
Proposal of New Object-Oriented

Equation-Based Model Libraries

for Thermodynamic Systems

Von der Fakultät für Maschinenbau
der Technischen Universität Carolo-Wilhelmina zu Braunschweig

zur Erlangung der Würde

eines Doktor-Ingenieurs (Dr.-Ing.)

genehmigte Dissertation

von: Christoph C. Richter

aus: Braunschweig

eingereicht am: 11. Januar 2008

mündliche Prüfung am: 3. April 2008

Referenten: Prof. Dr.-Ing. Jürgen Köhler

Prof. Dr.-Ing. Gerhard Schmitz

Vorsitzender: Prof. Dr.-Ing. Martin Mönnigmann

2008

Preface

Preface

This thesis can be regarded as a follow-up project to the PhD thesis of Tegethoff (1999)
moving from his C++ simulation platform to a component model library written in Modelica
complemented by a fluid property library developed in C/C++ with interfaces to various soft-
ware tools and programming languages including Modelica. The thesis belongs somewhere
in the intersection of Computer Science, Systems Design Engineering, and Thermodynamics.
It examines the advantages and possible pitfalls of object-oriented model library design using
the free object-oriented modeling language Modelica. During the time of the library devel-
opment, I was involved in the design of parts of the Modelica Standard Library and got very
good insight into the language design itself by being a member of the Modelica Association.
The enthusiasm of the members of the Modelica Association and the Modelica Fluid Group
was a continuous source of motivation and a great help with a lot of problems that emerged
during the library design process.

Acknowledgments

Writing a thesis is an iterative process that requires continuous input from other people
especially when developing simulation libraries that are meant to be used by others than the
author himself. I would not have been able to finish this project without the strong support
of a number of people to whom the following paragraphs are dedicated. The order is random
and not meant to be a ranking of any sort.

First I wish to thank all postgraduate students at the Institut für Thermodynamik for
their support and help in many situations. Special thanks to Roland who was never bored
with my endless questions regarding C++ and Qt and with whom I was able to develop a
program as unique as the StateViewer. I would also like to thank Christine, Julia, Christian
S., Roland, and Niko for many nice evenings including sushi, wine, and memorable Cranium
sessions. Special thanks to Christine for cheering me up in the mornings by having a little
chat before everyone else showed up. Also writing chapter 6 would not have been possible
without her strong support that I really appreciated. Thanks to Kai and Marcos who had to
test and extend my libraries for not getting sick of the many updates that they had to adopt
their models to. Special thanks also to Christian T. for his strong support with the ejector
test stand and for his never-ending effort to keep up with me when going for a run after a
long day of work.

I also want to thank Willi who was always keen enough to discuss new ideas and who did
not stop me when starting to redesign TILFluids from scratch in late spring 2006. I am also
very grateful that Willi taught me how to use Modelica in an in-house course knowing the
language just a little better than the participants of the course back then. This thesis would
not have been possible without his strong support especially during the last weeks and days
before finishing it.

Furthermore, I want to thank the staff at TLK for utilizing some of the software I de-
veloped despite all the bugs. Many thanks also to the master students at the Institut für

III

Acknowledgments

Thermodynamik that helped me with some aspects of my work, especially to Martin for
his tool ModelicaCDV (which I misspelled many times as ModelicaCVD) and Nils for his
implementation of heat exchangers in Modelica.

I am grateful to the members of the Modelica Association for answering the really
tricky Modelica questions. I especially want to thank Katrin Prölß, Hubertus Tummescheit,
Francesco Casella, and the entire Modelica Fluid Group for many fruitful discussions and
nice evenings at the Modelica Design Meetings.

I am glad to express my sincere gratitude to Prof. Köhler for supervising this thesis and
to Prof. Schmitz for his valuable inputs. I also want to thank the technical staff at the
Institut für Thermodynamik for their support during the three years I spent there.

Special thanks to the Canada gang for the yearly meetings that always were a source of
motivation to me. Thanks Debbie, Jenny, Sven, and Matthias for the many outdoor events
and cooking sessions. Also thanks for changing me from a couch potato into a marathon
finisher.

Special thanks go to my girlfriend Frederike for always being supportive even during the
hard times of self-doubts. The two months in New Zealand are unforgettable and belong to
my most precious memories. Thanks also to Frederike, Mandy, and Christian T. for the nice
evenings taking dancing lessons. Also many thanks to my parents for their loving support
and confidence in me and to my brother Marius for proofreading this thesis and for many
motivating phone calls.

For the financial support, I want to thank the Studienstiftung des deutschen Volkes that
was brave enough to support me since my second semester as an undergraduate student all
the way until finishing my doctoral thesis.

IV

Abstract

Proposal of New Object-Oriented

Equation-Based Model Libraries

for Thermodynamic Systems

Abstract

This thesis proposes two new model libraries for fluid properties and for components that can
be used for the simulation of thermodynamic systems such as refrigeration, air-conditioning,
and heat-pump systems. The new fluid property library is written in C/C++ and can be
interfaced from various software tools and programming languages. The new component
model library is written in the object-oriented equation-based modeling language Modelica.
Furthermore, tools for the automated generation of class diagrams and the visualization of
the solution process as well as the numerical results in relevant diagrams such as pressure-
enthalpy diagrams are presented.

Both new libraries are based on a thorough object-oriented analysis. Graphical repre-
sentations for all object-oriented features of Modelica based on the elements defined in the
Unified Modeling Language are introduced. A set of general design rules for the develop-
ment of object-oriented component model libraries is formulated to ensure that the resulting
library can be used by the entire spectrum of possible users from experienced developers to
design engineers.

The new object-based fluid property library is based on a generalized approach to include
external fluid property computation codes in Modelica. It is simple to extend to additional
external fluid property computation codes. It allows for a numerically efficient handling of
fluid properties in Modelica and in a number of software tools. The numerical efficiency of the
presented approach matches the numerical efficiency of available fluid property computation
codes formulated in Modelica.

The new model library for components and systems was developed based on the newly
introduced design rules. It features a structure that is simple to understand and flexible to
allow for extensions. All balance equations are formulated in an easy and comprehensible
way in base components. The new component model library contains models with different
levels of detail to allow for a problem-dependent model selection.

Two applications are presented to demonstrate the capabilities of the two new libraries.
A prototype Peltier heat exchanger heating one water stream while cooling another one is
analyzed during a transient reversion of the applied voltage. The second example analyzes
a prototype ejector refrigeration system partly developed within the scope of this thesis. It
is shown that an ejector improves the COP of a CO2 refrigeration system. The two selected
examples demonstrate the extendibility and multidisciplinarity of the new libraries.

Both libraries are already used and extended by a team of developers at the Institut für
Thermodynamik and the TLK-Thermo GmbH.

V

Kurzfassung

Vorschlag für neue objektorientierte

gleichungsbasierte Modellbibliotheken

für thermodynamische Systeme

Kurzfassung

Diese Arbeit beschreibt zwei neue Modellbibliotheken mit Stoffdaten- und Komponentenmo-
dellen zur Simulation thermodynamischer Systeme wie zum Beispiel Kälteanlagen, Klimaan-
lagen und Wärmepumpen. Die neue Stoffdatenbibliothek ist basierend auf C/C++ entwickelt
worden und verfügt über Schnittstellen für unterschiedliche Anwendungsprogramme und Pro-
grammiersprachen. Die neue Komponentenbibliothek ist in der objektorientierten gleichungs-
basierten Modellierungssprache Modelica geschrieben. Es werden außerdem Werkzeuge vor-
gestellt, die die automatische Generierung von Klassenstrukturdiagrammen und die Visu-
alisierung des Lösungsprozesses sowie der numerischen Ergebnisse in thermodynamischen
Diagrammen wie zum Beispiel dem p,h-Diagramm ermöglichen.

Beide neuen Bibliotheken basieren auf einer gründlichen objektorientierten Analyse. Um
diese einheitlich zu ermöglichen, werden grafische Darstellungen für alle objektorientierten
Merkmale von Modelica basierend auf der UML eingeführt. Es werden des Weiteren all-
gemeingültige Richtlinien für die Erstellung von objektorientierten Modellbibliotheken en-
twickelt, die sicherstellen, dass die entwickelte Bibliothek das gesamte Spektrum möglicher
Benutzer vom Code-Entwickler bis hin zum Anwender unterstützt.

Die neue objektbasierte Stoffdatenbibliothek basiert auf einem generalisierten Ansatz zur
Einbindung externer Stoffdatenbibliotheken in Modelica. Der beschriebene Ansatz lässt sich
einfach auf weitere externe Bibliotheken zur Stoffdatenberechnung erweitern. Er erlaubt die
numerisch effektive Behandlung der eingebundenen Bibliotheken in Modelica sowie in An-
wendungsprogrammen. Der generalisierte Ansatz ist vorhandenen Modelica-internen Stoff-
datenbibliotheken in numerischer Hinsicht ebenbürtig.

Die neue Modellbibliothek für Komponenten und Systeme verfügt über eine Struktur,
die einfach verständlich und flexibel erweiterbar ist. Alle Erhaltungsgleichungen sind in
einfach verständlicher Form in Basiskomponenten formuliert. Die neue Komponentenmodell-
bibliothek enthält Modelle unterschiedlicher Modellierungstiefe, um eine problemabhängige
Auswahl von Modellen zu erlauben.

Zwei Anwendungen für die beiden neuen Modellbibliotheken werden präsentiert. Die er-
ste Anwendung ist die transiente Simulation einer Peltier-Wasser-Wasser-Wärmeübertragers
während einer Spannungsumkehrung. Das zweite Beispiel ist ein Ejektor-Kältekreislauf, der
teilweise im Rahmen dieser Arbeit entwickelt wurde. Es wird gezeigt, dass der Einsatz eines
Ejektors den COP eines CO2-Kältekreislaufes steigert. Beide Anwedungsbeispiele demon-
strieren die Erweiterbarkeit und die Multidisziplinarität der neuen Bibliotheken.

Beide neuen Modellbibliotheken werden von einem Team von Anwendern und Entwicklern
am Institut für Thermodynamik und bei der TLK-Thermo GmbH genutzt und erweitert.

VI

Contents

Abstract . V

Kurzfassung . VI

1 Introduction 1

1.1 Motivation . 1

1.2 A Brief History of Modeling Languages . 3

1.3 State of the Art in Thermodynamic System Simulations 5

1.4 Objectives . 8

1.5 Structure of the Thesis . 9

2 Object-Oriented Modeling 11

2.1 Introduction . 11

2.2 Classes . 13

2.3 Object-Oriented Relations . 13

2.3.1 Composition . 14

2.3.2 Aggregation . 14

2.3.3 Inheritance . 15

2.3.4 Multiple Inheritance . 18

2.4 Polymorphism . 20

2.4.1 Exchangeable Object Type . 20

2.4.2 Replaceable Local Class . 21

2.5 More Pitfalls in Object-Oriented Modeling . 22

2.6 Accessing Object Attributes . 23

2.6.1 Connectors . 23

2.6.2 Direct Access . 24

2.6.3 Modifiers . 25

2.6.4 inner/outer-Concept . 26

2.7 Evaluation of Existing Libraries . 27

3 Modeling of Thermo-Physical Fluid Properties 31

3.1 Introduction . 31

3.2 Function-Based Computation of Fluid Properties 33

3.3 Object-Based Computation of Fluid Properties 34

3.4 Calling External Fluid Property Computation Codes 36

VII

Contents

3.4.1 Architecture of the Modelica Layer (Modelica ExternalMedia) 37

3.4.2 Architecture of the C/C++ Layer (ExternalMedia) 40

3.5 Advanced Object-Based Computation of Fluid Properties 40

3.5.1 Architecture of the Modelica Layer (TILFluids) 41

3.5.2 Architecture of the C/C++ Layer (TILFluidsLib) 44

3.5.3 Interfaced External Fluid Property Computation Codes 45

3.5.4 Comparison of Computational Efficiency 46

4 Object-Oriented Modeling of Fluid Systems 49

4.1 Introduction . 49

4.2 Connectors and Connection Equations . 51

4.3 Conservation Laws . 55

4.4 Accumulator Model . 58

4.5 Heat Transfer and Pressure Drop Models . 60

4.5.1 Single-Phase Refrigerant Flows . 60

4.5.2 Two-Phase Refrigerant Flows . 62

4.5.3 Gas Flows . 64

4.5.4 Solids . 65

4.6 Smooth Transition Functions . 66

4.7 Cells for Refrigerants, Liquids, Gases, and Solids 70

4.7.1 Refrigerant Cell . 70

4.7.2 Gas Cell . 72

4.7.3 Liquid Cell . 73

4.7.4 Wall Cell . 74

4.8 Heat Exchangers . 74

4.8.1 Sandwich Concept . 75

4.8.2 Class Structure . 77

4.8.3 Initialization . 79

4.9 Compressor Model . 79

4.10 Basic Component Models . 80

4.10.1 System Information Manager . 80

4.10.2 Pressure State . 81

4.10.3 Partial Base Component . 82

4.10.4 Boundaries . 83

4.11 Numerical Aspects . 84

5 Visualization 87

5.1 Introduction . 87

5.2 Automated Generation of UML Class Diagrams 88

5.3 Thermodynamic Phase Diagrams . 90

5.4 Online Visualization during Initialization . 93

VIII

Contents

6 Thermoelectric Applications 96

6.1 Introduction . 96

6.2 Thermoelectric Refrigeration . 97

6.3 Prototype Peltier Heat Exchanger . 98

6.4 Peltier Heat Exchanger Model . 100

6.5 Measurements . 103

6.6 Numerical Results . 105

7 Ejector Refrigeration System 108

7.1 Introduction . 108

7.2 Ejector Refrigeration Systems . 109

7.3 A Brief History of CO2 as Refrigerant . 111

7.4 State of the Art . 111

7.5 Layout of the Test Stand . 112

7.6 Ejector Model . 113

7.7 Measurements . 115

7.8 Numerical Results . 118

8 Conclusions and Outlook 121

8.1 Conclusions . 121

8.2 Future Development . 123

9 References 125

A Nomenclature 134

B Design Rules 137

C Steady-State Object-Oriented Modeling of Fluid Systems 138

C.1 Connectors . 138

C.2 Compressor Model . 139

C.3 Gas Cooler Model . 139

C.4 Evaporator Model . 140

C.5 Internal Heat Exchanger . 140

C.6 Accumulator Model . 140

C.7 Valve Model . 141

C.8 Loop Breaker Model . 141

D Partial Derivatives of Fluid Properties 142

D.1 One-Phase State . 142

D.2 Two-Phase State . 143

D.3 Further Partial Derivatives . 144

IX

Contents

E Additional Component and System Models 145
E.1 The StateViewerInterface . 145
E.2 Model for Prototype Peltier Heat Exchanger 146

X

Chapter 1

Introduction

Computer simulations are one of the foundations of modern engi-
neering. A lot of engineering knowhow is coded into system mod-
els that allow for a deeper understanding and reliable predictions
of system behavior. This chapter motivates the development of
a new object-oriented Modelica library to simulate and analyze
thermodynamic systems and provides background information on
the development of modern modeling languages especially of Mo-
delica.

