com/1009/deconstructing-the-google-knowledge-graph

6.1 Reverse-Engineering Google’s Knowledge Graph 107

structure that should flow into the corresponding Knowledge Graph entity summar-

ies.

But the Infoboxes can be quite extensive, often having more than 30 attributes,

much more than the Knowledge Graph snippet should comprise. Choosing the

“right” attributes to build the entity summary is vital for the whole system. For

instance, the snippet for Barack Obama (Fig. 30) comprises 6 attributes part of the

“personal details” section from the Wikipedia Infobox (derived from the Infobox

Person template60). However, nothing really specific regarding his activity as a pres-

ident is mentioned, other than the first sentence being copied from the Wikipedia

article. The information chosen to display in the Knowledge Graph is quite general,

common to any person be it a politician, writer, painter, actor or any other person-

ality. In fact, the same snippet structure is provided for instance also for actor Kevin

Bacon. But relevant information like the year Obama took office or which political

party he belongs to, are not being included in the Graph’s summary despite being

present in the corresponding Infobox. It seems that for this entity, the Knowledge

Graph only presents the first few attributes of the broader Infobox template the
entity is associated with – in this case the Person Infobox template. This method

obviously misses out on important information that we believe should be included

in the summary. Instead finding a sweet-spot between too broad and too specific

information, like for instance a subset of the Office holder template61, seems more

sensible for choosing the attributes to include in the summary.

But is this only a problem of choosing the right attributes from Infoboxes, i.e. do

Infoboxes include the right attributes to build entity summaries? In Section 5.2 we

presented an experiment showing that the Wikipedia article richness is not always

correctly captured by the uniform article structure. The reason for this behavior lies

in the fact that the Wikipedia entity category system is not always as specific as

needed, grouping also articles of heterogeneous entities together. On the example

of companies from the S&P 500 list, our experiment showed that, with the exception

of only two headings (Products and Acquisitions) there is no common article struc-

ture for this category of entities. Going a step further and inspecting the article

headings and topics for companies from the same business field, the structure be-

comes more homogeneous. Despite articles for companies being highly heteroge-

neous, all their Infoboxes follow the same template (the Company Infobox tem-

plate62), summarizing information with 41 generic attributes. Does this general struc-

ture provide suitable selections of attributes that reflect article differences?

Focusing on the structure provided by the Infoboxes we conducted an experiment

to investigate two aspects: the number of expected attributes (i.e., how many an entity

60 http://en.wikipedia.org/wiki/Template:Infobox_person

61 http://en.wikipedia.org/wiki/Template:Infobox_officeholder

62 http://en.wikipedia.org/wiki/Template:Infobox_company

108 Entity Summarization

summary should feature) and the suitability of generic attributes encompassing all com-

panies to build knowledge snippet structures reflecting important aspects of the het-

erogeneous Wikipedia articles. We selected 50 companies, split into 10 groups, each

group corresponding to a major business field (e.g. Automotive, Energy, Financial,

IT, Retail, etc.). DBpedia invested considerable effort in manually handcrafting map-

pings for extracting relatively clean Infobox attributes. After manually eliminating

semantic duplicates (paraphrases) from the DBpedia Ontology63 for the Infoboxes,

the number of applicable attributes was reduced to 27. Each company and its cor-

responding attributes and values have then been presented to 25 human subjects.

Since the concept of “entity summarization” may not be familiar to everybody, the

task instruction was to select those few relevant properties they would like to see

in a short description of the company (Fig. 32). The experiment was conducted

through a crowdsourcing platform (CrowdFlower64) and targeted only workers from

the Amazon Mechanical Turk. Being more complex than classical crowdsourcing

tasks, this task required thorough understanding of the instructions. To minimize

the risk of receiving workers that have low English skills, we limited the workers’

country of origin to USA. In total we collected 1250 judgments. Companies were

presented in random order and attributes were shuffled for each task.

The number of selected attributes over all judgments on all companies (Fig. 33)

ranges from 1 to 18, with a clear focus between 3 and 7, an average of 5.3 and a

standard deviation of 3.12. This behavior is consistent for all companies: Averages

of the selected number of attributes per company range between 5.1 and 6.0. Also

in terms of attribute relevance there is large consensus: the same few typical attrib-

utes are considered relevant by most subjects for all companies. The histogram pre-

sented in Fig. 34 shows companies from the financial sector (histograms for all other

companies are all very similar). In fact, low standard deviation values for each attrib-

ute on all companies, show that subjects selected the same attributes over and over,

regardless of the company. As a consequence, histogram based similarity metrics

like the Minkowski distance [71] measured pairwise between all companies, can’t

63 http://wiki.dbpedia.org/Datasets#h18-11

64 http://www.crowdflower.com/

Fig. 32. Instructions on how to complete the task of selecting attributes suitable for entity

summaries.

6.1 Reverse-Engineering Google’s Knowledge Graph 109

really differentiate between the various business sectors or other semantically mean-

ingful criteria.

Of course, since the Infobox structure has to cover all kinds of companies, the

respective attributes were general. Thus, the resulting summaries are generic and

provide only marginal information when compared to the rich Wikipedia article
structure. But the fact that popular attributes selected from this structure are not

correlated to the different topics presented in the articles suggests more sophisti-

cated measures have to be taken when categories are heterogeneous.

Our experiments show a clear tendency regarding the number of attributes an

entity summary should feature and a surprisingly high consensus about what attrib-

utes are considered important. A good entity summary structure highlights between

3 and 7 attributes, and focuses on typical properties of the entity. However, seeing the

respective articles’ richness, considering just generic properties may poorly reflect

the real world. If the entity is part of a homogeneous category, properties are usually

typical for the entire category. But, if categories are heterogeneous, good structures

have to be derived in a data-driven fashion with properties typical for a more ho-

mogeneous semantic subgroup.

In summary, the schema-driven approach of Google’s Knowledge Graph presents

scalability issues; it has issues in choosing the right attributes to include in the entity

summary; and it sometimes relies on generic structure that misses out on defining

attributes that would reflect the article information richness.

Besides the famous Knowledge Graph, other systems have also been proposed to

extract highly informative attributes. In the following section we give an overview of

such approaches.

Fig. 33. Number of selected attributes (x-axis) by the number of judgments (y-axis) select-

ing this number of attributes.

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

110 Entity Summarization

Fig. 34. The number of subjects (y-axis) that have selected an attribute (x-axis) for a cer-

tain company (z-axis). For companies from the financial sector only.

0 2 4 6 8
10
12 14

16
18
20

Allianz
Am

erican International G
roup

AXA
Bank of Am

erica
Citigroup

6.2 Related Work 111

6.2. Related Work

Knowledge graphs have been used for entity summarization even before Google’s

system was proposed. For instance, in [117] the authors present a greedy algorithm

that adapts the idea of diversification from information retrieval [1] to extract entity

summaries from subject-predicate-object RDF triple stores. The authors argue that
a diversity unaware system is likely to present only certain aspects of an entity. For

instance in a knowledge base representing movie information, entity Tom_Cruise is

connected multiple times to movies by the acted_in predicate but just once to the

literal representing his birthday through the born_on_date predicate. In this case,

the many movies Tom Cruise played in would be more likely to be included in the

summary while other information (like personal data) that might also be interesting

to the user would be ignored. To incorporate the concept of diversification into the

summarization algorithm they rely on a knowledge graph that comprises edge

weights. The weights should represent the ‘‘importance’’ of the edges. These weights

are assumed to be provided as input together with the knowledge graph without

further clarification. We consider that the concept of attribute typicality introduced

in this work is suitable to be used as weights for the graph edges. Furthermore, we

separate between predicates and values. Each predicate is considered only once. In

consequence, acted_in has same chance of making it into the summary as

born_on_date has. The decision which attributes to include in the summary is made

entirely based on the attribute typicality, value which is influenced by the user given

entity type provided in the query.

Related to our work, in [76] the authors propose a probabilistic approach to

compute attribute typicality. But there is a fundamental difference: the authors ig-

nore the difference between entities and entity types. This way for any entity type,

say company, both IT company and Toyota are considered to be instances of com-

pany. This simplifying assumption doesn’t consider data heterogeneity: for entity

types comprising heterogeneous entities the extracted attributes only loosely rep-

resent the corresponding entities. In contrast, relying on the concept of family re-

semblance introduced in the previous chapter, our approach distinguishes between

heterogeneous and homogeneous groups of entities. It follows a data-driven ap-

proach with attributes typical for each sufficiently homogeneous semantic subgroup.

From a broader perspective, our work is related to the field of schema matching

and mapping. Such systems use various structural matching techniques as well as

data properties to overcome syntactic, structural or semantic heterogeneity. But

most approaches focus on data from relational databases or some already existing
structure [96]. Systems like WEBTABLES [24] or OCTOPUS [23] rely on semi-

structured data like html lists and tables on the Web to extract data structure. In

contrast, our system may use all extractions from text without any restrictions in-

creasing the number of supported entities. In [21] the authors propose OMNIVORE.

This systems aims to create a comprehensive Web database by combining the out-

put of several OpenIE tools over a Web crawl. For this purpose the authors propose

112 Entity Summarization

an all-purpose entity-relation database structuring all entities in the form of attribute,

value and type. On query time, a relational table comprising query ‘‘relevant attrib-

utes’’ is automatically generated. Unfortunately, there is no clear definition to what

‘‘relevant’’ actually means. It seems that the structure is given by the shared attrib-

utes. In such a case, a simple query involving a small number of entities poses real

difficulties. For instance, querying for Bill Clinton and Barack Obama leads to hun-

dreds of useless attributes. Recognizing the need to disambiguate, for the shared

attributes, we calculate their contribution to the structure, based on how similar

the entities sharing each attribute really are to the query.

In large corpora true and essential facts are repeated many times. The redundancy

of the Web has been exploited by many applications. We leverage it to build a fre-

quentist inference-based method which has repeatedly proven effective for extract-

ing information highly relevant to the query [27, 82]. We consider such an approach

is a perfect baseline to compare our system with.

6.3. Attribute Extraction for Entity Summarization-System Description

The task is to extract a common entity structure featuring high quality attributes,

which are typical for entities of the same type directly from Web data. The query

provided by the user is of the form ‘Instance: Entity Type’. Our analysis on the

Knowledge Graph shows that there are two main problems to be tackled: providing

specific structure even for entities whose corresponding entity types group together

heterogeneous entities and supporting even newer entities not having a record in

one of the source knowledge bases.

Our claim is that by building on the concept of families of entities (see Section

5.3.1 Definition 9 for more details) a subgroup of homogeneous entities can be se-

lected which in turn allows for extracting a high quality, specific structure, reflecting

the essence of the provided entity. Furthermore, following a data-driven approach,

of extracting facts directly from Web documents, any entity present on the Web

can be supported by such a system.

At the core of this claim lays the concept of attribute typicality, providing the

means to extract those attributes being highly typical for the entity in question. This

subject will be discussed in more detail in the following subsection.