1.1 Motivation

Over the past decades, computer simulations have become a central foundation of modern
engineering. A large number of simulation tools has been developed to solve a wide range of
engineering problems. This thesis focuses on the analysis of general strategies for the devel-
opment of object-oriented component model libraries and proposes suitable basic structures.
It presents a new model library to compute fluid properties as well as a new component model
library written in the free modeling language Modelica. The component models are either
zero-dimensional, i.e., do not take into account spatial distributions, or one-dimensional, i.e.,
take into account spacial distributions in one spatial direction. The idea for the new object-
oriented component model library emerged from the experience with other libraries in this
field. These libraries very often feature an object-oriented structure that makes it very hard
to trace errors or to extend or customize the library due to its complexity. The new com-
ponent model library offers a unique structure that is simple to understand and that fulfills
the requirements of developers, simulation specialists, and design engineers. The equations
in each component model are formulated to yield a numerically efficient differential algebraic
equation (DAE) system. The component model library uses a new fluid property library that
offers a generalized and numerically efficient way to include external fluid property compu-
tation codes in Modelica and a number of software tools. Both libraries are extended by a
team of developers and used to analyze various thermodynamic systems. Two demonstrating
examples are presented as a proof of concept for the new model libraries and to show possible
applications.

1

Chapter 1. Introduction

Computer simulations in the field of system simulations allow for a detailed understanding
of components and systems as well as for the reliable prediction of system behavior. System
simulations also allow for the development and evaluation of control strategies by modeling
the control process. Many simulation tools are designed for specific application domains and
feature proprietary modeling languages for the formulation of user models. Free equation-
based modeling languages such as VHDL-AMS (Ashenden et al., 2002) or Modelica (Tiller,
2001) that are supported by a number of different simulators overcome these limitations.
These languages also allow for the coupling of models from different domains, for example
the coupling of a system model with an electronic controller in a single simulation. As
illustrated in figure 1.1, three types of users can be identified that develop and work with
component model libraries written in the modeling languages mentioned above.

Developer Simulation Specialist Design Engineer

Figure 1.1: Types of users of modern modeling languages at the example of Modelica.

Figure 1.1 uses the example of a Modelica model to demonstrate the different types of
users. The left picture shows the source code of the model. The developer is used to work in
this layer. His major interests on the component model level are to maintain existing models
by extending, simplifying, or fixing them and to implement new models. The equations for-
mulated in each component model represent the engineering knowhow of the developer or an
entire team of developers and should thus be formulated in a sustainable way with as little
overhead as possible. On the component model library level the developer is responsible for
the over-all structure as well as for the combination of different models into subsystems and
systems. The developer that initially creates a new component model library can handle al-
most any structural complexity since he knows all important relations and details. But other
developers that are interested in the maintenance and extension of an existing component
model library also need to understand its object-oriented structure. These developers obvi-
ously prefer a structure of the models as well as of the library that is simple to understand
and as intuitive as possible.

The simulation specialist uses the component models provided by the developer and com-
bines them into system simulations as depicted in the center picture in figure 1.1. His expertise
is a good knowledge of system simulations and of numerical solution techniques. The simu-
lation specialist might have to dig into the source code of individual component models to

2

1.2. A Brief History of Modeling Languages

improve the solution process or sometimes even to obtain a solution. He needs to understand
the structure of component models and of the component model library without having to
spend too much time on it. Automated visualization of the numerical solution process and
of the obtained numerical results are very important for the simulation specialist for a fast
and reliable analysis of the developed system models.

The third type of users is the design engineer. A design engineer often needs to answer
specific questions about the system behavior of existing real-world systems or to evaluate
the system behavior of new systems to be built in the future. He uses the system models
prepared by the simulation specialist and modifies parameters to analyze the system behavior.
The structure of the component model library and of the models is of little concern to him.
He instead requires specialized tools that allow for a convenient specification of parameters
during preprocessing or for extensive parameter studies. Like the simulation specialist, the
design engineer needs tools that allow for a quick visualization of numerical results so that
he can evaluate the characteristic properties of the examined systems.

Sustainable component model libraries have to be designed to support all three types of
users. Currently available component model libraries in the field of thermodynamic system
simulation focus on one or two of the mentioned types of users. The new component model
libraries proposed in this thesis take into account the special requirements of all three groups:
They feature an object-oriented structure that is simple to understand yet flexible enough for
extensions. The equations in the component models such as the conservation laws or the heat
transfer and pressure drop correlations are formulated in a numerically efficient and compre-
hensible way. Two demonstrating examples describing a prototype Peltier water-water heat
exchanger and an ejector refrigeration system are provided as a proof of concept. Further-
more, software tools are presented that allow for an automated object-oriented analysis of
component model libraries and of component models and for the automated visualization of
numerical results during and after the solution process. The new open-source component
model libraries are already used and extended by a team of developers at the Institut für
Thermodynamik (IfT) and the TLK-Thermo GmbH.

The following section provides a brief overview of the historical development of modeling
languages and especially of Modelica. Section 1.3 gives an overview of the state of the art
regarding existing component model libraries in the field of thermodynamic simulations. The
major objectives of this thesis are summarized in section 1.4. This chapter closes with a
presentation of the structure of the thesis at hand.

1.2 A Brief History of Modeling Languages

Figure 1.2 shows a timeline covering the development from the third generation of procedural
languages in the 1950s all the way to the release of the Modelica 3.0 specification in 2007. The
major goal of modeling languages is to model real-world systems using ordinary differential
equations (ODE) that are translated and solved by a simulation tool. For a long time in
the history of programming languages, equations were very rare. Even the first version of

3

Chapter 1. Introduction

Lisp and computer algebra systems focused more on formula manipulation than on direct
simulation (Fritzson, 2004).

from 54

from 65

from 90

96

97

02

07

Object-Oriented
High Level Languages:

Simula, Smalltalk,
Delphi, C++, ...

Third Generation
(Procedural) Languages:

FORTRAN, COBOL,
ALGOL, BASIC, Pascal, C, ...

Object-Oriented
Modeling Languages:

ASCEND, Dymola, gPROMs,
NMF, ObjectMath, Omola,
SIDOPS+, Smile, U.L.M.,

VHDL-AMS, ...

Modelica
Initiative

1st Modelica
Specification
(Version 1.0)

Modelica
Specification
(Version 2.0)

Modelica
Specification
(Version 3.0)

Figure 1.2: Timeline of the Modelica development.

Simula I is a superset of Algol 60 introduced by Dahl and Nygaard (1966). It quickly
got a reputation as a modeling language but also served as a general purpose programming
language. Simula I was displaced by Simula 67 that took full advantage of the newly invented
inheritance mechanism. Simula 67 introduces objects, classes, subclasses, virtual methods,
coroutines, and discrete event simulation and could be specialized for many domains including
system simulations. Simula was used as a platform for the development of Smalltalk that
was initially released in the 1970s. Smalltalk extends object-oriented programming by the
integration of graphical user interfaces and interactive program execution. The development
of C++ that started in 1979 brought the key concepts of Simula in the C programming
language trying to overcome the main disadvantage of Simula which is that is was a rather
slow language (Nance, 1995).

Elmqvist (1978) presented a new modeling language in his PhD thesis that he called
Dymola. This stands for Dynamic Modeling Language and is not to be mixed up with to-
day’s meaning of Dymola which is Dynamic Modeling Laboratory. Elmqvist was the first
to describe the importance of modeling with acausal equations using hierarchical submod-
els and methods for automatic symbolic manipulation to support the solution of equations
(Fritzson, 2004). The Dymola language was enhanced in 1993 by including inheritance, a
mechanism for discrete-event handling, and more efficient solution methods. Other model-
ing languages at the same time introduced important new features. The GASP-IV system
described by Pritsker and Hurst (1973) is a FORTRAN-based modeling language introduced
in 1974 and replaced by the GASP-V system a few years later that introduced integrated
continuous-discrete simulation. The Omola language that was first released in 1989 is another
equation-based and object-oriented modeling language that supports hybrid simulation (see
Mattsson and Andersson, 1992). Other early object-oriented modeling languages are NMF

4

1.3. State of the Art in Thermodynamic System Simulations

(Neutral Modeling Format) introduced in 1989 and primarily used for building simulation,
Allan-U.M.L., ASCEND, gPROMS, SIDOPS+ supporting bond graph modeling, and SMILE
initially released in 1995 and influenced by Objective C. ObjectMath is an object-oriented
computer algebra and simulation system integrated with Mathematica that was initially de-
veloped by Peter and Dag Fritzson starting in 1989 (Viklund and Fritzson, 1995).

This fairly brief survey of the history of object-oriented modeling languages already shows
one major problem that simulation specialists faced in the late 1990s: The shear number of
modeling languages made it hard to decide which language to use for solving a specific prob-
lem. Against this background, a group of tool designers, application experts, and computer
scientists joined forces in September 1996 within the scope of the ESPRIT project Simula-
tion in Europe Basic Research Working Group (SiE-WG). This group brought together the
specialists behind Dymola, Omola, ObjectMath, NMF, Allan-U.M.L., SIDOPS+, and Smile
(Elmqvist and Mattson, 1997). The major goal of this group was to write a white paper on
object-oriented modeling language technology in which the possible unification of existing
modeling languages should be discussed besides more general topics. However, the group
quickly moved ahead from just proposing a possible unification of existing languages and
moved to the more ambitious goal of creating a new modeling language from scratch. The
new modeling language was called Modelica. The first Modelica language description was
published on the web in September 1997. The unique feature of Modelica is the combination
of an equation-based object-oriented modeling language with a technology for graphical edit-
ing that allows for the design of model libraries with predefined component models that can
be used graphically to assemble systems. The small group of developers of Modelica managed
to find support within EuroSim and within the Society for Computer Simulation International
(SCS). In February 2000, the Modelica Association was founded as an independent nonprofit
organization to support the further development of the Modelica language and the Modelica
Standard Library. The Modelica language itself allows the formulation of dynamic model
properties in a declarative way through equations. The newest language specification is Mo-
delica 3.0 which allows for the simulation of systems containing millions of equations which
has practically not been possible with the Modelica 2.x language features. The Modelica
Association is formed by people from the industry as well as academic researchers covering a
wide range of different educational backgrounds. The diversity of the Modelica Association
is one of its biggest advantages. The object-oriented features of Modelica are explained in
chapter 2.

1.3 State of the Art in Thermodynamic System Simulations

The simulation of thermodynamic systems such as refrigeration, air-conditioning, and heat-
pump systems has been the focus of many researchers over the last decades. A number
of publications using various modeling languages and tools have been presented regarding
this topic. This section describes the state of the art for component model libraries for
thermodynamic systems. Other good introductions to this field including comprehensive
overviews can be found in the theses of Tegethoff (1999) and Pfafferott (2004).

5

Chapter 1. Introduction

Component model libraries for the simulation of thermodynamic systems exist in different
forms. One form is the bundling of a closed-source component model library with a simulation
tool into a single product. Examples for such bundled products are Sinda/Fluint (Cullimore
and Hendricks, 2001), Flowmaster2 (Burke and Haws, 2001), or AMESim (Roccatello et al.,
2007). These software tools usually focus on simulation specialists and design engineers by
providing ready-to-use component models that can be parameterized but not changed by the
user. The development of new user-defined component models is usually supported but not
the design of completely new component model libraries. These software tools are thus not
applicable for the design of open-source component model libraries.

Other component model libraries are formulated in proprietary modeling languages and
can thus only be used with the according software tool. Becker (1996) and Hasse et al.
(1996) use the program system MATLAB/Simulink for the dynamic simulation of cold-storage
plants. The characteristics of MATLAB/Simulink require special user interventions to achieve
numerical convergency. Another tool with a proprietary modeling language is the Engineer-
ing Equation Solver (EES) developed by Klein (1999) for the steady-state and transient
simulation of thermodynamic systems. It supports non-linear algebraic systems of equations
and provides comprehensive fluid properties. The simulation tool CoolPack described by
Andersen et al. (1999) for the simulation of refrigeration systems was developed using EES.
Both presented languages do not support the creation of object-oriented component model
libraries.

Another form of component model libraries are simulation platforms written in common
programming languages such as FORTRAN or C++. These simulation platforms usually
contain a number of component models and provide a framework for new user-defined mod-
els. Examples for such simulation platforms are the GPA program system used by Adiprasito
(1998), the simulation platform in C++ developed by Tegethoff et al. (2004) that is described
in detail beneath, or the simulation software tool ACCO2 originally developed in FORTRAN
(Robinson and Groll, 2000) and then converted to C++ (Ortiz et al., 2003). All of these
simulation platforms use a procedural approach to formulate the describing equations within
each component model. The major drawback of this approach is that the possible intercon-
nections of components are limited due to the strict interface definitions that are required for
each component model. This limitation is overcome by equation-based modeling languages
presented in the following paragraph.

The most promising starting point for the development of an open-source component
model library are equation-based modeling languages such as VHDL-AMS (Ashenden et al.,
2002) or Modelica (Tiller, 2001) that are supported by a number of different simulators.
Simulators for VHDL-AMS are for example Advance MS, Smash, or Simplorer and simulators
for Modelica are for example Dymola, MathModelica, or SimulationX. VHDL-AMS is a
derivative of the hardware description language (HDL) described in the IEEE standard 1073-
1993 and includes analog and mixed-signal extensions (AMS) in order to define the behavior
of analog and mixed-signal systems according to IEEE 1076.1-1999 (Christen and Bakalar,
1999). VHDL-AMS is almost exclusively used for the modeling of analog, digital, and mixed
analog/digital circuits and is an industry standard modeling language. Although it can also

6

1.3. State of the Art in Thermodynamic System Simulations

be used to model heterogeneous real-world systems (see for example Haase et al., 2004),
only few component model libraries with very basic component models for the simulation of
thermodynamic systems are available. This is different for the relatively new object-oriented
equation-based modeling language Modelica (see also section 1.2). Many different component
model libraries are available in Modelica and have been presented at the five International
Modelica Conferences in 2000, 2002, 2003, 2005, and 20061, at other scientific conferences,
and in a number of journal articles (for example Otter et al., 1999-2000). The following
paragraphs provide information on the most advanced Modelica libraries for thermodynamic
applications.

Tummescheit, Eborn, and Wagner developed the ThermoFlow library that is a Modelica
base library for thermo-hydraulic systems described by Tummescheit et al. (2000). A more
detailed description including a couple of demonstrating examples can be found in Eborn
(2001). Eborn (2001) also discusses fundamental aspects regarding the design of model li-
braries. The ThermoFlow library uses multiple inheritance (see section 2.3.3) as the main
structuring method. Further applications of the library that was eventually renamed to
ThermoFluid are described in Tummescheit and Eborn (2002). Tummescheit (2002) also
describes general aspects regarding the design and implementation of object-oriented model
libraries. The ThermoFluid library was developed with the goal to design and implement
a well validated, easy-to-use model library for the dynamic simulation of thermo-hydraulic
processes. Pfafferott (2004) uses the models of the ThermoFluid library as a starting point
for the development of additional component models to simulate mobile CO2 air-conditioning
systems. He gives a detailed description of the fundamental physical models and uses mea-
surement results to validate the component models. Based on the ThermoFluid library, a new
Modelica library called ACLib was developed in a joint research project by DaimlerChrysler
AG, Airbus Deutschland GmbH, and the TU Hamburg-Harburg to simulate mobile R134a
and CO2 air-conditioning systems (see Limperich et al., 2005). Parts of this new ACLib were
used in the design process of the AirConditioning library developed by the Swedish company
Modelon AB (formerly Scynamics HB) and presented by Tummescheit et al. (2005a). A more
detailed description of the library including advanced compressor models initially developed
by Försterling (2003) is given by Tummescheit et al. (2005b). The AirConditioning library
is the currently most widely used Modelica library to simulate air-conditioning systems. It
is used by the Arbeitskreis Kälte- und Kreislaufsimulation of the German OEMs with par-
ticipation of Audi, BMW, Daimler, and Volkswagen for unified steady-state and transient
simulation of mobile air-conditioning systems. The structure of the AirConditioning li-
brary is rather complex indicating that this library focuses on design engineers and partly on
simulation specialists but not on new developers (see also section 2.7).

Within the scope of simulating thermo-fluid flow, the Modelica Fluid library has been
developed over the past years. This free Modelica library provides component models de-
scribing one-dimensional thermo-fluid flow in networks of pipes. The library is developed and
maintained by the Fluid Task Force that is part of the Modelica Association and was pre-
sented on two Modelica conferences (Elmqvist et al., 2003; Casella et al., 2006). The library

1See http://www.modelica.org for more information.

7

Chapter 1. Introduction

uses the fluid property library Modelica.Media which is part of the Modelica Standard Li-
brary to model fluid properties. This fluid property library tries to combine all possible fluid
models from ideal gases to two-phase fluids into a single framework to allow for an easy model
exchange. The resulting object-oriented structure is rather complex and the library is hard
to understand for new developers and users even with a good knowledge of object-orientation
(see also section 2.7). The development of the Modelica Fluid library itself has proven to be
very difficult due to the different perceptions of the participating developers regarding fluid
flow simulations. Especially the connector design and the formulation of the conservation
laws have been a constant source of disagreement. Parts of the ongoing discussion can be
found in the minutes of the Modelica Design Meetings. As of the time of writing, no final
release of the library has been made, but chances are that there will be an improved version
available after the next International Modelica Conference 2008 in Bielefeld.

Some of the basic ideas of the Modelica Fluid library such as the semiLinear() function
(see section 4.2) have been used in the design process of the open-source component model
library developed within the scope of this thesis. Another important starting point for the
new component model library was the object-oriented simulation platform for refrigeration,
air-conditioning, and heat-pump systems described by Tegethoff (1999).

Tegethoff (1999) provides an in-depth analysis of object-oriented techniques and a detailed
motivation for their application. The modeling of components and systems is described based
on the object-oriented description of the structure of the library. Tegethoff describes an ap-
proach for the formulation of the describing equations in each component model that marks
a transition between a purely algorithmic formulation and an equation-based approach. The
component model equations are transformed manually into an algorithmic formulation using
specialist expertise regarding the residues and the algebraic variables. Another focus of his
thesis is the determination and description of the air-side heat transfer and pressure drop cor-
relation for fin-and-tube heat exchangers. The simulation platform is implemented in C++.
The simulation results are validated with measurement results from bus air-conditioning sys-
tems with the refrigerants R134a and CO2. Lemke (2005) describes two-stage liquid chillers
using the refrigerant CO2. He uses the simulation platform described by Tegethoff (1999) for
steady-state simulations and Modelica models for transient simulations. The dynamic models
use a specific formulation of the momentum balance first presented by Tegethoff et al. (2004)
which assumes the time derivative of pressure to be locally constant at each pressure level.
Lemke uses the results from a test facility to validate the numerical results.

The analysis of the state of the art in the simulation of thermodynamic systems showed
the need for a new approach to structure component model libraries to obtain a sustainable
library structure that is simple to understand and powerful to allow for various extensions.

1.4 Objectives

The main objective of this thesis is the analysis of general strategies for the development
of object-oriented component model libraries as well as the proposal of suitable basic struc-
tures. The applicability of the proposed strategies and structures shall be demonstrated in a

8

1.5. Structure of the Thesis

new object-based fluid property library and a component model library for thermodynamic
systems to be developed in the equation-based modeling language Modelica.

In order to allow for an object-oriented analysis of Modelica component library graphical
representations for all object-oriented features of the modeling language shall be formally
introduced. Using these graphical representations a tool for the automated generation of class
diagrams shall be developed to allow for an easy evaluation of the object-oriented structure
throughout the entire design process.

The new fluid property library shall be based on a generalized approach to include external
fluid property computation codes in Modelica. It shall be simple to extend to cover additional
fluid property computation codes and shall be numerically efficient to be compatible with
Modelica-internal solutions.

The design of the new model library for components and systems shall be based on the
developed object-oriented analysis. All balance equations shall be formulated in an easy and
comprehensible way in base components. All component models shall be easy to understand
and to use to improve the process of development, maintenance, and application on all three
described levels.

Furthermore, a software tool for an automated online visualization of the solution process
and of numerical results in relevant diagrams such as pressure-enthalpy diagrams shall be
developed to allow for a quick and reliable evaluation of numerical results and for the detection
of modeling errors or numerical difficulties during the solution process.

Applications covering different fields of thermodynamic systems shall be presented to
demonstrate the capabilities of the two new component model libraries. The selected ap-
plications shall furthermore show the extendibility and multidisciplinarity of the proposed
approach.

The following section describes the structure of this thesis that follows in large parts the
ordering of the objectives presented above.

1.5 Structure of the Thesis

Chapter 2 describes the fundamentals of an object-oriented analysis based on two simple
relations: The is-a-relation and the part-of -relation that are used to describe the structure
of the new component model libraries. It also introduces graphical representations for all
object-oriented relations in Modelica based on the UML standard. Simple examples and
Modelica code listings are provided to illustrate the different relations. A set of design rules
for a good design of object-oriented model libraries are formulated and some existing Modelica
libraries are analyzed using the proposed rules.

Chapter 3 explains the different approaches to model fluid properties currently available
in Modelica. It extends these approaches to allow for a standardized inclusion of external fluid
property computation codes. Based on the analysis of the currently available approaches, a
new object-based approach to model fluid properties is presented that is then used throughout
the entire rest of the thesis.

9

Chapter 1. Introduction

The new object-oriented component model library to analyze thermodynamic systems
is presented in chapter 4. This chapter focuses on the basics of the new library describing
the formulation of the conservation laws, selected component models, as well as the object-
oriented structure of complex component models such as the heat exchangers. The last
section of this chapter discusses some important numerical aspects.

Chapter 5 describes visualization techniques that allow for an automated analysis of the
object-oriented structure of Modelica libraries as well as for the thermodynamic interpretation
of the solution process and of the numerical results.

Chapters 6 and 7 present two demonstrating examples extending the new component
model library to allow for the simulation of a prototype Peltier water-water heat exchanger
and an ejector refrigeration system.

The last chapter closes with a conclusion summarizing the obtained results and provides
recommendations for future work.

10

Chapter 2

Object-Oriented Modeling

A good knowledge of the basic principles of object-oriented mod-
eling is the key to designing component model libraries that can
be developed and used by a team of developers and simulation
specialists. This chapter formally introduces graphical represen-
tations for all object-oriented features of Modelica based on the
UML standard as a standard to be used in future Modelica pub-
lications. The major design rules for the new component model
library are formulated based on a thorough object-oriented anal-
ysis. The methods and formalisms introduced in this chapter are
used throughout the rest of the thesis.

2.1 Introduction

The overall objective of this thesis is the proposal of a component model library with an
object-oriented structure that is simple to understand for students, developers, and simu-
lation specialists and that allows for simulating steady-state and transient thermodynamic
systems. To achieve this goal, a thorough object-oriented analysis of the library structure
has to be the starting point for the development as well as a benchmark throughout the
entire design process. This chapter describes a simple object-oriented analysis based on two
relations: The part-of -relation representing composition or aggregation and the is-a-relation
representing inheritance. The result of this object-oriented analysis is a class diagram which is
a graphical representation of the analyzed problem. Different formats exist for this graphical
representation. The most widely used format is the graphical notation defined in the Uni-
fied Modeling Language (UML), a standardized specification language for object modeling
(see Fowler, 2003). Many Modelica-related publications such as Eborn (2001), Tummescheit
(2002), or Fritzson (2004) use graphical notations from the UML without introducing them
formally. The results are minor differences in the graphical representations as well as an
incomplete set of elements due to the fact that object-oriented Modelica features like replace-
able object types and replaceable local classes are not covered. This chapter makes up for this
shortfall by formally introducing UML-style notations for all object-oriented Modelica fea-
tures. Short Modelica code examples are provided for each language feature to demonstrate

11

Chapter 2. Object-Oriented Modeling

its implementation. The presented graphical representations ensure a consistent graphical
description of Modelica problems.

Object-oriented modeling originated with Simula, an Algol-based language that supported
discrete simulation as presented in section 1.2 (Booch, 1995). Object-oriented modeling is
based on objects with well-defined properties such as dimensions or transfer behaviors. Each
object represents a fragment of reality and the combination of multiple objects allows for
the construction of complex systems. Modelica uses object-orientation primarily as a struc-
turing concept. Other concepts known from object-oriented programming languages such as
dynamic object creation/deletion and dynamic message passing are not part of the Mode-
lica language. The most commonly mentioned advantages of object-oriented programming
compared to procedural programming are:

• reusability of the developed source code

• good extensibility and readability of the developed source code

• possibility to develop large libraries

• good feasibility for team work

• polymorphic integration of components

Many scientific publications address the advantages and disadvantages of object-oriented
programming versus procedural programming with differing results. A very good introduction
to object-oriented design including a detailed discussion of all presented features is given by
Eckel (2006).

This chapter is structured in the following way: Classes and the fundamental object-
oriented relations are explained in sections 2.2 and 2.3 respectively. Polymorphism that is
used to make types and classes exchangeable in Modelica is explained in section 2.4. Graphical
notations for polymorphic relations based on the UML standard are introduced to allow for
a consistent representation of these relations in class diagrams. Some of the potential pitfalls
in object-oriented modeling are discussed in section 2.5.

Accessing object attributes is very important in Modelica especially when combining
multiple objects to a system. A complete overview of different techniques to access object
attributes in Modelica including examples is given in section 2.6. Section 2.7 evaluates some
existing Modelica libraries based on the formulated design rules to point out possible dis-
advantages if the proposed design rules are violated. A short overview of all design rules is
given in appendix B.

Like many other programming languages, Modelica defines the data types Boolean,
Integer, Real, String, and Enumeration. These data types can be further specialized
using keywords such as parameter or constant. The full set of keywords and further details
can be found in the language definition itself (Modelica Association, 2005) and in secondary
Modelica literature such as Fritzson (2004).

12

2.2. Classes

2.2 Classes

Classes are the basic elements of any object-oriented analysis. A class is the abstraction of
a number of objects with similar properties. It has to be able to represent all important
features of the objects it is representing. Objects are created based on this abstraction and
are called instances or - if they are part of a system - components. It is common practice
that class names begin with an uppercase letter and object names with a lowercase letter to
easily discriminate between both of them. This is also stated in the first design rule. Note
that there are some common exceptions to this rule such as writing T for a temperature. It is
furthermore common practice in Modelica to include the path when referencing class names.

Design Rule 1: Class names should begin with an uppercase letter whereas object
names should begin with a lowercase letter. Exceptions to this rule
are allowed for object names if they refer to common abbreviations
marked by an uppercase letter and if chances are low to mistake them
as class names.

There are different notations to present classes in class diagrams (OMG, 2007; Martin and
Odell, 1998). The Unified Modeling Language (UML) developed by the Object Management
Group is a standardized object-oriented language to model software. The UML notation is a
de facto standard and is used throughout this thesis to visualize classes and relations between
classes. A class is marked by a rectangle with several sections as shown in figure 2.1. Most
commonly, separate sections are used for the class name, the attributes of the class, and its
methods.

CarClass name
Attributes
Methods

Figure 2.1: Illustration of a class in UML notation.

In Modelica all dynamic model properties are expressed in a declarative way through
equations (Fritzson, 2004). Methods known from object-oriented programming languages
like Java or C++ are not defined in Modelica. Attributes in Modelica classes can have two
different levels of visibility, public or protected. Only attributes defined as public can be
read and updated from code that has access to an instance of a Modelica class. Attributes
defined as protected can only be accessed from code inside the class.

2.3 Object-Oriented Relations

A number of elements exist in the UML to model relations between classes. As far as Modelica
is concerned only composition, aggregation, and inheritance are of importance. These three
relations are explained in this section. Other relations such as multiplicity or realization also
covered by the UML are not defined in Modelica.