6.3.1. Attribute Typicality

Following on the family resemblance theory introduced by Wittgenstein (presented

in Chapter 4, Section 5.3.1), properties that an entity shares with its family are more

typical for the entity than properties that are shared with other entities. Also in the

context of Web entities, similar entities can be considered to form families. For

homogeneous categories, entities are all more or less similar to each other and form

a family on the category level. For heterogeneous groups of entities, a family repre-

sents just one of the clusters of entities from the group. Applying the Tversky’s

6.3 Attribute Extraction for Entity Summarization-System Description 113

family resemblance model (Eq. 25) enables the selection of a most typical family mem-

ber or entity. However, our main goal is to find a common structure, i.e. a most

typical set of attributes for some entity and its respective entity type. Hence, when

talking about factual information extracted from the Web we have to restrict the

notion of family resemblance based on generic properties (like characteristics, capa-

bilities, etc.) to clear cut attributes as given by extracted predicates. Moreover, we

need to find out which of the attributes occurring in a family actually are typical with

respect to this family. Since the family definition relies on the measure of members’

similarity, we adapt Tversky’s measure as follows: Assume we can determine some

family F consisting of n entities 𝐸1, … , 𝐸𝑛 and a total of k distinct attributes given by

predicates 𝑝1, … , 𝑝𝑘 are observed for family F. Let Xi and Xj represent the respective

attribute sets for two members 𝐸𝑖 and 𝐸𝑗 , then:

 |𝑋𝑖 ∩ 𝑋𝑗| = 1𝑋𝑖∩𝑋𝑗
(𝑝1) + 1𝑋𝑖∩𝑋𝑗

(𝑝2) + ⋯ + 1𝑋𝑖∩𝑋𝑗
(𝑝𝑘) (26)

where 1𝑋(𝑝) = {
1 𝑖𝑓 𝑝 ∈ 𝑋
0 𝑖𝑓 𝑝 ∉ 𝑋

 is a simple indicator function.

Now we can rewrite Tversky’s shared similarity measure to make all attributes

explicit:

𝑆(𝑋𝑖, 𝑋𝑗) =

∑ 1𝑋𝑖∩𝑋𝑗
(𝑝𝑙)

𝑘
𝑙=1

|𝑋𝑖 ∩ 𝑋𝑗| + 𝛼|𝑋𝑖 − 𝑋𝑗| + 𝛽|𝑋𝑗 − 𝑋𝑖|

(27)

Where the same conditions as above apply to 𝛼 and 𝛽.

According to Tversky, each attribute shared by Xi and Xj contributes evenly to

the similarity score between Xi and Xj. This allows us to calculate the contribution

score of each attribute of any member of the family to the similarity of each pair of

members:

Let p be an attribute of a member from F. The contribution score of p to the simi-

larity of any two attribute sets Xi and Xj, denoted by 𝐶𝑋𝑖,𝑋𝑗
(𝑝), is:

𝐶𝑋𝑖,𝑋𝑗

(𝑝) =
1𝑋𝑖∩𝑋𝑗

(𝑝)

|𝑋𝑖 ∩ 𝑋𝑗| + 𝛼|𝑋𝑖 − 𝑋𝑗| + 𝛽|𝑋𝑗 − 𝑋𝑖|

(28)

where 𝛼 = 𝛽 ≥ 0.

The contribution of some attribute towards the similarity of two family members

in this way is dependent on the degree of similarity between the two members. This

is a fundamental difference to simply performing property set intersections (like in

Fig. 31), where all family members are assumed to be equally similar to each other.

In particular, this enables us to cope even with difficult cases where entity collections

are rather heterogeneous.

Building on the contribution score we are now ready to introduce the notion of

attribute typicality. Additionally further normalization could be applied to avoid small

values.

114 Entity Summarization

6.3.2. System Architecture

The main task to be handled by the system is the computation of the attribute typi-

cality according to Definition 10. But these values can only be computed after the

family of the query entity has been extracted. Obviously, for this reason there is a

large overlap between ARES and the system based on family resemblance presented

in the previous chapter. Actually, ARES represents an evolutionary development of

the instance-based entity search system, sharing most of its architecture (Fig. 35

shows an overview of ARES). Also here there are two main components: the Infor-

mation Extraction and Query Engine. The Information Extraction did not suffer any

changes and works as described in Section 5.3.2. However, for ARES the Query

Fig. 35. Attribute extraction for entity summarization based on attribute typicality. System

architecture.

a

RDF
Triples

Web

a

Paraphrase
Dictionary
Extractor

Entity
Dictionary
Extractor

OpenIE

Query Engine

Members
Selector

Type-based
Entity Extractor

Wikipedia
Categories

Entity-Type
Attribute Selector

Attribute
Typicality
Computer

Attr. Typicality
Component

Query Processing
Component

Information Extraction
Result:
Attr. List

Q’ = E &FE,T

Q = E: T(E)

Definition 10: Attribute Typicality. Let F be a set of n entities 𝐸1, … , 𝐸𝑛 of

similar kind represented by their respective attribute sets 𝑋1, … , 𝑋𝑛. Let U be the set of

all distinct attributes of all entities from F. The typicality 𝑇𝐹(𝑝) of an attribute/predicate

𝑝 ∈ 𝑈 w.r.t. F is the average contribution of p to the pairwise similarity of all entities in
F:

𝑇𝐹(𝑝) =
1

𝐶2
𝑛 ⋅ ∑ ∑ 𝐶𝑋𝑖,𝑋𝑗

(𝑝)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

(29)

where 𝐶𝑋𝑖,𝑋𝑗
(𝑝) is the contribution score of attribute p regarding the similarity between

𝑋𝑖 𝑎𝑛𝑑 𝑋𝑗 (see eq. 28) and 𝐶2
𝑛 represents the number of possible combinations of en-

tities from F.

6.3 Attribute Extraction for Entity Summarization-System Description 115

Engine has been adapted to extract the typical attributes. The new component

works as follows: starting from the provided entity type all known entities belonging

to this type are extracted either directly from Web documents or from special dic-

tionaries like Wikipedia. In a filtering step only entities being most similar to the

query entity are selected to form the query’s family. With the query rewritten from

“entity plus corresponding entity type” to “entity plus corresponding family”, we can

now proceed to extract the attributes that are central for the entity types’ structure.

Attribute Typicality:

Obviously, only attributes of members of the family should be considered for com-

puting attribute typicality. Once the family has been selected, all attributes occurring

together with entities of the family in extracted facts, are taken into account. Fol-

lowing the definition of attribute typicality, for each attribute, we calculate its contri-

bution to the family definition of the query entity. Depending on the user needs [27],

both Top-k pruning and thresholding can be applied to the typicality scores for se-

lecting the typical attributes.

For better overview of how the quantification of attribute typicality is performed
we present the pseudo-code of our system’s algorithm in Algorithm 2. Since the

attribute extraction has to be performed online, in the following we present an anal-

ysis of the systems’ efficiency.

Runtime Analysis

For the online part, ARES requires even for broad categories with thousands of

entities about 40 seconds per query. To continue with the example of diseases, given

as a reference for the entity family selection algorithm, for query “hypertension”,

ARES needs 42.977 seconds to extract typical attributes on commodity hardware.

Additionally to the 22.472 seconds needed for computing the entity family, the com-

putation of typicality values for all 2,711 attributes (lines 2 to 25 in Algorithm 2)

takes 20.505 seconds to compute (about 7.5 milliseconds per attribute). Also in this

case, all tests have been performed single threaded. Since all major operations allow

for parallelization, we have reason to believe that parallelization on a cluster with a

few hundred CPU cores will reduce query time to less than a second.

116 Entity Summarization

Algorithm 2: Extraction algorithm for typical attributes.

Input: X - query entity, C - set of entities of type T, ϕ - attribute quality threshold, RDF triple

collection

Output: S (structure) - set of typical attributes

1: F ← FAMILY(X, C)

2: S ← {}; U ← {}
3: foreach X in F do
4: x_attr ← ATTRIBUTES(X, RDF)

 // all attributes from triples where X is the subject or the object
 // stored in memory for heavy reuse (*)

5: U ← U ∪ x_attr
6: end for
7: foreach a in U do

8: a_typ ← 0
9: for Xi ∈ F do

10: for Xj ∈ F −{𝑋𝑘|1 ≤ 𝑘 ≤ 𝑖 ⋀ 𝑋𝑘 ∈ 𝐹} do

11: xi_ attr ← ATTRIBUTES(Xi, RDF) // (*)
12: xj_ attr ← ATTRIBUTES(Xj, RDF) // (*)
13: contr←0
14: if a ∈ xi_attr ⋀ a ∈ xj_ attr then

15: contr ←
1

|x𝑖_attr∩𝑥𝑗_attr|+𝛼|x𝑖_attr−𝑥𝑗_attr|+𝛽|𝑥𝑗_attr−x𝑖_attr |

// contribution of p to similarity between Xi and Xj (eq.5)
16: end if
17: a_typ ← a_typ + contr
18: end for
19: end for

20: a_typ ← 2 ∙
𝑎_𝑡𝑦𝑝

|𝐹|∙(|𝐹|−1)
 // the number of pairwise comparisons (𝐶2

|𝐹|
)

21: if a_typ > ϕ then

22: S ← S ∪ a
23: end if
24: end for
25: return S

26: function FAMILY(X, C) // this function represents the functionality of the system in Chapter 4

27: F ← {𝑋}; x_attr ← ATTRIBUTES(X, RDF)
28: foreach Y in C do

29: y_attr ← ATTRIBUTES(Y, RDF)
30: sim←similarity(x_attr, y_attr) // Tversky’s similarity, eq. 25

// computed only once then stored in memory for later use (**)
31: S←S ∪ sim
32: end for

33: θ ← THRESHOLD(S) // same function as in Algorithm 1
34: foreach Y in C do
35: y_attr ← ATTRIBUTES(Y,RDF)
36: sim←similarity(x_attr, y_attr) // (**)
37: if sim ≥ θ then

38: F ← F ∪ Y
39: end if
40: end for

41: return F

6.3 Attribute Extraction for Entity Summarization-System Description 117

6.3.3. Evaluation

The task is to derive a common entity structure comprising high quality attributes.

Our claim is that attributes being shared by similar entities are perfect for such a

structure. Furthermore, we claim that by using the concept of families of entities

introduced in the previous chapter, we can extract representative structure even in

cases where the entity type gathers together heterogeneous entities. To validate

our claim we assess the quality of the extracted structure with a set of experiments

on both homogeneous and heterogeneous entity types. But before proceeding to

the experimental subsection, in the following we introduce the basic setup.