13

Chapter 2. Object-Oriented Modeling

2.3.1 Composition

Composition is a technique to combine several objects to form a new system. The objects are
becoming components of the new system and the system itself is a container class. Figure 2.2
shows a simple example for a composition, which can also be called a part-of -relation: Four
tires and an engine are part of a car.

EngineTire
4

Car

Figure 2.2: Visualization of composition in UML notation.

Code listing 2.1 shows the Modelica code for the composition shown in figure 2.2. An
engine and a vector with four instances of type Tire are part of the model Car.

model Tire ”Tire model”
end Tire;

model Engine ”Engine model”
end Engine;

model Car ”Car model”
Tire[4] tire ”Tires”;
Engine engine ”Engine”;

end Car;

Code Listing 2.1: A simple example for composition in Modelica.

2.3.2 Aggregation

Aggregation differs from ordinary composition by not implying ownership. Composition
is usually implemented in a way that an object contains another object as shown in code
listing 2.1. In aggregation, the object may only contain a reference or a pointer to the other
object. The inner/outer-concept in Modelica can be seen as aggregation although the term
aggregation has not yet been used for this concept in any Modelica-related publication. Any
composed object in Modelica can be marked with the prefix inner. This allows for referencing
this object further down in the instance hierarchy using the prefix outer. An object specified
with the prefix outer is thus only a reference to another object. Note that the inner/outer-
concept in Modelica can also be used for referencing type definitions which goes beyond the
scope of this section. Refer to the Modelica language specification (Modelica Association,
2005) for further details.

14

2.3. Object-Oriented Relations

Figure 2.3 shows an example for aggregation in Modelica: The object RoadConditions

models the road conditions that are important for the tire model but that are not owned by
the model Tire but by the VehicleTestBench in this simple example.

RoadConditions
4

Car VehicleTestBench

Tire

Figure 2.3: Visualization of aggregation in UML notation.

Code listing 2.2 shows the Modelica code for the example presented in figure 2.3. An
object declared with the prefix outer references the object with the same name but using
the prefix inner which is nearest in the enclosing instance hierarchy of the outer element
declaration. The object roadConditions in Tire therefore references the object instantiated
in VehicleTestBench.

1 model RoadConditions ”Road conditions model”
2 end RoadConditions;
3
4 model Tire ”Tire model”
5 outer RoadConditions roadConditions ”Road conditions”;
6 end Tire;
7
8 model Car ”Car model”
9 Tire[4] tire ”Tires”;

10 end Car;
11
12 model VehicleTestBench ”Vehicle test bench model”
13 inner RoadConditions roadConditions ”Road conditions”;
14 Car car ”Car”;
15 end VehicleTestBench;

Code Listing 2.2: A simple example for aggregation in Modelica.

Using the prefix inner for roadConditions in line 13 of code listing 2.2 can also be seen as
a widening of the scope of this object since it can now be referenced in other objects further
down in the instance hierarchy. A further discussion of the inner/outer-concept can be
found in section 2.6.

2.3.3 Inheritance

The third important relationship between classes in Modelica is inheritance. Inheritance in
object-orientation means that all attributes and methods are passed from the parent to the
child class. Inheritance can be regarded as an is-a-relation. It is very important to understand
that inheritance in object-orientation is not the same as heredity which is the transfer of some

15

Chapter 2. Object-Oriented Modeling

characteristics from parent to offspring through their genes. This is even more confusing in
German since the same word, Vererbung, is used in both contexts. A simple example for
inheritance is shown in figure 2.4: A car and an airplane are both a means of transportation.

AirplaneCar

<<partial>>
MeansOfTransportation

Figure 2.4: Visualization of inheritance in UML notation.

Inheritance can be achieved in two different ways in Modelica. The first way is using the
keyword extends as shown in code listing 2.3. The keyword partial indicates that the model
MeansOfTransportation cannot be instantiated but has to be inherited before instantiation.

partial model MeansOfTransportation ”Partial base model for means of transportation”
end MeansOfTransportation;

model Car ”Car model”
extends MeansOfTransportation;

end Car;

model Airplane ”Airplane model”
extends MeansOfTransportation;

end Airplane;
Code Listing 2.3: A simple example for inheritance in Modelica.

The second way to achieve inheritance in Modelica is based on the type system of Modelica
itself. Modelica uses a type system inspired by Abadi and Cardelli (1996) (see also Pierce,
2002) which is a structural type system as opposed to nominal type systems. In this type
system, two classes are type equivalent if they possess the same public attributes. Code
listing 2.4 shows a very simple example for type equivalency using the Cardelli type system.
It should be noted that not only the types but also the names of the attribute have to be
identical.
model Person

String firstName ”First name”;
String lastName ”Family name”;

end Person;

model Student
String firstName ”First name”;
String lastName ”Family name”;

end Student;

Code Listing 2.4: Type equivalency in the Cardelli type system.

Inheritance or subtyping is achieved in the Cardelli type system without using an explicit
keyword. A class that possesses all public attributes of another class and additional public
attributes is a subtype of the other class. Code listing 2.5 shows a very simple example of
subtyping using the Cardelli type system.

16

2.3. Object-Oriented Relations

model Person
String firstName ”First name”;
String lastName ”Family name”;

end Person;

model Student
String firstName ”First name”;
String lastName ”Family name”;
Integer studentID ”Student ID number”;

end Student;

Code Listing 2.5: Subtyping in the Cardelli type system.

Throughout the entire thesis, inheritance is treated as an is-a-relation which is not the case in
many books about object-oriented programming. Figure 2.5 shows an example for inheritance
according to Fritzson (2004).

VerticalLineVerticalLine

PointPoint

Figure 2.5: UML class diagram for usage of inheritance. The left example illustrates a
common usage of inheritance that is discouraged by design rule 2.

The VerticalLine in the left class diagram inherits the coordinates from Point and adds
a length. This cannot be expressed using an is-a-relation. The right class diagram shows an
alternative version using composition. The VerticalLine has a Point for example named
startingPoint and adds a length. The inheritance example from figure 2.5 yields an object-
oriented structure that is less intuitive since it cannot be described using an is-a-relation.
This motivates the second design rule for component model libraries.

Design Rule 2: Inheritance should only be used if the relation between two classes can
be described as an is-a-relation.

The Modelica Standard Library uses inheritance in many places to copy graphical information
into a class as shown in code listing 2.6. Again the statement an Add3-block is a block icon
is plainly wrong and the usage of inheritance is discouraged by design rule 2.

block Add3 ”Output the sum of the three inputs”
extends Interfaces.BlockIcon;
... // further code omitted

end Add3;

Code Listing 2.6: Example for inheritance used in the Modelica Standard Library to in-
herit graphical information.

Inheritance is required for polymorphism that is one of the main features of object-oriented
programming. Polymorphism allows for exchanging the type of an object during instantiation
as described in section 2.4.

17

Chapter 2. Object-Oriented Modeling

2.3.4 Multiple Inheritance

Modelica also supports multiple inheritance. This means that a class can be derived from
more than one base class. Figure 2.6 illustrates an example for multiple inheritance. The
Modelica code for this example is shown in code listing 2.7. The class ChristophRichter

extends from Student as well as from Person.

Person
String firstName
String lastName

Student
String firstName
String lastName
Integer studentID

ChristophRichter

Figure 2.6: UML class diagram for multiple inheritance example.

In order to understand how multiple inheritance works in Modelica, it is important to
note that inheritance in Modelica differs from inheritance known from other object-oriented
programming languages. In Modelica the data and behavior of the base class such as attribute
declarations and equations are copied to the derived class during inheritance. This seems to
yield a problem when an attribute in a base class has the same name as a local attribute in
the derived class. However two attributes with the same name are legal Modelica if the two
attribute declarations are identical. The two attributes are merged into a single declaration.
Note that the example presented in code listing 2.7 is only legal because the modifications of
firstName and lastName are identical.

model Person
String firstName ”First name”;
String lastName ”Family name”;

end Person;

model Student
String firstName ”First name”;
String lastName ”Family name”;
Integer studentID ”Student ID number”;

end Student;

model ChristophRichter
extends Person(
firstName=”Christoph”,
lastName=”Richter”);

extends Student(
firstName=”Christoph”,
lastName=”Richter”,
studentID=2614289);

end ChristophRichter;

Code Listing 2.7: Multiple inheritance example in Modelica.

Equations are copied from the parent class to the child class during inheritance but are not
merged even if they are mathematically identical. This yields an over-determined system of
equations in many cases.

Multiple inheritance has been discussed extensively since the introduction of object-
orientation. Some object-oriented programming languages such as C++, Perl, or Python
support unlimited multiple inheritance. Other languages like Java or C# allow multiple in-
heritance only for abstract interfaces. Multiple inheritance can easily lead to ambiguities

18

2.3. Object-Oriented Relations

often summarized as the diamond problem. Figure 2.7 shows a diamond problem taken from
Fritzson (2004).

HorizontalLineVerticalLine

Point

Rectangle

Figure 2.7: Multiple inheritance example from Fritzson (2004).

Note that the example for multiple inheritance shown in figure 2.7 is discouraged by design
rule 2 since it does not use inheritance for an is-a-relation. This is explicitly formulated in
the third design rule.

Design Rule 3: Multiple inheritance should only be used if each inheritance relation
fulfills design rule 2.

Furthermore it should be noted that the presented example for diamond inheritance adds
unnecessary complexity to the development process. In general the presented example can
be implemented in Modelica without any problems. The Point specifies the coordinates
and the VericalLine and the HorizontalLine add information about height and width

of the Rectangle. The coordinates defined in Point are merged into a single declaration in
Rectangle. The developer still has to cope with two problems:

1. Possible declarations or modifications of the coordinates in the classes VerticalLine

and HorizontalLine inherited from Point have to be identical in order for Modelica
to merge them into a single definition in Rectangle.

2. When designing the two classes VerticalLine and HorizontalLine, it seems natural
to introduce an attribute length in each class. This leads to a problem when the class
Rectangle is added in a later development step. The two attributes length will then
be merged into a single declaration yielding an incorrect model. This problem can be
overcome by renaming the two attributes length to height and width respectively.
However such a change breaks backwards compatibility which has to be avoided at any
cost in component model libraries.

These two problems demonstrate that using multiple inheritance in a component model li-
brary can cause major difficulties throughout the development process. This motivates the
fourth design rule.

Design Rule 4: Multiple inheritance should be avoided whenever possible.

19

Chapter 2. Object-Oriented Modeling

Scott Meyers, C++ expert and author of numerous books, phrases this design rule differently
in (Meyers, 1997) by saying: ”Use multiple inheritance judiciously”.

2.4 Polymorphism

Two different kinds of polymorphism defined in Modelica are explained in this section: Ex-
changeable object types and exchangeable local classes. The third kind allows for using
replaceable base classes and is not covered in this section since it is removed in Modelica 3.0
and should thus not be used.

Modelica uses the keyword replaceable to indicate an exchangeable class or object type.
A constraining type can be specified with the keyword extends. The constraining type
restricts the type of the class or object replacing another class or object to subtypes of the
constraining type. By default the original type is used as constraining type. The actual
exchange is performed in a modifier using the keyword redeclare.

2.4.1 Exchangeable Object Type

The exchangeable object type allows for making the data type of an instance replaceable.
Figure 2.8 shows an example for an exchangeable object type: A garage contains a car that
is either a VW or a BMW.

BMWVW

Garage

<<partial>>
Car

Figure 2.8: Polymorphism in Modelica, exchangeable object type.

Code listing 2.8 shows the corresponding Modelica code. In the class Garage a car is
instantiated which is a VW by default but whose type is made replaceable. It can be replaced
using the keyword redeclare in the modifier of an instance of Garage as shown in line 17.

1 partial model Car ”Partial car model”
2 String brandName ”Brand name”;
3 end Car;
4
5 model VW ”Model for VW car”
6 extends Car(final brandName=”VW”);
7 end VW;
8
9 model BMW ”Model for BMW car”

10 extends Car(final brandName=”BMW”);
11 end BMW;
12

20

2.4. Polymorphism

13 model Garage ”Garage model”
14 replaceable VW car extends Car ”Car in garage”;
15 end Garage;
16
17 model House ”House model”
18 Garage garage(redeclare BMW car);
19 end House;

Code Listing 2.8: Polymorphism in Modelica, code for exchangeable object type.

2.4.2 Replaceable Local Class

The replaceable local class is the second important kind of polymorphism in Modelica. It is
very often desired that a number of components in a system have the same - replaceable -
type (e.g., tires of a car, resistors in an electrical circuit). This behavior can be achieved by
using a replaceable local class as illustrated in figure 2.9.

BridgestoneMichelin

Car

4
<<partial>>

Tire

Figure 2.9: Polymorphism in Modelica, exchangeable base class.

Code listing 2.9 shows the corresponding Modelica code. The Car contains four tires
(lines 15 to 18) which are desired to be from the same brand. This is achieved by defining
a new local model TireModel in line 14 which is of type Bridgestone by default but can be
replaced with all subtypes of Tire. The tire model is redeclared in the modifier of the car
instance in line 21.

1 partial model Tire ”Partial tire model”
2 String brandName ”Brand name”;
3 end Tire;
4
5 model Bridgestone ”Model for Bridgestone tire”
6 extends Tire(final brandName=”Bridgestone”);
7 end Bridgestone;
8
9 model Michelin ”Model for Michelin tire”

10 extends Tire(final brandName=”Michelin”);
11 end Michelin;
12
13 model Car ”Car model”
14 replaceable model TireModel = Bridgestone extends Tire ”Tire model”;
15 TireModel tireFrontLeft ”Tire in front left position”;
16 TireModel tireFrontRight ”Tire in front right position”;

21

Chapter 2. Object-Oriented Modeling

17 TireModel tireRearLeft ”Tire in rear left position”;
18 TireModel tireRearRight ”Tire in rear right position”;
19 end Car;
20
21 model TireServiceGarage ”Model for a tire−service garage”
22 Car car(redeclare model TireModel = Michelin);
23 end TireServiceGarage;

Code Listing 2.9: Polymorphism in Modelica, code for exchangeable base class.