Experimental Setup

Dataset: In previous experiments we observed that a large portion of the facts ex-

tracted from ClueWeb09 was of poor quality. To assess if there were influences

based on the quality of the data, for this evaluation we also experimented on Pub-

MedCentral. This corpus comprises about 250,000 biomedicine and life sciences re-

search papers. Like in the case of ClueWeb09, all documents are processed offline

by our IE module. We extracted about 23 million triples with 3 million entities and
1.2 million predicates. This is much more than the 15 million triples extracted from

the 500 million documents from ClueWeb09. Besides the fact that research papers

are usually larger than Web pages, the high quality of documents from PubMedCen-

tral may be the reason for the large number of facts extracted from this corpus.

Queries. Entity summarization is a follow up of the evaluation on instance-based

entity search. In consequence, these experiments focus on the same types of entities.

We experiment with persons in the sense of American presidents which have

proven to form a homogeneous group of entities and organizations in the sense of

companies building a heterogeneous group of entities. Besides named entities, we

also test our approach with other simple entities like medical conditions which ac-

cording to [74] make for an important portion of the Web entity search. In total we

experiment over 16 queries split as follows: 5 American presidents 6 companies and

5 well-known medical conditions.

Establishing Ground Truth. Diseases build a homogeneous group according to dis-

ease Wikipedia articles. In consequence, the structure for diseases is perfectly suit-

able to use as a ground truth. But exceptionally, the Wikipedia Infobox for diseases

is nothing but a collection of links to the National Library of Medicine - Medical

Subject Headings. Since the goal is to obtain data-driven structure, we consider the

structure provided by the Wikipedia articles. To be specific, the content headings

that were shared by the majority of diseases on Wikipedia were used. The quality

of these headings as attributes is confirmed by the fact that they were approved by

the standardization committee of schema.org to build the “MedicalCondition”

schema (http://schema.org/MedicalCondition). The complete list of attributes is: As-

sociated anatomy, Cause, Diagnosis, Epidemiology, Prognosis, Pathophysiology, Possible

treatment, Prevention, Risk factors, Signs or symptoms.

118 Entity Summarization

For the case of the American presidents the relatively small number of entities

(only 44) and the weaker homogeneity (shown in Fig. 27) is not as compelling as in

the case of disease. For companies, the Wikipedia Infobox is definitely too general

when compared to the article content. Unfortunately schema.org also doesn’t pro-

vide for a better alternative. In these cases we rely on human assessment to establish

ground truth. All attributes extracted (by both the attribute-typicality and the fre-

quency-based method) were mixed together with the Google Knowledge Graph

attributes and ordered alphabetically for each query. We presented the resulting

lists to subjects and provided the same instructions as in Section 6.1. We selected

relevant attributes based on the ‘majority rule’. All assessments proved substantial

agreement ([19]) showing Fleiss’ Kappa ([12]) agreement levels between 0.71 and

0.76.

Measures. Our goal is to extract a high quality structure with limited, yet precise

attributes for the entity summary. Therefore the success of all algorithms in our

experiments is measured in terms of precision (also in aggregated form as mean

average precision MAP). Given the small number of attributes included in an entity
summary, recall is less important than precision but still relevant for our task.

The frequency-based baseline algorithm. Drawing on the literature, for the baseline

we will assume that attributes frequently appearing together with either the query

entity or with entities of the same type as the query entity define a good structure

for their entity type. Relying on the same infrastructure as ARES we thus imple-

mented the frequency-based baseline approach (in the following called Frequency-

based Entity Summarization - short FES). Another reference system is of course

Google Knowledge Graph, the attributes from the knowledge snippet to be specific.

Experiments

In Fig. 36.a) we present the top 10 attributes for the example of American presi-

dents. The precision and recall values obtained by the systems are presented in Ta-

ble 18. Both ARES and FES return lists of attributes ranked by their relevance values.

In consequence the precision values in the table represent MAP values. For the

Knowledge Graph there is no information about the relevance of attributes. All of

them are considered to have the same relevance. An averaged precision value is

presented in this case. Recall is also presented as the average value over all entities

of a category. For the case of American presidents, ARES is with a MAP of 0.75

superior to the other systems. The Knowledge Graph focuses in this case on family

and education, elements considered irrelevant by the assessors. This severely affects

its recall. These precision and recall values were computed based on attributes pre-

sented by the Knowledge Graph. For ARES and FES the top10 attributes were con-

sidered.

While entity types are perfect for disambiguation, some may prove heterogene-

ous. Fortunately, our approach features a self-tuning resemblance measure able to

automatically refine categories: all queries are focused on a family of entities with

sufficiently homogeneous structure, while keeping the focus on the query entity. In

6.3 Attribute Extraction for Entity Summarization-System Description 119

the previous chapter we have seen that out of the S&P 500 list of companies, for

queries like “Toyota Motor Corporation”, “Renault S.A.”, or “Volkswagen A.G.”,

our systems builds families with 17 to 24 entities, clearly focusing on car companies

(30% - 50% of the selected family members are car makers). For queries like “Apple

Inc”, “Google Inc” or “Microsoft” the results are similar, with 40% - 60% of IT com-

panies in the selected family.

 a) b)

 c) d)

Fig. 36. Precision@k averaged over all query entities for American presidents (a), auto-

motive companies (b), IT companies (c) and diseases (d).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

ARES FES

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Table 18: Precision & recall by system and query category.

120 Entity Summarization

Indeed the self-tuning works well also for structure extraction. In contrast to the

results observed for generic attributes from Wikipedia Infoboxes (Section 6.1),

where Minkowski similarity metrics (Manhattan distance) showed no particular dif-

ference between companies in different fields, for the attributes extracted by our

system these differences are considerably more expressive. The average histogram

distance for the attribute selection generated by the crowd starting from the com-

pany Wikipedia Infobox between the car companies is of 69.8. The same distance

for the attributes selected by ARES for car companies is of 6.7. For IT companies

the respective average values are 56.4 for the selection from the Wikipedia Infobox

vs. 1.4 for the ARES selection. However, the average distance between different

sectors stays large also for ARES: 78.16 vs. 65.3 for the selection from the Wikipedia

Infoboxes and ARES respectively, for car vs. IT companies. This clearly shows that

ARES is able to extract attributes particular to homogeneous entities (small histo-

gram distances for similar companies) while keeping heterogeneous entities apart.

It’s interesting to notice that when presented with data-driven attributes, assessors

were able to pick attributes that differentiate between business sectors.

In terms of precision, our approach achieves 0.73 MAP for all company queries,

superior to both baselines. We present the results, averaged by sector, in Fig. 36.b)

and Fig. 36.c). For car makers, 8 attributes proved relevant according to the majority

of human assessors. There is quite some difference in the precision that the baseline

is able to achieve in the two sectors. Deeper inspection lead to the conclusion that

there seems to be more information about IT companies than about car makers,

probably because ClueWeb09 contains many blogs and forum posts. In fact most

information on automotive topics actually refers to the cars and not to the respec-

tive companies. Thus, it is understandable that a frequency based method shows

such poor results.

Motivated by these findings, we repeated the above experiments on PubMedCen-

tral with diseases as query entities. Unlike in the case of companies, here we can’t

recognize any particular (especially taxonomically motivated) patterns regarding the

members in our automatically derived families. Cardiovascular diseases are mixed

together with infectious diseases, skin conditions and forms of cancer, regardless of

the query entity. We evaluated both systems in terms of precision and recall, over

five well-known diseases and medical conditions (“cancer”, “diabetes mellitus”, “hep-

atitis”, “hypertension” and “tuberculosis”). The results, averaged over the five que-

ries, are presented in Fig. 36.d). Boosted by the high quality information, our method

achieves an impressive MAP of 0.87. The Knowledge Graph returns some of the

National Library of Medicine headings for each disease obtaining fair average preci-

sion of 0.52 over all entities. We would have expected that the frequency baseline

also performs better in face of the large amount of relevant and indeed very struc-

tured information. It seems that the broad coverage of various subjects with respect

to medicine and diseases leads to the frequency of attributes being spread rather

evenly without notable differences in frequency. Also in terms of recall (Table 18)

our method is consistently superior, showing its overall practical usefulness.

6.4 Conclusions 121

Taking these results into account, we consider that attribute typicality based on

the principle of family resemblance indeed is a highly promising solution for auto-

matically discovering high quality attributes for summarizing entities from the Web

6.4. Conclusions

In this chapter we presented an in-depth view of entity summarization. Currently,
Google’s Knowledge Graph represents the state of the art for this task. Relying on

curated knowledge bases, this particularly excludes all new and less widely known

entities. The alternative is not to rely on prearranged schemas, but to use a data-

driven approach. As our experiments show, even simple, frequency-based ap-

proaches already reach similar and often even better performance than the

Knowledge Graph in terms of quality. But for good user experience even more is

needed: especially in the case of heterogeneous collections of entities an intelligent

selection for extracting compact, yet high quality entity summaries is needed. There-

fore, tuning the data-driven schema selection for entities over the vast variety of

facts that can be extracted from the Web is a major contribution of the ARES ap-

proach presented in this chapter.

Since lessons learned from instance-based entity search show that by itself, an

entity is not enough for proper disambiguation, as an input ARES requires a query

comprising an entity and its type. Also regarding the produced entity summary, our

experiments show a clear tendency with respect to the number of attributes an

entity summary should feature: a good entity summary structure highlights between

3 and 7 attributes, and focuses on typical properties of the entity. If entities grouped

together by the provided entity type are homogeneous, properties are usually typical

for the entire group of entities. If they are heterogeneous, good structures have to

be derived in a data-driven fashion with properties typical for a more homogeneous

semantic subgroup.

ARES relies on the concept of family resemblance introduced by cognitive psy-

chology and intelligently blends the homogeneity/heterogeneity of entity families

with schema integration techniques in the light of all extracted facts. ARES is self-

tuning in the sense that after family selection, entities within families show high intra-

family similarity, while entities from heterogeneous categories show low inter-family

similarity. Given the current advances in OpenIE, that allow to work directly on text,

any entity being described somewhere on the Web, can thus be summarized appro-

priately. Our experiments on real-world entity classes representing different de-

grees of class homogeneity show that ARES is indeed superior to both, frequency-

based statistical approaches and the Knowledge Graph, in terms of precision and
recall. Moreover, also the run-time performance is already quite practical.

123

Conclusions and Future Work

The Web has evolved to an all-purpose source of information on any topic. Want

to know something about a medical condition, or a drug? Ask Doctor Google! With

over 50% of all Web search queries, most of Web queries focus on entity-centric

search. But while entity related information is abundant on the Web, search engines

are not yet prepared to support such queries. Actually, with the exception of

Google’s Knowledge Graph, search engines did not evolve much with respect to

entity search. Keyword-based entity search is possible but it falls on the users’ shoul-

ders to browse through the returned Web pages, to pick out relevant information

or to formulate new queries that will hopefully lead to a satisfying answer.