The choice of the keyword extends to specify the constraining type was not a good choice
since the same keyword is used for inheritance. The Modelica Association decided to change
this important keyword to constrainedby in the Modelica 3.0 specification (Modelica Asso-
ciation, 2007). Line 14 from code listing 2.9 becomes

14 replaceable model TireModel = Bridgestone constrainedby Tire;

2.5 More Pitfalls in Object-Oriented Modeling

Some potential pitfalls in object-oriented modeling were presented in the previous sections
and led to the formulation of the first four design rules. Some additional potential pitfalls in
object-oriented modeling are described in this section.

A common potential pitfall in object-oriented modeling is to design a library without
going through an object-oriented analysis beforehand. As described in the previous sections,
object-oriented modeling uses objects and their interactions to design complex models of real-
world problems. This requires the modeler to break down real-world problems into a suitable
class structure to design a model library (Fowler, 1996). This process is never straightforward
and its outcome depends on the perspective of the modeler. A simple example is used to
demonstrate the benefits of a thorough object-oriented analysis. Assume that a component
model library for means of transportation is to be developed from the following limited set
of models: MeansOfTransportation, Airplane, Ship, Car, Bicycle, Engine. Using these
models, a class diagram as shown in figure 2.10 could be developed.

Engine

MeansOfTransportation

BicycleAirplaneShip Car

Figure 2.10: UML class diagram to illustrate difficulties with library design.

The class diagram uses the is-a-relation and the part-of -relation to built up a hierarchical
order. The problem that arises is the ambiguity of the presented solution. The class dia-
gram indicates that airplanes have engines but what about gliders? There also are sail boats,
kayaks, canoes, and bicycles with electric motors. The structure of the library and of the

22

2.6. Accessing Object Attributes

component models depends on the problems to be simulated. If muscle powered boats are of
interest, a model MusclePoweredBoat could be introduced as a specialization of Ship. Prob-
lems like that are very common and can usually be avoided by performing an object-oriented
analysis of the system to model before starting to write the first line of code. It should also
be noted that it is very difficult or even impossible to change the structure of a model library
at a later stage without breaking user models. This motivates the fifth design rule.

Design Rule 5: The object-oriented structure of the component model library should
be constantly monitored and re-evaluated during the initial design pro-
cess since it can hardly be changed later on.

An automated software tool to generate class diagrams from Modelica as presented in sec-
tion 5.2 significantly simplifies this monitoring process.

Another additional potential pitfall in object-oriented modeling are models with many
levels of inheritance. Figure 3.1 shows the class diagram of the ExternalMedia library
that is described in the following chapter. Five levels of inheritance are used to get from
PartialMedium to TestMedium which is very likely to be incomprehensible from a structural
point of view for a new user without even going into details regarding the models. Some
people argue that this is a tool issue and that a good tool should allow to browse through
these different levels without any problems. However a library with a less deep inheritance
structure will still be simpler to understand. This is formulated in the sixth design rule.

Design Rule 6: Component model libraries should feature an inheritance structure that
is as flat as possible.

2.6 Accessing Object Attributes

There are four different ways to access public object attributes in Modelica which to the
author’s knowledge are not clearly listed and compared in any Modelica book or paper. Each
of these four ways has its own advantages and disadvantages that have to be taken into
account by library developers to find the most suitable solution. The following paragraphs
describe each of the four ways and identify their advantages and disadvantages.

2.6.1 Connectors

The most important way to access object attributes in Modelica is to use the specialized class
connector. Connectors which are often called ports describe the interaction possibilities of a
component, i.e., connectors in Modelica are the communication interfaces for communication
between a component and the outside world. Examples for connectors are an electrical pin,
a mechanical flange, or an input signal. Objects are connected using the connect() function
that takes two connectors as arguments (see also section 4.2). Most connections in Modelica
are acausal which means that the data flow in the connection in not explicitly specified.
Connections can also be made causal using the prefixes input and output in the declaration
of at least one of the connectors in the connection specifying the direction of data flow. Note

23

Chapter 2. Object-Oriented Modeling

that there also exists a third type of connections in Modelica called composite connections
which are described in detail by Fritzson (2004).

There are two kinds of variables in connectors, namely nonflow variables and flow vari-
ables. Nonflow variables represent some kind of potential or energy level (e.g., voltage,
pressure, or position) whereas flow variables represent some kind of flow (e.g., electrical cur-
rent, force, or fluid flow). The coupling established by the connect() function depends on
whether the variables in the connectors are nonflow variables (default) or flow variables. For
nonflow variables, equality coupling is applied and flow variables are coupled using sum-to-
zero coupling according to Kirchhoff’s current law. A simple example is provided in code
listing 2.10. A connector Pin is defined that models an electrical pin. Two instances of this
connector called positivePin and negativePin are created in Resistor. The CircuitBoard
model instantiates two resistors and connects the negativePin of the first resistor with the
positivePin of the second resistor using the connect() function.

connector Pin ”Pin of an electrical component”
Real v ”Potential of the pin”;
flow Real i ”Current flowing into the pin”;

end Pin;

model Resistor ”Ideal electrical resistor”
Pin positivePin ”Positive pin”;
Pin negativePin ”Negative pin”;
parameter Real R=1 ”Electrical resistance”;

equation
R∗positivePin.i = positivePin.v − negativePin.v;
positivePin.i + negativePin.i = 0;

end Resistor;

model CircuitBoard ”Simple circuit board”
Resistor[2] resistor ”Resistors”;

... // further code omitted
equation

connect(resistor[1].negativePin, resistor[2].positivePin);
end CircuitBoard;

Code Listing 2.10: Simple example for connectors and connect() in Modelica.

The described usage of instances of the Modelica class connector is sometimes referred
to as explicit connection structure. The counterpart to an explicit connection structure
is an implicit connection structure that does not require explicitly formulated connect()

functions but uses the inner/outer-concept also discussed in sections 2.3.2 and 2.6.4. Implicit
connections are described in detail by Fritzson (2004).

2.6.2 Direct Access

Public object attributes can be directly accessed in the equation section of the container
class after instantiation. Code listing 2.11 shows a simple example for a direct access. The

24

2.6. Accessing Object Attributes

equation for the air pressure of the spare tire is defined in the equation section of the car
model. The given example is legal in Modelica 2.x but will be illegal in Modelica 3.0 since the
tire model is not locally balanced, i.e., the local number of equations does not equal the local
number of unknowns. Direct access is very often an indication of ill defined model boundaries
and should be avoided wherever possible.

model Tire ”Tire model”
Real airPressure ”Air pressure”;

end Tire;

model Car ”Car model”
Tire spareTire ”Spare tire”;

equation
spareTire.airPressure = 3.2e5 − time;

end Car;

Code Listing 2.11: Example for direct access to object attributes.

2.6.3 Modifiers

In Modelica, modifiers can be used to change object attributes during instantiation. Code
listing 2.12 shows a simple example for the usage of a modifier. The model House contains a
parameter to specify the base area with default value of 100 m2. The model is instantiated in
Kanzlerfeld which is a district of Braunschweig. The instantiation can be regarded as the
creation of an unnamed class used only for the instance (or instances if an array dimension
is specified) created by the attribute declaration. This unnamed class is the building plan for
the created instance. In the example the House type of myHouse has its default declaration
equation for its member baseArea replaced by the value specified in the modifier.

model House ”Model for a house”
parameter Real baseArea=100 ”Base area in mˆ2”;

end House;

model Kanzlerfeld ”Model for district of Braunschweig”
House myHouse(baseArea=200) ”My house”;

end Kanzlerfeld;

Code Listing 2.12: Example for a modifier in Modelica.

Modifiers can not only be used to change parameters as shown in code listing 2.12, but also
to redeclare an exchangeable object type as shown in line 17 in code listing 2.8. Again,
an unnamed class is created that serves as type for garage where the original model VW is
replaced by BMW. The third way to use modifiers is to redeclare an exchangeable local class
as shown in line 21 in code listing 2.9.

Besides the presented ways to use modifiers in Modelica, it is also possible to provide
additional equations during instantiation. Code listing 2.13 shows an example where the
equation for the radio-active decay is not part of the model RadioActiveSample but specified
in the modifier during instantiation.

25

Chapter 2. Object-Oriented Modeling

model RadioActiveSample ”Model for radio−active sample”
parameter Integer n0=100 ”Initial number of atomic nuclei”;
parameter Real halfLife=10 ”Half−life”;
Real n ”Number of atomic nuclei”;

end RadioActiveSample;

model Laboratory ”Model for laboratory”
RadioActiveSample sample(n=sample.n0∗2ˆ(time/sample.halfLife))
”Radio−active sample”;

end Laboratory;
Code Listing 2.13: Example for a modifier in Modelica (to be avoided).

Although allowed in the language specification this usage of the modifier should be avoided
at any cost. Supplying equations for variables in the modifier is an indication of ill defined
model boundaries and should be completely avoided.

Note that the example from code listing 2.13 will become illegal in Modelica 3.0 because
RadioActiveSample is not locally balanced and only binding equations are going to be al-
lowed in modifiers. Binding equations are equations for parameters and for variables declared
as input. The language specification for Modelica 3.0 (Modelica Association, 2007) describes
the new restrictions in detail.

2.6.4 inner/outer-Concept

The inner/outer-concept in Modelica which was explained in section 2.3.2 can also be used
to access object attributes. In the given example (see code listing 2.2), the road conditions
can be specified by changing the attributes in the inner instance of RoadConditions in
the vehicle test bench. The changed road conditions are then visible in the tire model in
the outer instance of RoadConditions. The inner/outer-concept is a very elegant way to
provide information to models further down in the instance hierarchy. It is very often used for
general information that should be accessible from all levels of a hierarchical model such as
geometric information or ambient conditions (e.g., ambient pressure and temperature). The
new component model library described in detail in chapter 4 uses this concept in a couple
of places. The most important ones are:

• To propagate fluid property information from the basic cells to the heat transfer and
pressure drop models (see section 4.7)

• To provide geometric data to all levels of the heat exchanger models (see section 4.8)

• To propagate system information (e.g., total refrigerant mass) from components to the
system information manager and vice versa (see section 4.10.1)

Note that the inner/outer can unnecessarily complicate models if it is used the wrong
way. Information that is only relevant for a single component or small set of components
within a system should not be propagated using the inner/outer-concept but rather by using
modifiers or equations to avoid complexity. It is also important to keep in mind that models
with outer components can only be used when an inner component is specified further up
in the enclosing instance hierarchy.

26

2.7. Evaluation of Existing Libraries

2.7 Evaluation of Existing Libraries

This section evaluates particular parts of two existing component model libraries that vio-
late the formulated design rules and demonstrates the consequences. The first example is
taken from the fluid property library Modelica.Media that is part of the Modelica Standard
Library which is described in detail in chapter 3. It uses packages to model the fluid prop-
erties of various different fluids such as ideal gases, mixtures, or two-phase fluids. The class
diagram of this library is shown in figure 2.11. All 1,240 ideal gas packages extending from
SingleGasNasa except for H2O are skipped for simplicity. The fixed region water packages
extending from WaterIF97 fixedRegion are also skipped.

TableBased
Incompressible

PartialMedium
Interfaces

MoistAir
Air

MixtureGasNasa
IdealGases.Common

PartialCondensingGases
Interfaces

PartialMixtureMedium
Interfaces

PartialPureSubstance
Interfaces

PartialSimpleMedium
Interfaces

ConstantPropertyLiquidWater
Water

SimpleAir
Air

PartialSimpleIdealGasMedium
Interfaces

WaterIF97_base
Water

WaterIF97_ph
Water

WaterIF97_pT
Water

WaterIF97_fixedRegion
Water

PartialTwoPhaseMedium
Interfaces

IdealSteam
Water

DryAirNasa
Air

H2O
IdealGases.SingleGases

SingleGasNasa
IdealGases.Common

PartialLinearFluid
Interfaces

LinearWater_pT_Ambient
CompressibleLiquids

LinearColdWater
CompressibleLiquids

LinearWater_pT
CompressibleLiquids.Common

Figure 2.11: UML class diagram of Modelica.Media library included in the Modelica Stan-
dard Library 2.2.2. Additional 1,240 packages extending from SingleGasNasa

and all fixed region water packages extending from WaterIF97 fixedRegion

are skipped for simplicity.

The first thing to notice about the structure of the Modelica.Media library is the huge
number of classes. Having 1,241 ideal gas packages extending from SingleGasNasa just to
set some specific names and constants seems to be a flaw in the library design and un-
necessarily complicates the resulting structure. The second maybe even more fundamental
issue is the number of inheritance levels. The maximum number of inheritance levels in the

27

Chapter 2. Object-Oriented Modeling

Modelica.Media library is four (e.g., for IdealSteam). Even the inheritance tree for partial
base classes such as PartialTwoPhaseMedium is two levels deep and yields an even deeper
structure if new medium packages extend from these partial base classes. A good example for
this is the external fluid property interface developed within the scope of this thesis whose
class diagram is shown in figure 3.1. The inheritance tree in this library is five levels deep
making it very hard to trace declarations as well as the definition of methods even for devel-
opers that developed the library. A third problem with the structure of the Modelica.Media

library is that the chosen names are not always intuitive. A simple example is considered
to demonstrate this problem. The TableBased medium sounds like a very simple medium
model that uses tabulated values to interpolate fluid properties. But if it is a simple medium
model why is it not extending PartialSimpleMedium? All three presented points lead to the
proposal for a much simpler design for an object-based fluid property library that is described
in section 3.5.

The second example is taken from the ThermoFluidPro library that is used as a base
library in the AirConditioning library. The AirConditioning library is the most widely
used commercial Modelica library to simulate air-conditioning systems as mentioned in sec-
tion 1.3. One of the basic elements in the ThermoFluidPro library is the HXFluidFlowMB

which is the refrigerant-side base element in all heat exchanger models. The class diagram
of this model only visualizing inheritance relations is shown in figure 2.12.

HXFluidFlowMB
PipesAndVolumes

MBInterpolationChannel
ControlVolumes

<<partial>>
Pipe

Icons.Images

Volume2PortDS_ph
ControlVolumes

BaseGeometryVars
ControlVolumes.CommonRecords

<<partial>>
ThermalModel_ph

ControlVolumes

<<partial>>
RefrigerantProps
ControlVolumes

ThermoBaseVars
ControlVolumes.CommonRecords

<<partial>>
TwoPortDistributed

ControlVolumes.Balances

TwoPortAB
Interfaces.Static

Distributed
ControlVolumes.CommonRecords

Figure 2.12: UML class diagram of HXFluidFlowMB, the refrigerant-side base element of
heat exchanger models in the ThermoFluidPro library. Only inheritance is
shown.