The Knowledge Graph is a first step towards providing for better user experience
for entity search. It performs entity summarization based on data from manually

curated knowledge bases. But this way, the majority of entities (in particular, new

or more obscure entities) not present in the manually curated Web resources used

by Google’s Knowledge Graph, cannot benefit from data summarization. Automati-

cally integrating information extracted from unstructured data into a Web-scale

knowledge base, the Knowledge Vault seems to be a promising solution in this re-

spect. However, besides entity summarization, there are three other entity related

queries, primarily focused on retrieving entities based on user input: searching for

entities that have certain properties, searching for entities that are similar to a given

entity, or searching for entities of a given type. Since the Knowledge Vault has just

been proposed, no detailed information about its use for entity search is provided,

and no running prototype is available, we can’t really tell how well it will accommo-

date such queries. But for the time being, considering both, the weak overall support

that search engines provide for entity related search, and the high demand for such

queries, we believe that developing capabilities for performing entity-centric search

on the Web represents a strategic advantage for any mainstream search engine.

The retrieval of entity-related data has always been among the core applications

of database systems. In this context, entity-centric search is trivial because the un-

derlying data is provided in structured form. Thinking along the same lines, the prob-

lems of entity-centric search would be solved if all data on the Web were available

in structured form, just like in a big database. Linked data is the first major initiative

for building a structured Web. The initiative encourages data providers to publish

their data online. To make their life easy, the effort of integrating the published data

into the existing data cloud is kept to a minimum: data providers have the flexibility

of choosing (or keeping) their own data structure. Interlinking the published data as

well as vocabulary reuse is desired and recommended, however, besides a few

124 Conclusions and Future Work

prominent examples like DBpedia or Freebase, most data sets available online are

rather isolated. With today’s LOD cloud interlinking and vocabulary heterogeneity,

providing a holistic view of an entity, spanning over multiple data stores is impossible.

Automatic instance matching and ontology alignment has often been proposed as a

solution to integrate the various data sets together. But as we have shown in this

thesis, the quality of the results obtained by such systems is far from being adequate.

Pushed by major search engine providers, schema.org followed a different ap-

proach: it offered a set of global schemata and encouraged Web page owners to

annotate their content with these schemata using rich snippets and better ranking

results as incentives. The schemata are well designed and have been developed with

the help of experts in the corresponding fields. This approach seems promising as it

solves the problems of schema mapping and matching which have proven problem-

atic in the case of LOD. But since entities are not uniquely identifiable there is still

a problem of entity reconciliation. However, the major problem of schema.org is its

low acceptance on the Web.

Both LOD and schema.org represent cornerstones in the evolution of the Web.
But given the problems encountered when trying to use them for entity-centric

search, we believe that this “one size fits all” of structuring the Web requires a long

evolution process until it can reliably serve the purpose of entity search. Instead, in

this thesis we have shown that data-driven approaches, tailored for the different

types of entity-centric queries already achieve quite practical results.

Borrowing from the field of cognitive psychology, the semiotic triangle now es-

tablished also in information theory, models entity types in terms of intension and

extension. Based on this, we identified three types of queries focused on retrieving

entities and one for entity summarization:

Entity type query. For the moment, the contribution of schema.org for entity

type based search is neglectable. Search on structured data on the Web is in our

opinion limited to one data store search only and to superordinate and basic entity

types. Because of the large number of possible subordinate entity types most of them

are usually not considered by the data structure. This has sever effects on the recall

and on the number of supported queries. Boosted by manual (crowd-sourced) or

semi-manual effort to align types and interlink entity instances, linked data will, some

day, play a major role in accessing entities from the Web. This can have a positive

impact on the recall. But subordinate entity types, will not be properly supported by

static vocabularies. Instead, we proposed a system that is able to dynamically mine

new, unknown types out of Web data. Combining query expansion with a self-su-

pervised vocabulary learning technique built on both structured and unstructured

data, our approach is able to achieve a good tradeoff between precision and recall.

An interesting approach we leave to future work would be to combine the

strength of linked data with the flexibility of query expansion. Such a hybrid system

would benefit from the high precision that isolated data sources can deliver, while

entity retrieval on query expansion on the Web could cater for better recall values

Chapter 7 Conclusions and Future Work 125

and support for ad-hoc types not known to the LOD vocabularies. But in order to

compile a list of resulting entities, duplicate detection is required, a problem that has

yet to be mastered.

Prototype-based query. Motivated by positive examples in the field of pro-

gramming, were duck typing has already been successfully applied, we proposed Pro-

SWIP, a property-based system for retrieving entities from the Web. ProSWIP

builds on user feedback in order to ensure that it captures correctly the user’s in-

tentions. To be specific, it asks the user if some property is, or is not relevant re-

garding the intended entity type, extending this way the property set for the entity

type definition. However, entities have hundreds of properties. The challenge is to

understand the user intentions with just a handful of questions. ProSWIP cleverly

solves this problem with the help of information theory concepts, asking for user

feedback on just a few properties showing the highest information gain. Our exper-

iments show that within a maximum of four iterations the system achieves perfect

quality.

For the time being, all entities not showing a certain property from the entity type
definition are not included in the result set. Corroborated with the sparse nature of

data extracted from the Web, this severely affects recall. This problem can be tack-

led in future work by using properties that have been found suitable to extend the

concept definition, not as filters, but as features for entity ranking on structural sim-

ilarity. Corroborated with the concept of attribute typicality introduced in this the-

sis, this relaxation should be applied only to properties not being typical for the

intended entity type. This should increase the robustness against missing values and

have a positive effect on recall.

Instance-based query. The most basic and user friendly form of instance-based

query comprises one single entity. But our experiments have shown that with such

a query it is hardly possible to capture the user intentions. Even for queries com-

prising up to five example entities the disambiguation was not satisfactory. Following

on the example of standard example driven entity search tasks like REF and ELC we

have proposed a minimalistic instance-based query comprising the example entity

and intended entity type that is both user friendly and allows for satisfactory disam-

biguation. But the example entity is only valuable if it captures at least to some extent

the user intentions. As a constraint, outliers have to be avoided. Assuming that the

entity example is well-chosen, we build on the concept of family resemblance and

provide a practical way for computing families of entities. These entities are of the

type provided by the user, and together with the example entity form a homogene-

ous group. Such an approach achieves impressive results, being able to retrieve se-

mantically meaningful entities even for entity types, which have proven problematic

for REF and ELC.

For the time being, our instance-based query system building on family resem-

blance focuses on high precision. This comes at the cost of recall. Especially for entity

types grouping together entities with a high degree of homogeneity, the ISODATA

126 Conclusions and Future Work

based thresholding method may be too selective. In this case more refined methods

involving user interaction may be more suitable for nailing the user intentions.

Entity summarization query. Google’s Knowledge Graph which is the state

of the art for this task, relies on curated knowledge bases, and this particularly ex-

cludes all new and less widely known entities. Our suggestion is not to rely on pre-

arranged schemas, but to use a data-driven approach. As our experiments show,

even simple, frequency-based approaches already reach similar and often even better

performance than the Knowledge Graph in terms of quality. But especially in the

case of heterogeneous collections of entities an intelligent selection for extracting

compact, yet high quality entity summaries is needed. Therefore, tuning the data-

driven schema selection for entities over the vast variety of facts that can be ex-

tracted from the Web is a major contribution of our approach. ARES intelligently

blends the homogeneity/heterogeneity of entity families with schema integration

techniques in the light of all extracted facts. ARES is self-tuning in the sense that

after family selection, entities within families show high intra-family similarity, while

entities from heterogeneous categories show low inter-family similarity. Given the
current advances in OpenIE, that allow to work directly on text, any entity being

described somewhere on the Web, can thus be summarized appropriately. Our ex-

periments on real-world entity classes representing different degrees of class homo-

geneity show that ARES is indeed superior to both, frequency-based statistical ap-

proaches and the Knowledge Graph, in terms of precision and recall.

For the moment, ARES extracts structure only. But following on the example of

systems like SCAD [4], for the future, values for the selected attributes can also be

extracted.

Our claim in this thesis is that by supporting these four query types, a system

enables holistic entity search. Representing the main building blocks of such a system,

the components that implement the functionality to support these query types, have

been discussed and evaluated individually. They rely entirely on Web data, follow a

data-driven approach, tailored for each query type and they obtain promising results

better than the corresponding baselines. But considering that some components

may require user feedback while others don’t, that three components retrieve enti-

ties while one retrieves entity summaries, there are still a few open questions re-

garding the user interface. This is especially important considering the integrated

result presentation. Entity snippets may for instance prove useful in this respect.

However, broad user studies focusing on assessing the user friendliness and clarity

of the user interface as well as the quality of the overall results are needed. We

leave these aspects as a subject for future work.

127

Appendix A

Appendix: Analysis on rdf:type URIs in BTC

Table 19: Top 30 most comprising URIs for the ‘book’ entity type from various data
stores in the BTC corpus.

URI Nr. %

<http://rdf.freebase.com/ns/book.book> 31,570 36.64

<http://rdf.freebase.com/ns/book.written_work> 25,896 30.05

<http://dbpedia.org/ontology/WrittenWork> 23,571 27.36

<http://schema.org/Book> 15,398 17.87

<http://dbpedia.org/ontology/Book> 15,397 17.87

<http://rdf.freebase.com/ns/fictional_universe.work_of_fiction> 10,304 11.96

<http://umbel.org/umbel/rc/Book_CW> 5,934 6.89

<http://rdf.freebase.com/ns/book.magazine> 3,160 3.67

<http://dbpedia.org/ontology/Magazine> 2,862 3.32

<http://rdf.freebase.com/ns/book.journal> 2,409 2.80

<http://rdf.freebase.com/ns/book.published_work> 2,357 2.74

<http://rdf.freebase.com/ns/book.newspaper> 2,342 2.72

<http://dbpedia.org/class/Book> 2,301 2.67

<http://data.kasabi.com/dataset/bricklink/schema/Book> 1,650 1.91

<http://swrc.ontoware.org/ontology#Book> 1,348 1.56

<http://umbel.org/umbel/rc/Magazine> 1,301 1.51

<http://rdf.freebase.com/ns/book.short_story> 1,259 1.46

<http://dbpedia.org/class/yago/AmericanNovels> 879 1.02

<http://dbpedia.org/class/yago/FilmsBasedOnNovels> 751 0.87

<http://dbpedia.org/class/yago/ScienceFictionNovels> 740 0.86

<http://rdf.freebase.com/ns/book.poem> 664 0.77

<http://dbpedia.org/ontology/Play> 474 0.55

<http://dbpedia.org/class/yago/MonthlyMagazines> 472 0.55

<http://dbpedia.org/class/yago/BritishNovels> 470 0.55

<http://dbpedia.org/class/yago/ShortStory106371999> 460 0.53

<http://dbpedia.org/class/yago/FantasyNovels> 434 0.50

128 Appendix: Analysis on rdf:type URIs in BTC

<http://dbpedia.org/class/yago/AmericanFantasyNovels> 384 0.45

<http://dbpedia.org/class/yago/Children%27sNovels> 381 0.44

<http://dbpedia.org/class/yago/AmericanScienceFictionNovels> 374 0.43

<http://dbpedia.org/class/yago/HistoricalNovels> 365 0.42

Table 20: Top 30 most comprising URIs for the ‘music album’ entity type from various
data stores in the BTC corpus.

URI Nr. %

<http://rdf.freebase.com/ns/music.album> 57,786 50.79

<http://dbpedia.org/ontology/MusicalWork> 56,725 49.86

<http://dbpedia.org/ontology/Album> 54,395 47.81

<http://schema.org/MusicAlbum> 54,395 47.81

<http://umbel.org/umbel/rc/Album_IBO> 5,334 4.69

<http://dbpedia.org/class/yago/DebutAlbums> 3,052 2.68

<http://dbpedia.org/class/yago/Album106591815> 2,892 2.54

<http://dbpedia.org/class/yago/2006Albums> 1,732 1.52

<http://dbpedia.org/class/yago/2005Albums> 1,646 1.45

<http://dbpedia.org/class/yago/2007Albums> 1,640 1.44

<http://dbpedia.org/class/yago/2004Albums> 1,492 1.31

<http://dbpedia.org/class/yago/2008Albums> 1,324 1.16

<http://dbpedia.org/class/yago/2003Albums> 1,297 1.14

<http://dbpedia.org/class/yago/2009Albums> 1,236 1.09

<http://dbpedia.org/class/yago/2002Albums> 1,177 1.03

<http://dbpedia.org/class/yago/2001Albums> 1,083 0.95

<http://dbpedia.org/class/yago/2000Albums> 1,039 0.91

<http://dbpedia.org/class/yago/GreatestHitsAlbums> 1,014 0.89

<http://dbpedia.org/class/yago/1999Albums> 967 0.85

<http://dbpedia.org/class/yago/1998Albums> 860 0.76

<http://dbpedia.org/class/yago/1997Albums> 800 0.70

<http://dbpedia.org/class/yago/1996Albums> 794 0.70

<http://dbpedia.org/class/yago/LiveVideoAlbums> 744 0.65

<http://dbpedia.org/class/yago/1995Albums> 666 0.59

<http://dbpedia.org/class/yago/1994Albums> 660 0.58

Chapter 7 Appendix: Analysis on rdf:type URIs in BTC 129

<http://dbpedia.org/class/yago/DouBleCompilationAlbums> 653 0.57

<http://dbpedia.org/class/yago/1993Albums> 616 0.54

<http://dbpedia.org/class/yago/English-languAgeAlbums> 570 0.50

<http://dbpedia.org/class/yago/ColumbiaRecordsAlbums> 556 0.49

<http://dbpedia.org/class/yago/DouBleLiveAlbums> 532 0.47

131

Appendix B

Curriculum Vitae

Born on 01.09.1982 in Bacau, Romania

Since 11/2008 Research Associate at the Institute for Information Systems,

Technische Universität Braunschweig

 Research in the area of Entity-centric Search, Web-Scale

Information Extraction, Data Mining (supervised und un-

supervised Machine Learning), and Data Integration

 Support for the preparation of lectures and seminars on
the topics of Data Warehousing, Data Mining, und Multi-

media Databases

 Coordination of students theses

10/2005 - 10/2008 Master Program in Computer Science, Technische Uni-

versität Braunschweig

 Certificate: Master of Science (Grade 1,1)

 Master Thesis: „Adaptive deadline based real-time sched-

uling for wireless video streaming“

 Specializations: Software Engineering, Computer Net-
works, Embedded Systems

09/2001 - 06/2005 Computer Science, University of Iasi (Romania)

 Certificate: University Diploma (Grade 10/10)

 Diploma Thesis: „Cluster Computing Raytracer”

 Specialization: Computer Networks

133

List of Figures

FIG. 1. SEMIOTIC TRIANGLE. .. 3

FIG. 2. SYSTEM OVERVIEW. .. 6

FIG. 3. DATA FROM DBPEDIA.ORG ABOUT THE IRON MAN 3 MOVIE. 8

FIG. 4. SCHEMA.ORG ANNOTATION FOR MOVIE IRON MAN 3 IN MICRODATA FORMAT. 9

FIG. 5. ENTITY DATA ON THE WEB. REPRESENTATION FORMS, QUERY FUNCTIONALITY

AND ENTITY-CENTRIC SEARCH SYSTEMS. ... 10

FIG. 6. KNOWLEDGE GRAPH - RESULT FOR ‘CHUCK NORIS’. .. 11

FIG. 7. LINKING OPEN DATA CLOUD DIAGRAM AS OF SEPTEMBER 2011. BY RICHARD

CYGANIAK AND ANJA JENTZSCH. HTTP://LOD-CLOUD.NET/. 13

FIG. 8. RDF EXCERPT COMPRISING 10 TRIPLES FROM DBPEDIA FOR MOVIE IRON MAN 3.

<IMURI> IS SHORT FOR <HTTP://DBPEDIA.ORG/RESOURCE/IRON_MAN_3>. 15

FIG. 9. EXAMPLE OF MICROFORMATS IN HTML CODE. ... 21

FIG. 10. EXAMPLE OF RDFA IN HTML CODE WITH SCHEMA.ORG VOCABULARY. 21

FIG. 11. EXAMPLE OF MICRODATA IN HTML CODE WITH SCHEMA.ORG VOCABULARY. .. 22

FIG. 12. GOOGLE RICH SNIPPET FOR MOVIE ‘IRON MAN 3’ FOR IMDB PAGE. 23

FIG. 13. THREE URIS MATCHING IN A CHAIN (URIA AND URIC DON’T MATCH). THE

SIMILARITY BETWEEN URIA AND URIB IS STRONGER THAN THE SIMILARITY BETWEEN

URIB AND URIC. .. 35

FIG. 14. EXCERPT FROM THE SCHEMA.ORG HIERARCHY. ... 43

FIG. 15. THE DISTRIBUTION OF SCHEMATA FROM SCHEMA.ORG ON HIERARCHY LEVELS. .. 44

FIG. 16. TYPES OF QUERIES RELEVANT TO THE ‘CELL PHONE’ DOMAIN FROM THE AOL

QUERY LOG. ... 45

FIG. 17. STRUCTURED DATA TABLE COMPRISING TECHNICAL SPECIFICATIONS FOR SONY

ERICSSON XPERIA X10 EXTRACTED FROM PHONEARENA.COM.................................. 54

FIG. 18. ‘BUSINESS CELL PHONE’ – LSI VS. VSM VS. BM25. ... 55

FIG. 19. ‘BUSINESS CELL PHONE’ – CQE VS. UQE VS. SQE. ... 57

FIG. 20. ‘BUSINESS CELL PHONE’ – CQE VS. VSM VS. BM25. .. 58

FIG. 21. ‘SOCIAL NETWORKING CELL PHONE’ – CQE VS. VSM VS. BM25. 59

FIG. 22. ‘CAMERA CELL PHONE’ – CQE VS. VSM VS. BM25. .. 60

FIG. 23. EXAMPLE OF REF QUERIES FROM TREC 2011. .. 84

FIG. 24. MEAN NDCG OF 14 REF SYSTEMS ON TREC REF QUERIES. RESULTS PER SYSTEM.

– BALOG ET AL. [6]. .. 85

FIG. 25. MEAN NDCG OF 14 REF SYSTEMS ON TREC REF QUERIES
54. RESULTS PER QUERY

– BALOG ET AL. [6]. .. 85

FIG. 26. EXAMPLE OF ELC QUERIES FROM TREC 2011. ... 86

FIG. 27. WIKIPEDIA ARTICLE STRUCTURE – PERCENTAGE OF ENTITIES (Y-AXIS) BELONGING

TO THE SAME CATEGORY AND SHARING A CERTAIN HEADING (X-AXIS, VALUES LESS

THAN 10% ARE OMITTED). ... 89

FIG. 28. INSTANCE-BASED ENTITY SEARCH BASED ON FAMILY RESEMBLANCE. SYSTEM

ARCHITECTURE. .. 92

file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039236
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039236
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039236

134 List of Figures

FIG. 29. DISAMBIGUATION OF QUERIES: QUERY COMPRISING A SINGLE ENTITY - (A) ON THE

LEFT HAND SIDE, FIVE ENTITIES - (B) ON THE RIGHT HAND SIDE OR AN ENTITY AND

ITS ENTITY TYPE - (C) ON THE RIGHT HAND SIDE. .. 98

FIG. 30. KNOWLEDGE GRAPH – RESULTS FOR BARACK OBAMA. 104

FIG. 31. DISTRIBUTION OF EXTRACTED ATTRIBUTES (X-AXIS) SORTED BY HOW MANY

AMERICAN PRESIDENTS (Y-AXIS) SHARE EACH ATTRIBUTE (WITH ZOOM-IN ON THE

FIRST 100 ATTRIBUTES). ... 105

FIG. 32. INSTRUCTIONS ON HOW TO COMPLETE THE TASK OF SELECTING ATTRIBUTES

SUITABLE FOR ENTITY SUMMARIES. .. 108

FIG. 33. NUMBER OF SELECTED ATTRIBUTES (X-AXIS) BY THE NUMBER OF JUDGMENTS (Y-

AXIS) SELECTING THIS NUMBER OF ATTRIBUTES. ... 109

FIG. 34. THE NUMBER OF SUBJECTS (Y-AXIS) THAT HAVE SELECTED AN ATTRIBUTE (X-AXIS)