28

2.7. Evaluation of Existing Libraries

The inheritance tree presented in figure 2.12 is five levels deep and uses multiple inheri-
tance in three places. It should also be noted that the inheritance relations in this diagram
cannot be expressed as is-a-relations. The basic design concept yielding a complex class
structure like that is described for the ThermoFlow library, one of the predecessors of the
AirConditioning library by Eborn (2001). The basic element in the ThermoFlow library is
the model of a control volume. This model is formed by inheriting from the partial thermal
model, the partial hydraulic model, and the medium property model using multiple inheri-
tance. Eborn (2001) states that by using multiple inheritance, ”the class tree becomes difficult
to visualize and understand since it will become a rather complicated network”. Despite this
fact, Eborn (2001) still regards the design pattern using multiple inheritance as superior. The
ThermoFlow library was renamed to ThermoFluid library during the development process.
Tummescheit (2002) who describes many of the design rules used for the ThermoFluid library
tries to disprove the general argument against multiple inheritance that it adds more com-
plexity than benefits and states that ”there are . . . situations when a solution using multiple
inheritance is simpler than other alternatives”. Multiple inheritance has thus ”to be used
with care”. He also argues that using multiple inheritance ensures a compact design espe-
cially when several different implementations of some equations exist and provides examples
to confirm this argument. He uses a quote from Abelson et al. (1985) that ”programs must be
written for people to read, and only incidentally for machines to execute”. The class diagram
in figure 2.12 shows that this principle is easily violated when using multiple inheritance as
explained in a simple example in section 2.3.4. The derived solution for the base element of
the refrigerant-side base element of all heat exchanger models is hard to understand for other
developers or simulation specialists and implementing new models within this structure or
finding modeling errors becomes a time consuming task. The refrigerant-side base element
for heat exchangers in the new component model library follows a much simpler design as
shown in figure 2.13. The RefrigerantCell model is described in more detail in section 4.7.

RefrigerantCell
Cells

Figure 2.13: UML class diagram of RefrigerantCell, the refrigerant-side base element
of heat exchanger models in the new component model library presented
in chapter 4. No inheritance is used. The complete class diagram of the
RefrigerantCell is shown in figure 4.13.

A consequence of the simple design of the RefrigerantCell is that the conservation laws
have to be formulated several times throughout the entire component model library since they
are not inherited into the component models using multiple inheritance. Figure 2.14 shows a
class diagram of selected component models from the new component model library. The gray
component models contain explicit formulations of the conservation laws. The duplication
of source code for the formulation of the conservation laws adds a slight overhead but is still
regarded as easier to understand and simpler to maintain than a complex object-oriented
structure as shown in figure 2.12. Examples for component models and the corresponding

29

Chapter 2. Object-Oriented Modeling

Modelica code that formulates the balance equations are given for the accumulator model in
section 4.4, for the refrigerant cell in section 4.7.1, and for the compressor in section 4.9.

CoCurrentFlowHX
FinAndTube

CounterFlowHX
FinAndTube

CrossFlowHX
FinAndTube

<<partial>>
PartialComponent

Internals.PartialBaseClasses

<<partial>>
PartialBoundary

Internals.Boundaries

<<partial>>
BaseHX

FinAndTube

AdiabaticTube
Tubes

RefrigerantCell
Cells

IdealAccumulator
Accumulators

Boundary
Boundaries

BoundaryWithInputs
Boundaries

BoundaryWithOutputs
Boundaries

SwashPlate
Compressors

<<partial>>
BaseSwashPlate

Compressors

SimpleOrificeValve
Valves

<<partial>>
PartialVolumelessComponent

Internals.PartialBaseClasses

Figure 2.14: Class diagram for selected component models from the new object-
oriented component model library. Composition is only shown for the
RefrigerantCell. The gray classes contain balance equations.

30

Chapter 3

Modeling of Thermo-Physical Fluid

Properties

The modeling of thermo-physical fluid properties has a significant
impact on simulations of thermodynamic systems. This chapter
presents a new extension to the Modelica.Media library based on
a generalized approach to include external fluid property compu-
tation codes. The presented approach is shown to be compatible
with available Modelica-internal solutions. Based on an object-
oriented analysis of currently available Modelica libraries to com-
pute fluid properties, a new object-based fluid property library
with a significantly simpler structure is presented that is used in
all new component models.

3.1 Introduction

The computation of fluid properties is a very important task when simulating refrigeration,
air-conditioning, and heat-pump systems and accounts for a significant and sometimes even
for the largest part of the required computing time. The design of a fluid property library
should thus focus on numerical efficiency as well as on reasonable, application-dependent
accuracy. Many existing fluid property libraries are purely function-based which means
that they provide functions to compute thermodynamic and transport properties from other
known properties. Using function-based fluid property libraries in an object-oriented pro-
gramming language tends to be cumbersome because of the mixing of two different program-
ming paradigms and does not take advantage of the object-oriented features presented in
chapter 2.

The Modelica Standard Library starting with version 2.2 features a fluid property library
called Modelica.Media that introduces a function-based and an object-based approach to
compute fluid properties in Modelica. Elmqvist et al. (2003) and Casella et al. (2006) de-
scribe the library and some applications in two papers presented at the International Mo-
delica Conferences in 2003 and 2006 respectively. Modelica packages are used as the basic
structuring concept to model fluid properties. Each medium package extends from a partial

31

Chapter 3. Modeling of Thermo-Physical Fluid Properties

base package called PartialMedium and implements the equations required to compute all
fluid properties. The Modelica.Media library contains ready-to-use medium models for ideal
gases, mixtures of ideal gases, water/steam, moist air, table-based incompressible fluids, and
generic linear fluids. A class diagram of the library is shown in figure 2.11. The function-based
approach provided by the Modelica.Media library is explained in section 3.2 and the object-
based approach and its unique advantages are presented in section 3.3. A major drawback
of the library is that all fluid property models have to be implemented in Modelica requiring
a time-consuming reimplementation of existing fluid property computation codes. The new
Modelica code can then only be used in Modelica models. This drawback can be overcome by
providing an interface to external fluid property computation codes that is compatible with
the interface defined in the Modelica.Media library. The new Modelica ExternalMedia

library developed in close cooperation with Prof. Casella from Politecnico di Milano is de-
scribed in section 3.4. It provides an interface to external fluid property computation codes
fully compatible with the Modelica.Media library and an interface library written in C++
to handle multiple external fluid property computation codes in an efficient way.

The object-oriented structure of the Modelica.Media library is quite complex as discussed
briefly in section 2.7 due to its attempt to provide a single interface for different types of
fluids such as gases, liquid, and refrigerants. Based on an object-oriented analysis and the
design rules presented in chapter 2, a new object-based fluid property library is presented in
section 3.5 that features a structure that is much simpler to understand by offering separate
medium models for different types of fluids. This differentiation of different fluid models
such as gases, liquids, and refrigerants requires an according differentiation regarding the
control volumes that is presented in section 4.7 in the following chapter. The new fluid
property library called TILFluids is used in all models in the new component model library
to analyze thermodynamic systems that is presented in chapter 4.

A simple valve model is used as a demonstrating example throughout this chapter to show
the differences between the various approaches to model fluid properties. Code listing 3.1
shows the Modelica code for PartialValve that is used as base class for all further valve
models. The equation to compute the density at the inlet is missing in this model and will
have to be supplied in the derived models. Bernoulli’s equation for compressible fluids is used
to compute the mass flow rate in line 19 of code listing 3.1.

1 import SI = Modelica.SIunits;
2
3 connector SimpleFluidPort ”Simple fluid port model”
4 SI.AbsolutePressure p ”Pressure”;
5 SI.SpecificEnthalpy h ”Specific enthalpy”;
6 flow SI.MassFlowRate m flow ”Mass flow rate”;
7 end SimpleFluidPort;
8
9 partial model PartialValve ”Partial base class for valve models”

10 SimpleFluidPort inlet ”Inlet port”;
11 SimpleFluidPort outlet ”Outlet port”;
12
13 SI.Density dInlet ”Inlet density”; // an equation for dInlet has to be given

32

3.2. Function-Based Computation of Fluid Properties

14 // in the derived classes
15 equation
16 inlet.m flow + outlet.m flow = 0 ”Static mass balance”;
17 inlet.h = outlet.h ”Static energy balance”;
18
19 inlet.m flow = 0.2e−6∗sqrt(2∗dInlet∗(inlet.p − outlet.p)) ”Bernoulli’s equation”;
20 end PartialValve;

Code Listing 3.1: Modelica code common to all valve models used to demonstrate different
approaches to compute fluid properties. An equation for the inlet density
dInlet has to be given in the derived valve classes.

3.2 Function-Based Computation of Fluid Properties

The classical approach to compute fluid properties is purely function-based which means
that unknown fluid properties are computed from known fluid properties using functions.
The inlet density in the valve model presented in code listing 3.1 can be computed using a
function that computes the density from the pressure and specific enthalpy at the inlet port.
Code listing 3.2 shows the code for this approach. The function that is used to compute the
density is taken from the function-based part of the TILFluids library that is explained in
section 3.5. The third input to density ph() specifies the name of the medium used for the
computation.

import MediumFunctions = TILFluids.FunctionBasedMedium;

model ValveFB ”Valve using function−based approach and TILFluids”
extends PartialValve;

equation
dInlet = MediumFunctions.density ph(inlet.p, inlet.h, ”IfTLibrary.R744”);

end ValveFB;

Code Listing 3.2: Valve model with function-based approach to compute fluid properties
using TILFluids.

The Modelica.Media library uses a slightly different function-based approach presented in
code listing 3.3. The medium is specified by a replaceable local package called Medium

using the concept of replaceable local classes as presented in section 2.4.2. The specific
medium package used in code listing 3.3 is included in the Modelica.Media-compatible part
of TILFluids (see section 3.5 for more information). It can be redeclared in the modifier
of an instance of ValveFBMedia. The major difference to the approach presented in code
listing 3.2 is the stateInlet that is used as input argument for the function to compute
the density. The stateInlet is an instance of the ThermodynamicState record that is used
in the Modelica.Media library to store the thermodynamic state of a medium. The record
was initially designed to contain the minimal set of fluid properties required to compute all
other fluid properties. For an ideal gas for example, the pressure and the temperature are
the minimal set of fluid properties since all other properties can be computed from these
two using the thermal equation of state (ideal gas law) and a correlation for the specific

33

Chapter 3. Modeling of Thermo-Physical Fluid Properties

heat capacity at constant volume (see Köhler, 2007a). The concept was slightly altered in
some packages such as WaterIF97 base where more than the minimal set of fluid proper-
ties is stored in the ThermodynamicState record. The stateInlet is computed using the
setState ph() function defined in the medium package. The record is then used as input
to the density function. The advantage of this concept is that the ThermodynamicState

record has to be computed only once even if more properties than just the density are used
in the component model. This is of great importance for the numerical efficiency since fluid
property computations often require computationally expensive inverse iterations depending
on the set of input variables and the variables used to compute the fluid properties (e.g., the
set of variables stored in the ThermodynamicState record). Separate functions to compute
the ThermodynamicState record are provided for the inputs density-temperature, pressure-
specific enthalpy, pressure-specific entropy, and pressure-temperature. For mixtures, the
composition vector X is required as a third input. The approach to compute fluid properties
is still function-based despite the fact that instances of the ThermodynamicState record are
created.

model ValveFBMedia ”Valve using function−based approach and Modelica.Media”
extends PartialValve;

replaceable package Medium=TILFluids.Media.IfTLibrary.R744
extends Modelica.Media.Interfaces.PartialMedium;

Medium.ThermodynamicState stateInlet ”Inlet state”;
equation

stateInlet = Medium.setState ph(inlet.p, inlet.h);
dInlet = Medium.density(stateInlet);

end ValveFBMedia;

Code Listing 3.3: Valve model with function-based approach to compute fluid properties
using Modelica.Media.

The set of fluid properties in the ThermodynamicState record depends on the specific medium
model. For an ideal gas, this set would be pressure and temperature as pointed out ear-
lier. Many refrigerants are described using the Helmholtz equation of state (as suggested by
McLinden et al., 1998, and others) usually given in its dimensionless form

φ = φ(τ, δ) with τ =
Tc
T

and δ =
%

%c
(3.1)

where φ is the dimensionless Helmholtz energy, τ the dimensionless inverse temperature, and
δ the dimensionless density. Tc and %c are the critical temperature and the critical density
respectively. For refrigerants described by the Helmholtz equation, density and temperature
are a good choice for the minimal set of fluid properties since all other fluid properties can
be computed from this set of properties (see for example Span, 2000).

3.3 Object-Based Computation of Fluid Properties

Object-based approaches to compute fluid properties differ from function-based approaches
in encapsulating all fluid property computations in a medium model. Each instance of those

34

3.3. Object-Based Computation of Fluid Properties

medium models can be regarded as a state point in a thermodynamic plane for example in a
pressure-enthalpy diagram. The medium models compute and store all thermodynamic and
transport properties of interest.

The medium model is called BaseProperties in the Modelica.Media library. This model
provides 3+nXi equations for the 5+nXi state variables as shown in table 3.1 where nXi is the
number of independent mass fractions. Two variables out of T, p, d, u, and h and the mass
fractions Xi are the independent variables. All other variables and the full mass fraction
vector X are computed in the BaseProperties model. The medium model is defined in
PartialMedium and is extended in the interface packages extending from this base class (see
class diagram in figure 2.11).

Variable Unit Description

St
at

e
V

ar
ia

bl
es

T K Temperature
p Pa Absolute pressure
d kg/m3 Density
u J/kg Specific internal energy
h J/kg Specific enthalpy
Xi[nXi] kg/kg Independent mass fractions

ThermodynamicState Thermodynamic state record
X[nX] kg/kg Mass fractions
R J/(kg K) Gas constant
MM kg/mol Molar mass
preferredMediumStates - Boolean that is true if StateSelect.prefer shall

be used for the independent property variables of
the medium

T degC ◦C Temperature
p bar bar Absolute pressure
sat Saturation property record

Table 3.1: Variables in two-phase BaseProperties model.