FOR A CERTAIN COMPANY (Z-AXIS). FOR COMPANIES FROM THE FINANCIAL SECTOR

ONLY. .. 110

FIG. 35. ATTRIBUTE EXTRACTION FOR ENTITY SUMMARIZATION BASED ON ATTRIBUTE

TYPICALITY. SYSTEM ARCHITECTURE. ... 114

FIG. 36. PRECISION@K AVERAGED OVER ALL QUERY ENTITIES FOR AMERICAN PRESIDENTS

(A), AUTOMOTIVE COMPANIES (B), IT COMPANIES (C) AND DISEASES (D). 119

135

List of Tables

TABLE 1: DOMAIN BASED OVERVIEW OF THE AMOUNT DATA STORES, TRIPLES AND RDF

LINKS THAT ARE SET FROM DATA SOURCES WITHIN A DOMAIN TO OTHER DATA

SOURCES. LOD STATE AS OF SEPTEMBER 2011. DATA FROM HTTP://LOD-

CLOUD.NET/STATE/. .. 14

TABLE 2: TOP 30 MOST COMPRISING URIS FOR THE ‘MOVIE’ ENTITY TYPE FROM VARIOUS

DATA STORES IN THE BTC CORPUS. .. 18

TABLE 3: TYPE URIS FOR ENTITY <HTTP://RDF.FREEBASE.COM/NS/M.0BC1YHB> FROM

FREEBASE. .. 19

TABLE 4: DISTRIBUTION OF ANNOTATIONS BY TECHNOLOGY IN CLUEWEB12. 26

TABLE 5: TOP-20 SCHEMA.ORG ANNOTATIONS FROM THE CLUEWEB12 CORPUS. 27

TABLE 6: PRECISION AND RECALL VALUES FOR THE MATCHING OF SCHEMATA WITH

BAYES AND SVM. ... 31

TABLE 7: NUMBER OF ENTITIES AND PROPERTIES PER DATA STORE AND ENTITY TYPE. ... 37

TABLE 8: THE NUMBER OF OWL:SAMEAS LINKS, THE NUMBER OF OWL:SAMEAS LINKS

BETWEEN ENTITIES OF DIFFERENT TYPES, AND THE PRECISION OF THE LINKS CREATED

WITH SLINT+ AND BY COMPUTING THE TRANSITIVE CLOSURE OF LINKS CREATED BY

SLINT+, RESPECTIVELY. .. 38

TABLE 9: NUMBER OF EQUIVALENCE CLASSES PER NUMBER OF URIS IN THE EQUIVALENCE

CLASS, FOR VARIOUS SIMILARITY THRESHOLDS. ... 40

TABLE 10: THE NUMBER OF OWL:SAMEAS LINKS CREATED WITH PARIS, THE

CORRESPONDING PRECISION VALUE, AND THE LINKS OBTAINED BY COMPUTING THE

TRANSITIVE CLOSURE OF LINKS CREATED BY PARIS, RESPECTIVELY. 41

TABLE 11: QUERY EXPANSION TERMS. .. 57

TABLE 12: TOP ‘MOVIE’ PROPERTIES (WITH FREQUENCY ABOVE 30% OF ALL MOVIE

ANNOTATIONS) FROM THE ‘MOVIE’ SCHEMA FROM SCHEMA.ORG USED FOR

ANNOTATING MOVIE DATA ON WEB PAGES FROM CLUEWEB12. 67

TABLE 13: NUMBER OF ENTITIES FROM THE BTC12 DATA CORPUS FULFILLING EACH

PROPERTY SET (A). THE CORRESPONDING PRECISION AND RECALL VALUES (B). 68

TABLE 14: ON ROWS - THE ENTITIES THAT ARE SELECTED FOR THE PROPERTY SET {P1, P2,

P3}. ON COLUMNS – ALL PROPERTIES DESCRIBING ANY OF THE SELECTED ENTITIES. 72

TABLE 15: PROPERTY COEFFICIENTS OF THE FIRST THREE PCS. ... 75

TABLE 16: QUALITY, PRECISION AND RECALL FOR THREE CHOSEN ENTITY TYPES AND

MULTIPLE ITERATIONS. .. 78

TABLE 17: PRECISION@10 FOR ORGANIZATIONS FROM THE FIELDS OF AUTOMOTIVE

AND IT. ... 99

TABLE 18: PRECISION & RECALL BY SYSTEM AND QUERY CATEGORY. 119

TABLE 19: TOP 30 MOST COMPRISING URIS FOR THE ‘BOOK’ ENTITY TYPE FROM

VARIOUS DATA STORES IN THE BTC CORPUS. .. 127

TABLE 20: TOP 30 MOST COMPRISING URIS FOR THE ‘MUSIC ALBUM’ ENTITY TYPE FROM

VARIOUS DATA STORES IN THE BTC CORPUS. .. 128

file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039262
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039262
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039264
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039265
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039265
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039266
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039267
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039267
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039267
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039267
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039268
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039268
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039269
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039269
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039269
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039270
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039271
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039271
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039271
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039272
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039272
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039273
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039273
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039274
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039275
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039275
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039276
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039276
file:///C:/Users/Silviu/SkyDrive/dis/word%20doc/NewIntro_2.0/Dis_20_4.docm%23_Toc400039277

137

Bibliography

[1] Agrawal, R., Gollapudi, S., Halverson, A. and Ieong, S. 2009. Diversifying

search results. in Proceedings of the Second ACM International Conference on

Web Search and Data Mining (WSDM) (2009), 5.

[2] Agrawal, S., Chakrabarti, K., Chaudhuri, S., Ganti, V., Konig, A.C. and Xin,

D. 2009. Exploiting web search engines to search structured databases. in

Proceedings of the 18th International World Wide Web Conference (WWW).

(2009), 501.

[3] Alfio Ferrara, D.L. 2008. Towards a Benchmark for Instance Matching. in

Proceedings of the International Workshop on Ontology Matching (OM) (2008).

[4] Bakalov, A. and Fuxman, A. 2011. SCAD: Collective Discovery of Attribute

Values Categories and Subject Descriptors. in Procedings of the 20th

International World Wide Web Conference (WWW) (Hyderabad, India, 2011),

447–456.

[5] Ball, G. and Hall, D. 1965. ISODATA: A novel method of data analysis and

pattern classification.

[6] Balog, K. 2011. Finding Related Entities. in Proceedings of the International

Workshop on Search and Mining Entity-Relationship Data (SMER) (2011).

[7] Banko, M., Cafarella, M.J., Soderland, S., Broadhead, M. and Etzioni, O. 2007.

Open Information Extraction from the Web. in Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI) (Hyderabad, India,

2007).

[8] Barzilay, R. and Lee, L. 2003. Learning to Paraphrase : An Unsupervised

Approach Using Multiple-Sequence Alignment. in Proceedings of the

Conference of the North American Chapter of the Association for Computational

Linguistics on Human Language Technology (NAACL) (Edmonton, Canada,

2003), 16–23.

[9] Berners-Lee, T. 2006. Linked Data. Design issues for the World Wide Web

Consortium.

[10] Berners-Lee, T. 1999. Weaving the Web. Harper Collins.

138 Bibliography

[11] Berners-Lee, T., Fielding, R. and Masinter, L. 1998. Uniform Resource

Identifiers (URI): Generic Syntax. (Aug. 1998).

[12] Bischoff, K., Firan, C.S., Nejdl, W. and Paiu, R. Can All Tags be Used for

Search? Categories and Subject Descriptors. in Proceedings of the 17th ACM

Conference on Information and knowledge Management (CIKM) 203–212.

[13] Bizer, C. and Berners-Lee, T. 2009. Linked Data - The Story So Far. in

Proceedings of the International Journal on Semantic Web and Information

Systems (IJSWIS). (2009).

[14] Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R. and Ives, Z. 2007.

DBpedia : A Nucleus for a Web of Open Data. in Proceedings of the 6th

International Semantic Web Conference (ISWC) (Busan, Korea, 2007), 722–735.

[15] Böhm, C., de Melo, G., Naumann, F. and Weikum, G. 2012. LINDA:

Distributed web-of-data-scale entity matching. in Proceedings of the

International Conference on Information and Knowledge Management (CIKM)

(2012), 2104–2108.

[16] Bollacker, K., Evans, C., Paritosh, P., Sturge, T. and Taylor, J. 2008. Freebase.

in Proceedings of the ACM International Conference on Management of Data

(SIGMOD) (New York, New York, USA, Jun. 2008), 1247.

[17] Bonnefoy, L. and Bellot, P. 2011. LIA-iSmart at the TREC 2011 Entity Track:

Entity List Completion Using Contextual Unsupervised Scores for Candidate

Entities Ranking. in Proceedings of the Text Retrieval Conference (TREC) (2011).

[18] Bracha, G. and Lindstrom, G. 1992. Modularity meets inheritance. in

Proceedings of the International Conference on Computer Languages (1992),

282–290.

[19] Braschler, M. and Peters, C. 2004. CLEF 2003 Methodology and Metrics.

Comparative Evaluation of Multilingual Information Access Systems Lecture Notes

in Computer Science. 3237, (2004), 7–20.

[20] Bron, M., Balog, K. and Rijke, M. 2013. Example Based Entity Search in the

Web of Data. in Proceedings of the European Conference on Informaiton

Retrieval (ECIR) (2013).

[21] Cafarella, M.J. 2009. Extracting and Querying a Comprehensive Web

Database. in Proceedings of the 4th Confonference on Innovative Data Systems
Research (CIDR) (Monterey, USA, 2009).

Chapter 7 Bibliography 139

[22] Cafarella, M.J. and Etzioni, O. 2007. Navigating Extracted Data with Schema

Discovery. in Proceedings of the 10th International Workshop on Web and

Databases (WebDB) (Beijing, China, 2007).

[23] Cafarella, M.J., Halevy, A. and Khoussainova, N. 2009. Data Integration for

the Relational Web. in Proceedings of the Very Large Database Endowment
(PVLDB) (Lyon, France, 2009).

[24] Cafarella, M.J., Halevy, A., Wang, D.Z. and Wu, E. 2008. WebTables:

Exploring the Power of Tables on the Web. in Proceedings of the Very Large

Database Endowment (PVLDB) (Auckland, New Zealand, 2008), 538–549.

[25] Campinas, S., Ceccarelli, D., Perry, T.E., Delbru, R., Balog, K. and

Tummarello, G. The Sindice-2011 dataset for entity-oriented search in the

web of data. in Proceedings of the First International Workshop on Entity-

Oriented Search (EOS). 26–32.

[26] Cheng, T. and Chang, K.C. 2010. Beyond pages: supporting efficient, scalable

entity search with dual-inversion index. in Proceedings of the International

Conference on Extending Database Technology (EDBT) (2010), 15–26.

[27] Cheng, T., Yan, X. and Chang, K.C. 2007. EntityRank: Searching Entities

Directly and Holistically. in Proceedings of the 33rd International Conference on

Very Large Databases. (VLDB) (2007), 387–398.

[28] Cho, W.C. and Richards, D. 2007. Ontology construction and concept

reuse with formal concept analysis for improved web document retrieval. in

Proceedings of the International Journal of Web Intelligence and Agent Systems

(WIAS). 5, 1 (Jan. 2007), 109–126.

[29] Cimiano, P., Schultz, A., Sizov, S., Sorg, P. and Staab, S. 2009. Explicit versus

latent concept models for cross-language information retrieval. in Proceedings

of International Joint Conference on Artificial Intelligence (IJCAI). (Jul. 2009),

1513–1518.

[30] Clare, A. and King, R.D. 2001. Knowledge Discovery in Multi-label

Phenotype Data. in Proceedings of the 5th European Conference on Principles of

Data Mining and Knowledge Discovery (PKDD) (2001), 42–53.

[31] Cucerzan, S. 2007. Large-Scale Named Entity Disambiguation Based on

Wikipedia Data. in Proceedings of the Joint Conference on Empirical Methods in

Natural Language Processing and Computational Natural Language Learning

(EMNLP-CoNLL) (Prague, Czech Republic, 2007), 708–716.

140 Bibliography

[32] Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K. and Harshman,

R. 1990. Indexing by latent semantic analysis. Journal of the American Society

for Information Science. (1990).

[33] Ding, L., Shinavier, J., Shangguan, Z. and McGuinness, Deborah, L. 2010.

SameAs Networks and Beyond: Analyzing Deployment Status and
Implications of owl:sameAs in Linked Data. in Proceedings of the Int ernational

Semantic Web Conference (ISWC) (2010).

[34] Dong Wang, Qing Wu, Haiguang Chen, J.N. 2010. A Multiple-Stage

Framework for Related Entity Finding: FDWIM at TREC 2010 Entity Track.

in Proceedings of Text REtrieval Conference (TREC) (2010).

[35] Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K.,

Strohmann, T., Sun, S. and Zhang, W. 2014. Knowledge vault. in Proceedings

of the International Conference on Knowledge Discovery and Data Mining (KDD)

(New York, New York, USA, Aug. 2014), 601–610.

[36] Dragan, L., Delbru, R., Groza, T., Siegfried, H. and Decker, S. 2011. Linking

Semantic Desktop Data to the Web of Data. in Proceedings of the

International Semantic Web Conference (ISWC) (2011).

[37] Fader, A., Soderland, S. and Etzioni, O. 2011. Identifying Relations for Open

Information Extraction. in Proceedings of the Conference on Empirical Methods

in Natural Language Processing (EMNLP) (Edinburgh, Scotland, UK, 2011),

1535–1545.

[38] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P. and

Berners-Lee, T. 1999. Hypertext Transfer Protocol -- HTTP/1.1. (May

1999).

[39] Finkel, J.R., Grenager, T. and Manning, C. 2005. Incorporating Non-local

Information into Information Extraction Systems by Gibbs Sampling. in

Proceedings of the Annual Meeting of the Association for Computational Linguistics

(ACL) (2005).

[40] Freund, Y. and Schapire, R.E. 1997. A Decision-Theoretic Generalization of

On-Line Learning and an Application to Boosting. in Proceedings of the Journal

of Computer and System Sciences. 55, 1 (1997), 119–139.

[41] Gangemi, A., Nuzzolese, A.G., Presutti, V., Draicchio, F., Musetti, A. and

Ciancarini, P. 2012. Automatic Typing of DBpedia Entities. in Proceedings of

the Internationl Semantic Web Conference (ISWC) (2012), 65–81.

Chapter 7 Bibliography 141

[42] Ganter, B. and Wille, R. 1997. Formal Concept Analysis: Mathematical

Foundations. Springer-Verlag New York, Inc.

[43] Ganti, V. 2010. Keyword++: A Framework to Improve Keyword Search

Over Entity Databases. in Proceedings of the Very Large Database Endowment

(PVLDB). (2010), 711–722.

[44] Gerard Salton, C.B. 1988. Term-weighting approaches in automatic text

retrieval. in Proceedings of the Journal of Information Processing and

Management (IJIPM). (1988).

[45] Ghias, A., Logan, J., Chamberlin, D. and Smith, B.C. 1995. Query by

humming. in Proceedings of the third ACM International Conference on

Multimedia (MULTIMEDIA) (New York, New York, USA, Jan. 1995), 231–

236.

[46] Gil, J.Y. 2008. Whiteoak: Introducing Structural Typing into Java. in

Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented

Programming Systems Languages and Applications (OOPSLA) (2008), 73–89.

[47] Gottron, T., Knauf, M., Scheglmann, S. and Scherp, A. 2013. A Systematic

Investigation of Explicit and Implicit Schema Information on the Linked

Open Data Cloud. in Proceedings of the 10th Extended Semantic Web

Conference (ESWC) (2013).

[48] Halpin, H. and Hayes, P.J. 2010. When owl:sameas isn’t the same: An

analysis of identity links on the semantic web. in Proceedings of the Linked

Data on the Web Conference (LDOW) (2010).

[49] Hancock, T., Jiang, T., Li, M. and Tromp, J. 1996. Lower Bounds on Learning

Decision Lists and Trees. in Journal for Information and Computation. 126, 2

(1996), 114–122.

[50] Harth, A. 2012. Billion Triples Challenge data set.

[51] Hasegawa, T., Sekine, S. and Grishman, R. 2004. Discovering Relations

among Named Entities from Large Corpora. in Proceedings of the 42th Annual

Meeting of the Association for Computational Linguistics (ACL) (Barcelona, Spain,

2004).

[52] Hindle, D. 1990. Noun classification from predicate-argument structures. in

Proceedings of the 28th Annual Meeting of the Association for Computational

Linguistics (ACL) (1990).

142 Bibliography

[53] Homoceanu, S. and Balke, W. 2011. What Makes a Phone a Business Phone.

in Proceedings of the International Conference on Web Intelligence (WI) (Lyon,

France, 2011).

[54] Homoceanu, S. and Balke, W.-T. 2014. Querying concepts in product data

by means of query expansion. Web Intelligence and Agent Systems. 12, 1 (Jan.
2014), 1–14.

[55] Homoceanu, S., Dechand, S. and Balke, W.-T. 2011. Review Driven

Customer Segmentation for Improved E-Shopping Experience. in Proceedings

of the 3rd International Conference on Web Science (WebSci) (Koblenz,

Germany, 2011).

[56] Homoceanu, S., Geilert, F., Pek, C. and Balke, W.-T. 2014. Any Suggestions?

Active Schema Support for Structuring Web Information. in Proceedings of

the International Conference on Database Systems for Advanced Applications

(DASFAA) (Denpasar, Bali, 2014).

[57] Homoceanu, S., Kalo, J.-C. and Balke, W.-T. 2014. Putting Instance Matching

to the Test: Is Instance Matching Ready for Reliable Data Linking? in

Proceedings of the International Symposium on Methodologies for Intelligent

Systems (ISMIS) (2014).

[58] Homoceanu, S., Loster, M., Lofi, C. and Balke, W.-T. 2011. Will I Like It?

Providing Product Overviews Based on Opinion Excerpts. in Proceedings of

the IEEE 13th Conference on Commerce and Enterprise Computing (CEC) (2011),

26–33.

[59] Homoceanu, S., Wille, P. and Balke, W. 2013. ProSWIP : Property-based

Data Access for Semantic Web Interactive Programming. in Proceedings of

the International Semantic Web Conference (ISWC) (Sydney, Australia, 2013).

[60] Hu, M. and Liu, B. 2004. Mining and summarizing customer reviews. in

Proceedings of the International Conference on Knowledge Discovery and Data

Mining (KDD) (New York, New York, USA, Aug. 2004), 168.

[61] Isele, R., Jentzsch, A. and Bizer, C. 2010. Silk Server - Adding missing Links

while consuming Linked Data. in Proceeding of the International Workshop on

Consuming Linked Data (COLD) (2010).

[62] Jain, P., Hitzler, P., Sheth, A.P., Verma, K. and Yeh, P.Z. 2010. Ontology

Alignment for Linked Open Data. Information Retrieval. 6496, November

(2010), 402–417.

Chapter 7 Bibliography 143

[63] Jain, P., Yeh, P.Z., Verma, K., Vasquez, R.G., Damova, M., Hitzler, P. and

Sheth, A.P. 2011. Contextual ontology alignment of LOD with an upper

ontology: A case study with proton. in Proceedings of the 8th Extended

Semantic Web Conference on The Semantic Web (ESWC) (2011), 80–92.

[64] Jiménez-Ruiz, E., Cuenca Grau, B., Jim, E. and Grau, B.C. 2011. LogMap:
Logic-Based and Scalable Ontology Matching. in Proceedings of the

International Semantic Web Conference (ISWC) (2011), 273–288.

[65] Jolliffe, I. 2002. Principal Component Analysis, (2nd Ed.). Springer Series in

Statistics.

[66] Kato, T., Kurita, T., Otsu, N. and Hirata, K. 1992. A sketch retrieval method

for full color image database-query by visual example. in Proceedings of the

11th International Conference on Pattern Recognition (ICPR) (1992), 530–533.

[67] Khalili, A. and Auer, S. 2013. WYSIWYM – Integrated Visualization ,

Exploration and Authoring of Un-structured and Semantic Content. in

Proceedings of the International Conference on Web Information System

Engineering (WISE) (2013), 1–14.

[68] Kiselyov, O., Lämmel, R. and Schupke, K. 2004. Strongly typed

heterogeneous collections. in Proceedings of the SIGPLAN Workshop on

Haskell. (2004), 96–107.

[69] Komatsu, L.K. 1992. Recent views of conceptual structure. Psychological

Bulletin. 112, 3 (1992), 500–526.

[70] Konrath, M., Gottron, T., Staab, S. and Scherp, A. 2012. SchemEX —

Efficient construction of a data catalogue by stream-based indexing of linked

data. Journal of Web Semantics: Science, Services and Agents on the World Wide

Web (JWS). 16, (2012), 52–58.

[71] Kruskal, J.B. 1964. Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Pstchometrika. 29, 1 (1964).

[72] Kullback, S. and Leibler, R. 1951. On information and sufficiency. Annals of

Mathematical Statistics. 22, (1951), 49 – 86.

[73] Kumar, R. and Tomkins, A. 2010. A characterization of online browsing

behavior. in Proceedings of the International World Wide Web Conference

(WWW) (New York, New York, USA, Apr. 2010), 561.

144 Bibliography

[74] Kumar, R. and Tomkins, A. 2009. A Characterization of Online Search

Behavior. In Proceedings of the IEEE Data Engineering Bulletin. 32, 2 (2009), 1–

9.

[75] Lee, L. 1999. Measures of Distributional Similarity. in Proceedings of the 37th

Annual Meeting of the Association for Computational Linguistics (ACL) (1999),
25–32.

[76] Lee, T., Wang, Z., Wang, H. and Hwang, S. 2013. Attribute Extraction and

Scoring : A Probabilistic Approach. Proc. of. ICDE (2013).

[77] Lenat, D.B. 1995. CYC: a large-scale investment in knowledge infrastructure.

Communications of the ACM. 38, 11 (Nov. 1995), 33–38.

[78] Lin, J. and Katz, B. 2003. Question answering from the web using knowledge

annotation and knowledge mining techniques. in Proceedings of the

International Conference on Information and Knowledge Management (CIKM)

(2003), 116.

[79] Liu, B., Hu, M. and Cheng, J. Opinion Observer : Analyzing and Comparing

Opinions on the Web. in Proceedings of the 14th International World Wide

Web Conference (WWW) 342–351.

[80] Malouf, R. 2002. Markov models for language-independent named entity

recognition. in Proceedings of the 6th Conference on Natural Language Learning

(CoNLL) (Taipei, Taiwan, 2002).

[81] Mervis, C.B. and Rosch, E. 1981. Categorization of Natural Objects. Annual

Review of Psychology. 32, 1 (Jan. 1981), 89–115.

[82] Metzger, S. and Schenkel, R. 2011. S3K : Seeking Statement-Supporting top-

K Witnesses. in Proceedings of the 20th Conference on Information and

Knowledge Management (CIKM) (Glasgow, Scotland, UK, 2011), 37–46.