Code listing 3.4 shows the code for a valve model using an instance of BaseProperties to
compute all fluid properties. Like in code listing 3.3, the Modelica.Media-compatible part of
TILFluids is used. The pressure and the specific enthalpy of the medium object mediumInlet
are set in lines 8 and 9 in code listing 3.4. All other fluid properties are computed from these
two properties and can be accessed directly as shown in line 11.

1 model ValveOBMedia ”Valve using object−based approach and Modelica.Media”
2 extends PartialValve;
3
4 replaceable package Medium=TILFluids.Media.IfTLibrary.R744
5 extends Modelica.Media.Interfaces.PartialMedium;
6 Medium.BaseProperties mediumInlet ”Medium object at inlet”;
7 equation
8 mediumInlet.p=inlet.p;

35

Chapter 3. Modeling of Thermo-Physical Fluid Properties

9 mediumInlet.h=inlet.h;
10
11 dInlet = mediumInlet.d;
12 end ValveOBMedia;

Code Listing 3.4: Valve model with object-based approach to compute fluid properties
using Modelica.Media.

From an object-oriented point of view it would be great to have several medium models
computing different sets of variables. For example computing all transport properties in a
medium object adds an unnecessary overhead if they are not used in the component model.
Unfortunately, the BaseProperties model cannot be changed by the user to include addi-
tional variables since it is part of the Modelica Standard Library which is read-only. Instead
the user can compute additionally required variables with functions defined in the interface
class that take the ThermodynamicState record instantiated in BaseProperties as input.
The specific entropy at the inlet of the valve which is not included in the BaseProperties

model could be computed mixing the object-based approach with a function-based approach
using the equation

s = Medium.specificEntropy(mediumInlet.state);

This mixing of different programming paradigms tends to be hard to understand for new
users of the Modelica.Media library.

The Modelica.Media library uses replaceable local packages to make the medium model
exchangeable as described in section 3.2. A much simpler approach would be to use the
medium name as a string parameter in function calls as shown in code listing 3.2. The new
object-based approach presented in section 3.5 also uses string parameters to specify the
medium in each model.

3.4 Calling External Fluid Property Computation Codes

As already described in the introduction to this chapter, the Modelica.Media contains several
ready-to-use medium models. However, there exists a large class of engineering systems for
example refrigeration systems, heat-pump systems, or organic rankine cycles that require
accurate models of application-specific two-phase fluids currently not included in the Modelica
Standard Library.

A possibility to overcome this situation is to implement such medium models in Mode-
lica possibly by conforming to the Modelica.Media interfaces for greater compatibility. The
advantage of this approach is that self-contained Modelica models are obtained that can be op-
timized for efficiency by the simulator. The main drawback is that writing such code requires
a sizable investment in terms of time and effort. The resulting code can then only be re-used
in a Modelica context at least without any further significant effort. Additional medium
packages extending the scope of the Modelica.Media library are for example implemented in
the ThermoFluidPro library developed by the Swedish company Modelon and used as a base
library in their AirConditioning library. Newer versions of the ThermoFluidPro library are

36

3.4. Calling External Fluid Property Computation Codes

partly encrypted indicating another drawback of this approach which is the difficulty with
protecting intellectual property rights when distributing the library.

Another possibility to overcome this situation is to take advantage of existing fluid prop-
erty computation codes developed for general-purpose applications and to interface that code
to Modelica. This approach becomes extremely attractive if the effort of developing those
interfaces to external fluid property computation codes is kept to a bare minimum. This
was the major objective for the new Modelica ExternalMedia library developed in close
cooperation with Prof. Casella from Politecnico di Milano. Currently only two-phase single-
substance fluids have been considered since this combination already covers many interesting
applications for Modelica that cannot be developed using existing Modelica.Media models.
The goals of the Modelica ExternalMedia library can be summarized as follows:

• 100% compatibility with the Modelica.Media interface

• compatibility with multiple Modelica tools and C/C++ compilers

• small effort required to develop the interface to additional external fluid property com-
putation codes

• computational efficiency compatible with Modelica-internal solutions

The entire project consists of three parts: the Modelica library
Modelica ExternalMedia, an interface layer written in C, and an object-oriented interface
to external fluid property computation codes written in C++ called ExternalMedia. The
project including the Modelica and the C/C++ source code is released under the Modelica
license1. The current implementation was compiled and tested using different C++ compil-
ers such as Microsoft Visual C++ and MinGW. Figure 3.1 shows a class diagram of parts
of Modelica.Media and the Modelica ExternalMedia library. A set of functions in the
ExternalTwoPhaseMedium package corresponds one-to-one to the C interface layer functions.
These functions are called according to the external function mechanism as defined in the
Modelica specification (Modelica Association, 2005). The interface layer functions in turn
manage a collection of C++ objects that define the interface to the external fluid property
computation codes.

A very important aspect when developing an interface to external fluid property com-
putation codes is the communication between the Modelica models and the external li-
brary. Modelica ExternalMedia and the ExternalMedia use a unique identification number
uniqueID to assign an instance in Modelica to a medium instance in the C/C++ layer. This
identification number is zero by default and can be positive or negative depending on the
method to compute fluid properties. The underlying mechanisms are explained in more detail
by Richter and Casella (2008).

3.4.1 Architecture of the Modelica Layer (Modelica ExternalMedia)

The class diagram shown in figure 3.1 can be divided into three different layers. The first
layer contains the interface classes in Modelica.Media. The second layer contains the in-

1The Modelica License can be found at http://www.modelica.org/libraries/Modelica/ModelicaLicense.html.

37

Chapter 3. Modeling of Thermo-Physical Fluid Properties

terface class in Modelica ExternalMedia that extends from PartialTwoPhaseMedium. The
third layer contains the ready-to-use medium models in Modelica ExternalMedia. The
ExternalTwoPhaseMedium package is a generic package and defines a string constant that is
used to specify the actual external code to be used in the derived packages. By default a
TestMedium implemented in C++ is provided that roughly assembles the properties of cold
water at low pressure and that can be used as a starting point when implementing interfaces
to external fluid property computation code using the C/C++ layer of the library.

PartialExternalTwoPhaseMedium

ExternalTwoPhaseMedium

FluidPropMedia.WaterIF95TestMedium

PartialSimpleMedium PartialTwoPhaseMedium PartialSimpleIdealGasMediumPartialCondensingGases

PartialMedium

PartialMixtureMedium PartialPureSubstance

Interface packages in
Modelica.Media.Interfaces

Interface packages in
Modelica_ExternalMedia.Interfaces

Medium packages in
Modelica_ExternalMedia.Media

Figure 3.1: UML class diagram of medium interface classes of Modelica.Media and
Modelica ExternalMedia. The TestMedium package is a demo implementa-
tion roughly assembling the properties of cold water at low pressure that can
be used as a starting point when developing new interfaces to external fluid
property computation codes.

The interface package PartialExternalTwoPhaseMedium in the second layer in figure 3.1
is required for the following three reasons:

1. Redeclaration of Functions with Default Implementations

PartialExternalTwoPhaseMedium redeclares all functions from PartialTwoPhaseMedium

that are provided with a default implementation. The functions have to be redeclared so
that they do not contain an algorithm and an external algorithm section which would not
be legal Modelica. The function interfaces are extended to include the uniqueID as an input
which is zero by default.

38

3.4. Calling External Fluid Property Computation Codes

2. Extension of the ThermodynamicState and SaturationProperties Records

The only component of the ThermodynamicState record of a PartialTwoPhaseMedium is
an integer specifying the phase. The phase integer can be an input to the setState XXX()

functions as well as an output depending on its value. Setting phase to zero means that the
user does not know the phase in advance. The medium model is then determining the phase
and returns the value one for a one-phase state and two for a two-phase state. Setting phase
to one when calling a setState XXX() function forces the state of the medium to be one-phase
while setting it to two forces the state to be two-phase. PartialExternalTwoPhaseMedium

adds the uniqueID to the ThermodynamicState record along with the pressure, temperature,
density, specific entropy, and specific enthalpy. The uniqueID is important to identify the
medium instance in the C/C++ interface layer as explained in section 3.4.2.

The SaturationProperties record is defined in PartialTwoPhaseMedium and contains
the saturation pressure and the saturation temperature. The saturation record is extended
in PartialExternalTwoPhaseMedium to include the uniqueID that is again used to identify
the correct instance when communicating with the C/C++ interface library.

Including the unique identification number in the ThermodynamicState record as well as
in the SaturationProperties record ensures that additionally computed fluid properties not
contained in BaseProperties are returned from the correct medium instance in the C/C++
interface library and that those two records also work when using the function-based approach
explained in section 3.2.

3. Extension of the BaseProperties Model

The BaseProperties model in PartialTwoPhaseMedium contains the variables listed in ta-
ble 3.1. The model is extended in PartialExternalTwoPhaseMedium to include the additional
variables shown in table 3.2.

Variable Unit Description

basePropertiesInputChoice - Enumeration to specify the input variables for the
property computation (e.g., ph or pT)

phaseInput - Phase input for property computation functions
(2 for two-phase, 1 for one-phase, 0 if unknown)

phaseOutput - Phase output for medium (2 for two-phase, 1 for
one-phase, 0 if not known)

uniqueID - Unique ID number
s J/kgK Specific entropy

Table 3.2: Additional variables in external two-phase BaseProperties model.

The BaseProperties model creates a medium instance in the C++ layer when it is ini-
tialized using the createMedium() function. The return value of this function is the unique
identification number of the BaseProperties instance that is stored in uniqueID. This num-

39

Chapter 3. Modeling of Thermo-Physical Fluid Properties

ber is used in all further function calls that compute fluid properties in the BaseProperties

model.

3.4.2 Architecture of the C/C++ Layer (ExternalMedia)

The C/C++ layer ExternalMedia manages a collection of objects that define the interfaces
to the external fluid property computation codes as shown in figure 3.2. The first funda-
mental object is the Solver object which encapsulates the external fluid property compu-
tation code. In order to manage several different solvers at the same time a SolverMap
is defined. The Solver objects in this map are indexed using the strings defined in the
ExternalTwoPhaseMedium package. Each time an external function is called, the strings for
the medium name, the library name, and the substance names are passed as parameters so
that the corresponding solver can be instantiated when the function is called for the first
time. This allows the interface layer to always point to the correct solver.

The second fundamental object is the Medium object which corresponds to a point on a
thermodynamic plane or on the saturation curve for saturation properties. Each Medium ob-
ject contains a pointer to the corresponding Solver object and a record of type TwoPhaseMedi-
umProperties which contains the values of all the thermodynamic properties and is used as a
cache record. All instances of Medium objects are stored in the MediumMap which is indexed
using the uniqueID.

Medium

MediumMap

BaseTwoPhaseMedium

FluidConstants TwoPhaseMedium

TwoPhaseMediumProperties

Solver

SolverMap

BaseSolver

TestSolverFluidPropSolver

nn

Figure 3.2: UML class diagram of the ExternalMedia library which is the C/C++ layer to
the Modelica ExternalMedia library.

3.5 Advanced Object-Based Computation of Fluid Properties

The previous section explained how the fluid property library Modelica.Media included in
the Modelica Standard Library was extended to support external fluid property computation
codes in Modelica. This extension widens the scope of the fluid property library in terms of
the number of engineering problems that can be solved using it. Nevertheless, there are some

40

3.5. Advanced Object-Based Computation of Fluid Properties

additional drawbacks of the library that cannot be overcome without major changes to its
design.

The first major drawback already discussed in section 2.7 is demonstrated in the two class
diagrams shown in figure 2.11 and 3.1: The object-oriented structure of the Modelica.Media

library and the Modelica ExternalMedia library is rather complex. Some basic functionality
is defined in PartialMedium and additional functionality is added throughout the entire
inheritance tree making it hard to find the position of any specific implementation. Some
people might argue that this is a tool issue and that the current Modelica tools are just
not good enough in browsing through inheritance trees. While this argument is true, it is
also always desirable to create a library that can easily be understood without having to use
advanced tools.

Another major drawback of the Modelica.Media library is that it tries to fit many medium
models in one single framework: incompressible liquids, real gases, two-phase fluids, and
mixtures. On the one hand, this is a very unique concept allowing users to switch from a
simple water model such as ConstantPropertyLiquidWater to a state-of-the-art model like
WaterIF97 pT just by redeclaring the medium package in their models. On the other hand,
this approach further complicates writing component models especially for user not familiar
with the structure of the Modelica.Media library.

In addition to these two drawbacks, the object-based approach in Modelica.Media using
the BaseProperties model is not flexible enough as pointed out in section 3.3 regarding the
development of user-specific medium models. The medium models implemented in Modelica
can furthermore only be used in a Modelica context at least without any further significant
effort. This drawback is partially overcome by the Modelica ExternalMedia library that
can also only be used in Modelica.

The above mentioned drawbacks were the starting point for the development of a new
object-based model library for the computation of fluid properties. The resulting Modelica
library TILFluids is used in all component models presented in the following chapter. It
can be split into three parts: a function-based library, a 100% Modelica.Media-compatible
library, and an object-based library consisting of a set of medium objects for gases, liquids,
refrigerant, and moist air. The library is described in section 3.5.1.

TILFluids uses the external library TILFluidsLib to handle solver and medium objects.
This external library that is written in C++ is explained in section 3.5.2. Section 3.5.3
presents the two most important external fluid property computation codes interfaced from
the TILFluidsLib.

3.5.1 Architecture of the Modelica Layer (TILFluids)

TILFluids offers three different approaches to compute fluid properties in Modelica. The
first approach is purely function-based and can be found in FunctionBasedMedium and was
used in code listing 3.2. The package FunctionBasedMedium contains a set of equations to
compute all important thermodynamic and transport properties from dT, ph, ps, and pT
requiring the medium name as a third input. A possible application of the function-based

41

Chapter 3. Modeling of Thermo-Physical Fluid Properties

approach within an object-oriented component model library is the computation of fluid
properties during initialization before any medium object is created.

The second approach can be found in Interfaces and Media and offers medium packages
fully Modelica.Media-compatible. Figure 3.3 shows the class structure for this part of the
library. The PartialTILMedium extends from PartialExternalTwoPhaseMedium and rede-
fines the linked library from ExternalMedia to TILFluidsLib. This ensures that TILFluids

can be used together with other media libraries based on the ExternalMedia library. All
other medium packages extend from PartialTILMedium and can be used as a replacement for
medium models based on PartialTwoPhaseMedium. Offering a Modelica.Media-compatible
interface allows users to use TILFluids in their Modelica.Media-based projects thus widen-
ing the scope of the new fluid property library.