[83] Mika, P. and Potter, T. 2012. Metadata Statistics for a Large Web Corpus. in

Proceedings of the International Workshop on Linked Data on the Web (LDOW)

(2012).

[84] Miller, G.A. 1995. WordNet: a lexical database for English. Communications

of the ACM. 38, 11 (Nov. 1995), 39–41.

[85] Montaner, M., López, B. and Rosa, J.L. de la 2003. A Taxonomy of

Recommender Agents on the Internet. Artificial Intelligence Review. 19, 4 (Jun.

2003), 285–330.

Chapter 7 Bibliography 145

[86] Mühleisen, H. and Bizer, C. 2012. Web Data Commons – Extracting

Structured Data from Two Large Web Corpora. in Proceedings of the

International Workshop on Linked Data on the Web (LDOW). (2012).

[87] Murphy, G. 2002. The Big Book of Concepts. The MIT Press.

[88] Nakashole, N., Weikum, G. and Suchanek, F. 2012. Discovering and

Exploring Relations on the Web. in Proceedings of the Very Large Database

Endowment (PVLDB) (Istambul, Turkey, 2012).

[89] Nguyen, K., Ichise, R. and Le, B. 2012. Interlinking Linked Data Sources

Using a Domain-Independent System. in Proceedings of the Joint International

Semantic Technology Conference (JIST) (2012).

[90] Niblack, C.W., Barber, R., Equitz, W., Flickner, M.D., Glasman, E.H.,

Petkovic, D., Yanker, P., Faloutsos, C. and Taubin, G. 1993. QBIC project:

querying images by content, using color, texture, and shape. in Proceedings of

the Symposium on Electronic Imaging: Storage and Retrieval for Image and Video

Databases (SPIE) (Apr. 1993), 173–187.

[91] Nie, Z., Wen, J.-R. and Ma, W.-Y. 2007. Object-level Vertical Search. in

Proceedings of the Biennial Conference on Innovative Data Systems Research

(CIDR). (2007), 235–246.

[92] Ogden, C.K. and Richards, I.A. The Meaning of Meaning. ARK Paperbacks.

[93] Ora Lassila, Ralph R. Swick, World Wide, W.C. Resource Description

Framework (RDF) Model and Syntax Specification.

[94] Pan, Z. and Chen, H. 2011. TongKey at Entity Track TREC 2011: Related

Entity Finding. in Proceedings of Text REtrieval Conference (TREC) (2011).

[95] Pukelsheim, F. 1994. The Three Sigma Rule. The American Statistician. 48, 2

(May 1994), 88.

[96] Qian, L., Cafarella, M.J. and Jagadish, H. V 2012. Sample-driven schema

mapping. in Proceedings of the International Conference on Management of Data

(SIGMOD) (Scottsdale, Arizona, USA, 2012).

[97] Qiu, Y. and Frei, H.-P. 1993. Concept based query expansion. in Proceedings

of the Special Interest Group on Information Retrieval (SIGIR) (New York, New

York, USA, Jul. 1993), 160–169.

146 Bibliography

[98] Quinlan, J.R. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann

Publishers Inc. San Francisco.

[99] Quinlan, J.R. 1987. Simplifying decision trees. International Journal of

ManMachine Studies. 27, 3 (1987), 221–234.

[100] Resnick, P. and Varian, H.R. 1997. Recommender systems. Communications of

the ACM. 40, 3 (Mar. 1997), 56–58.

[101] Ricci, F., Rokach, L., Shapira, B. and Kantor, P.B. 2010. Introduction to

Recommender Systems Handbook. Springer.

[102] Robertson, S.E. and Sparck Jones, K. 1976. Relevance Weighting of Search T

erms. Journal of the American Society for Information Science and Technology. 27,

3 (Dec. 1976), 129–146.

[103] Rosch, E. 1975. Cognitive reference points. Cognitive Psychology. 7, 4 (Oct.

1975), 532–547.

[104] Rosch, E. 1975. Cognitive representations of semantic categories. Journal of

Experimental Psychology: General. 104, 3 (1975), 192–233.

[105] Rosch, E. and Mervis, C.B. 1975. Family resemblances: Studies in the internal

structure of categories. Cognitive Psychology. 7, 4 (Oct. 1975), 573–605.

[106] Rosch, E., Mervis, C.B., Gray, W.D., Johnson, D.M. and Boyes-Braem, P.

1976. Basic objects in natural categories. Cognitive Psychology. 8, 3 (Jul. 1976),

382–439.

[107] Rowley, J. 2000. Product search in e-shopping: a review and research

propositions. Journal of Consumer Marketing. 17, 1 (Jan. 2000), 20–35.

[108] Salton, G., Wong, A. and Yang, C.S. 1975. A vector space model for

automatic indexing. Communications of the ACM. 18, 11 (Nov. 1975), 613–

620.

[109] Sarkas, N., Paparizos, S. and Tsaparas, P. 2010. Structured annotations of
web queries. in Proceedings of the International Conference on Management of

Data (SIGMOD). (2010), 771.

[110] Scheglmann, S. and Gröner, G. 2012. Property-based Typing for RDF-

Access. in Proceedings of the First Workshop on Programming the Semantic Web

(Rio de Janeiro, Brasil, 2012), 4–7.

Chapter 7 Bibliography 147

[111] Scheglmann, S., Gröner, G., Staab, S. and Lämmel, R. 2013. Incompleteness-

aware programming with RDF data. in Proceedings of the Workshop on Data

Driven Functional Programming (DDFP). (2013), 11.

[112] Scheglmann, S., Scherp, A. and Staab, S. 2012. Declarative Representation of

Programming Access to Ontologies. The Semantic Web: Research and
Applications. E. Simperl, P. Cimiano, A. Polleres, O. Corcho, and V. Presutti,

eds. Lecture Notes in Computer Science. 659–673.

[113] Srinivasan, P. 1996. Query expansion and MEDLINE. Information Processing &

Management. 32, 4 (Jul. 1996), 431–443.

[114] Stock, W.G. 2010. Concepts and Semantic Relations in Information Science.

Journal of the American Society for Information Science and Technology. 61, 10

(2010), 1951–1969.

[115] Suchanek, F.M., Abiteboul, S. and Senellart, P. 2011. PARIS: probabilistic

alignment of relations, instances, and schema. in Proceedings of the Very Large

Database Endowment (PVLDB) (Nov. 2011), 157–168.

[116] Suchanek, F.M. and Weikum, G. 2007. YAGO : A Core of Semantic

Knowledge Unifying WordNet and Wikipedia. In Proc. of the 16th Int. World

Wide Web Conf. (WWW) (Banff, Canada, 2007).

[117] Sydow, M., Pikula, M. and Schenkel, R. 2010. DIVERSUM: Towards

diversified summarisation of entities in knowledge graphs. in Proceedings of

the International Conference on Data Engineering Workshop (ICDEW) (2010),

221–226.

[118] Tang, J., Li, J., Liang, B., Huang, X., Li, Y. and Wang, K. 2006. Using Bayesian

decision for ontology mapping. in Proceedings of Web Semantics: Science,

Services and Agents on the World Wide Web. 4, 4 (2006), 243–262.

[119] Tang, J., Liang, B., Li, J. and Wang, K. 2004. Risk Minimization based

Ontology Mapping. in Proceedings of the Advanced Workshop on Content

Computing (AWCC) (2004).

[120] Tesauro, G., Gondek, D.C. and Prager, J.M. 2013. Analysis of Watson’s

Strategies for Playing Jeopardy! Journal of Artificial Intelligence Research (JAIR).

21, (2013), 205–251.

[121] Tsoumakas, G. and Katakis, I. 2007. Multi Label Classification: An Overview.
International Journal of Data Warehousing and Mining. 3, 3 (2007), 1–13.

148 Bibliography

[122] Tversky, A. 1977. Features of similarity. Psychological Review. 84, 4 (1977),

327–352.

[123] Vijay V. Raghavan, G.S.J.P.B. 1989. A critical investigation of recall and

precision as measures of retrieval system performance. Journal of

Transactions on Information Systems (TOIS). 7, (1989), 205–229.

[124] Volz, J., Bizer, C., Gaedke, M. and Kobilarov, G. 2009. Discovering and

Maintaining Links on the Web of Data. in Proceedings of the International

Semantic Web Conference (ISWC) (2009), 650–665.

[125] Voorhees, E.M. 1994. Query expansion using lexical-semantic relations. in

Proceedings of the Special Interest Group on Information Retrieval (SIGIR) (Aug.

1994), 61–69.

[126] Wang, Z., Tang, C., Sun, X., Ouyang, H., Lan, R., Xu, W., Chen, G. and Guo,

J. 2010. PRIS at TREC 2010: Related Entity Finding Task of Entity Track. in

Proceedings of Text REtrieval Conference (TREC) (2010).

[127] Weld, D.S., Hoffmann, R. and Wu, F. 2008. Using Wikipedia to bootstrap

open information extraction. in Proceedings of the Special Interest Group on

Management of Data (SIGMOD). 37, 4 (Mar. 2008), 62.

[128] Whitelaw, C., Kehlenbeck, A., Petrovic, N. and Ungar, L. 2008. Web-scale

named entity recognition. in Proceedings of the International Conference on

Information and Knowledge Management (CIKM) (2008), 123.

[129] Wittgenstein, L. 1953. Philosophical investigations. New York: The MacMillan

Company.

[130] Yates, A. and Etzioni, O. 2009. Unsupervised Methods for Determining

Object and Relation Synonyms on the Web. Journal of Artificial Intelligence

Research (JAIR). 34, (2009), 255–296.

[131] Yu, J.X. and Yu, P.S. 2006. Text classification without negative examples

revisit. Journal of Transactions on Knowledge and Data Engineering (TKDE). 18,

1 (2006), 6–20.

[132] Zhanyi Wang, Wenlong Lv, Heng Li, Wenyuan Zhou, Li Zhang, Xiao Mo,

Liaoming Zhou, Weiran Xu, Guang Chen, J.G. 2011. PRIS at TREC 2011

Entity Track: Related Entity Finding and Entity List Completion. In Proc.Text

Retrieval Conference (TREC) (2011).

Chapter 7 Bibliography 149

[133] Zheng, Q., Shao, C., Li, J., Wang, Z. and Hu, L. 2013. RiMOM2013 Results

for OAEI 2013. in Proceedings of the International Workshop on Ontology

Matching (OM) (2013).

[134] Zhou, M., Wang, H. and Chang, K.C. 2013. Learning to Rank from Distant

Supervision : Exploiting Noisy Redundancy for Relational Entity Search. in
Proceedings of the International Conference on Data Engineering (ICDE) (2013).

[135] Zhou, X., Gaugaz, J., Balke, W.-T. and Nejdl, W. 2007. Query relaxation

using malleable schemas. in Proceedings of the Special Interest Group on

Management Of Data (SIGMOD) (2007).