PartialTILMedium

IfTLibrary.R134a
IfTLibrary.R744

...
Refprop.CO2

Refprop.R134a

Refprop.Water
...

...

Interface packages in
TILFluids.Interfaces

PartialExternalTwoPhaseMediumInterface packages in
ExternalMedia.Interfaces

Medium packages in
TILFluids.Media

Figure 3.3: UML class diagram of Modelica.Media-compatible part of TILFluids.

The third and most important approach is the new object-based approach consisting of
a couple of medium models in the top level of TILFluids. Table 3.3 briefly describes the
available medium models for gases, liquids, refrigerant, and moist air. The medium models in
TILFluids are very flexible and can be tailored to the specific requirements of a component
model. The medium objects in a simulation can also be used to automatically generate
thermodynamic plots of the simulation results as described in section 5.3.

Code listing 3.5 shows the valve model implemented using a PortRefrigerant object
from TILFluids. The medium to be used is specified in the modifier by settings the refrig-
erant name to IfTLibrary.R744. This seems to be much simpler to understand than the
replaceable local package that is used with Modelica.Media to redeclare the medium (see
code listing 3.4 for example).

model Valve ”Valve using object−based approach and TILFluids”
extends PartialValve;

TILFluids.PortRefrigerant inletRefrigerant(refrigerantName=”IfTLibrary.R744”)
”Medium object at inlet”;

equation

42

3.5. Advanced Object-Based Computation of Fluid Properties

inletRefrigerant.p = inlet.p;
inletRefrigerant.h = inlet.h;

dInlet = inletRefrigerant.d;
end Valve;

Code Listing 3.5: Valve model with object-based approach to compute fluid properties
using TILFluids.

All medium models available in TILFluids are listed in table 3.3. The models contain
different sets of variables depending on the type of the medium as well as on the model itself.
This enables the developer to use medium models depending on the required fluid properties
to improve the numerical efficiency of component models (e.g., by using a medium that does
not compute the transport properties if those are not required in the component model).

Name Description

Gas Base model for all gases. This model computes density, specific en-
thalpy, pressure, temperature, and additional properties from dT , ph,
or pT . It uses the TILFluidsGasSolver for all computations.

PortGas Gas model specifically designed to be used at ports of components.
This model computes all properties from ph and uses the TILFluids-
GasSolver.

Liquid Base model for all liquids. This model computes density, specific en-
thalpy, temperature, specific heat capacity, and additional properties
from T or h. It uses the TILFluidsLiquidSolver for all computations.

PortLiquid Liquid model specifically designed to be used at ports of components.
This model computes all properties from h and uses the TILFluids-
LiquidSolver.

Refrigerant Base model for all refrigerants. This model computes density, spe-
cific enthalpy, pressure, specific entropy, temperature, and additional
properties from dT , ph, ps, or pT . It uses the TILFluidsSolver for all
computations.

SimpleRefrigerant This is a lightweight model that can be used as a replacement for
Refrigerant if less additional properties are required.

PortRefrigerant Refrigerant model specifically designed to be used at ports of com-
ponents. This model computes all properties from ph and uses the
TILFluidsSolver.

MoistAir Moist air model that computes all moist air properties from ph1+xxw,
ps1+xxw, pTxw, pTφ, pTξ, and phξ where h1+x and s1+x are the spe-
cific enthalpy and specific entropy per kilogram of dry air respectively,
xw is the water content, φ is the relative humidity, and ξ is the steam
concentration.

Table 3.3: Medium models in TILFluids.

43

Chapter 3. Modeling of Thermo-Physical Fluid Properties

Table 3.4 shows the variables contained in each refrigerant model. The Refrigerant

model is the most advanced model containing the full range of fluid properties including
saturation and transport properties. The SimpleRefrigerant is a lightweight model that
does not contain saturation properties, transport properties, and critical properties. Both
models support the full range of input variables: dT, ph, ps, and pT. The PortRefrigerant

model is specifically designed to be used to compute fluid properties at connectors. It contains
almost the same variables as the SimpleRefrigerant model.

Variable Unit Description R PR SR

d kg/m3 Density X X X
h J/kg Specific enthalpy X X X
p Pa Pressure X X X
s J/(kg K) Specific entropy X X X
T K Temperature X X X
u J/kg Specific internal energy X

x kg/kg Steam mass fraction X X X
cp J/(kg K) Specific heat capacity at constant pressure X X X
cv J/(kg K) Specific heat capacity at constant volume X
T degC ◦C Temperature X X X
beta 1/K Isothermal expansion coefficient X X X
kappa 1/Pa Compressibility X X X
drhodh m3/J Derivative of density wrt specific enthalpy X
drhodp m3/(kg Pa) Derivative of density wrt pressure X
sat Saturation property record X
Tsat K Saturation temperature X
transp Transport property record X

mm kg/mol Molar mass X
Ri J/(kg K) Specific gas constant X
crit Critical data record X

Table 3.4: Variables in refrigerant models in TILFluids (R = Refrigerant, PR =
PortRefrigerant, and SR = SimpleRefrigerant).

3.5.2 Architecture of the C/C++ Layer (TILFluidsLib)

The C/C++ layer that is used by TILFluids is called TILFluidsLib. The TILFluidsLib uses
the source code of the ExternalMedia library presented in section 3.4.2 and extends it by
inheritance and by adding classes. The most important changes are the extension of the
cache record in TILFluidsMediumProperties, the improvement of the solver in TILFluids-
Solver that allows determining the valid region for each medium model, and the introduction
of new medium and solver classes to handle various medium types such as gases or liquids.
The extension to other medium types is only added as an afterthought in the current im-
plementation and could be improved in a future version. TILFluidsLib also introduces a

44

3.5. Advanced Object-Based Computation of Fluid Properties

powerful logging mechanism that allows tracing errors and detecting possible inefficiencies
when working with the interface library.

The most important change compared to the ExternalMedia library is that the TILFlu-
idsLib does not only provide the Modelica interface TILFluids but also interfaces to other
software applications. The most important interfaces allow using the TILFluidsLib in MS
Excel, MATLAB, Simulink, and many other software tools utilizing one of the more generic
interfaces provided in C, C++, and Python. The TILFluidsLib is also used to generate the
phase diagrams for the automated thermodynamic visualization described in section 5.3. The
additional interfaces allow to use external fluid property computation codes in a number of
software tools by implementing a single interface in the TILFluidsLib. This is a major ad-
vantage compared to a Modelica-internal solution that cannot easily be accessed from other
software tools.

3.5.3 Interfaced External Fluid Property Computation Codes

This section describes the two most important external fluid property computation codes
that are included in the TILFluidsLib: The IfTLibrary and REFPROP. The IfTLibrary is
an extraction of the fluid property code from the simulation platform for thermodynamic
systems developed by Tegethoff (1999). The code is written in C++ and compiled directly
into TILFluids making it independent from the operating system. Table 3.5 lists all fluids
available in the IfTLibrary and gives some additional information on the implemented set of
equations.

Refrigerant R134a Helmholtz equation Coefficients taken from Tillner-Roth et al.
(1998), transport properties based on Krauss
et al. (1993)

R744 Helmholtz equation Coefficients taken from Span and Wagner
(1996), transport properties based on Veso-
vic et al. (1990)

Gas DryAir Ideal Gas Law Transport properties fitted to data from VDI
(2002)

Liquid H2O Properties fitted to data from VDI (2002)
H2O/Propylenglykol Properties fitted to data from VDI (2002)

Table 3.5: Fluids available in the IfTLibrary.

Many simulation tools for refrigeration, air-conditioning, and heat-pump systems use or
at least supply an interface to the REFPROP fluid property database. REFPROP stands
for Reference Fluid Thermodynamic and Transport Properties Database and is developed
and maintained at the National Institute of Standards and Technology (NIST) by Lemmon
et al. (2007). REFPROP features a graphical user interface that supports the computation
of fluid properties and that provides simple thermodynamic plots such as pressure-enthalpy
and temperature-entropy diagrams.

45

Chapter 3. Modeling of Thermo-Physical Fluid Properties

Medium Equation of State

R134a FEQ Helmholtz equation of state for R134a of Tillner-Roth & Baehr (1994)
FES Short Helmholtz equation of state for R134a of Span and Wagner (2003)

BWR MBWR equation of state for R134a of Huber and McLinden (1992)
FE2 Helmholtz equation of state for R134a of Astina and Sato (2004)
PRT Translated Peng-Robinson equation

CO2 FEQ Helmholtz equation of state for carbon dioxide of Span and Wagner
(1996)

FEK Helmholtz equation of state for carbon dioxide of Kunz and Wagner
(2004)

BWR MBWR equation of state for carbon dioxide of Ely et al. (1987)
FE1 Helmholtz equation of state for carbon dioxide of Ely et al. (1987)
FES Short Helmholtz equation of state for carbon dioxide of Span and Wagner

(2003)

Table 3.6: Equations of state for R134a and CO2 in REFPROP.

Four different equations of state are implemented in REFPROP to compute the thermo-
dynamic properties of fluids: the modified Benedict-Webb-Rubin equation of state (MBWR),
the Helmholtz form of the pure fluid equation of state, a volume translated Peng-Robinson
equation, and an extended corresponding states model (ECS model) with temperature and
density dependent shape factors. REFPROP allows the user to choose the used equation
of state depending on the selected medium. This feature offers the possibility to compare
different equations of state with regard to accuracy vs. computing time. Table 3.6 lists all
equations of state available in REFPROP for R134a and CO2.

TILFluids can take full advantage of the different models implemented in REFPROP by
specifying additional options in the medium string. All specific models from REFPROP
that can be specified in the medium string are listed in table 3.7. The medium string
"Refprop.CO2(EOS=FES,ETA=VS4).fld" for example specifies a medium CO2 from REF-
PROP using the short Helmholtz equation of state of Span and Wagner and the pure fluid
generalized friction theory viscosity model of Quiones-Cisneros and Deiters.

Model Model
EOS Equation of state STN Surface Tension
ETA Viscosity MLT Melting Line
TCX Thermal Conductivity SBL Sublimation Line

Table 3.7: Models in REFPROP that can be selected in the medium string from TILFluids.

3.5.4 Comparison of Computational Efficiency

The computation of fluid properties accounts for a large part of the total required compu-
tation time when simulating thermodynamic systems. The computational efficiency of fluid

46

3.5. Advanced Object-Based Computation of Fluid Properties

property libraries is therefore of great interest. A simple test was set up to demonstrate the
time requirements for different fluid property implementations. The medium model used for
the comparison only contains density, specific enthalpy, pressure, specific entropy, and tem-
perature. CO2 was selected as medium. The specific enthalpy was kept constant at 300 kJ/kg
and the pressure was varied from 20 to 140 bar according to the first diagram in figure 3.4.
The other three diagrams show the density, specific entropy, and temperature respectively.

Three different medium libraries were used for the comparison: the IfTLibrary (see ta-
ble 3.5), the REFPROP library with the default equation of state (FEQ) and with a simpler
equation of state (FES) (see table 3.6), and the ThermoFluidPro library developed and main-
tained by Modelon which also uses a Helmholtz equation. The test was performed using a
fixed step Euler solver to ensure an identical number of function calls without any influence by
a step-size control. 3,000 steps were used for all examples. The medium models in TILFluids

were simulated with and without the caching functionality in the TILFluidsLib. For each
evaluation, all fluid properties including the transport properties were externally computed
for the media from TILFluids.

From the execution times listed in table 3.8, it can be seen that the external fluid codes
are not significantly slower than the implementation in Modelica. It can also be seen that
the cache record works very efficiently. The cache record stores all fluid properties computed
after each inverse iteration. This means that an inverse iteration only has to be performed
once at each time step and not three times (for computing the density, the specific entropy,
and the temperature) as required without the cache. No inverse iteration is needed from
100 s to 200 s since the inputs pressure and specific enthalpy are constant yielding execution
times that are about 22% of the execution times without using the cache record.

Library Medium Name Time

TILFluids "IfTLibrary.R744" 1.31 s
"Refprop.CO2.fld" 2.58 s
"Refprop.CO2(EOS=FES).fld" 0.515 s

TILFluids "IfTLibrary.R744" 5.52 s
without caching in external library "Refprop.CO2.fld" 16.2 s

"Refprop.CO2(EOS=FES).fld" 2.3 s

ThermoFluidPro Media.Technical.Co2 1.38 s

Table 3.8: Comparison of computational efficiency of different implementations to compute
fluid properties.

47

Chapter 3. Modeling of Thermo-Physical Fluid Properties

0

50

100

150

0 50 100 150 200 250 300

p
[b

ar
]

0
200
400
600
800

0 50 100 150 200 250 300

%
[k

g/
m

3
]

1.2

1.3

1.4

0 50 100 150 200 250 300

s
[k

J/
(k

g
K

)]

250

275

300

325

0 50 100 150 200 250 300

T
[K

]

Time [s]

Figure 3.4: Medium properties of CO2 over time for comparison of the computational
efficiency of different implementations. The pressure was varied according
to the topmost diagram while the specific enthalpy was kept constant at
h = 300 kJ/kg. The test was performed using a fixed step Euler solver with
3,000 steps.

48

Chapter 4

Object-Oriented Modeling of Fluid

Systems

This chapter describes the new object-oriented equation-based
component model library for the simulation of refrigeration, air-
condition, and heat-pump systems. The structure of the new li-
brary is simple to understand and allows for various extensions to
cover a wide range of thermodynamic applications. This chapter
describes the basic component models as well as the formulation
of the balance equations. It also explains the structure of more
complex component models such as the heat exchanger model.

4.1 Introduction

This chapter presents the new object-oriented component model library developed within the
scope of this thesis. It provides component models to simulate refrigeration, air-conditioning,
and heat-pump systems and can easily be extended with user-defined models to cover a
wide range of thermodynamic applications. The main focus of this chapter is to present the
basic design principles of the library such as the hierarchical structure and the basic control
volumes. Many component models are available in the new library or in one of the project-
specific add-on libraries. Some of these models were implemented within the scope of this
work whereas other models were implemented by a team of developers demonstrating the
sustainability of the chosen approach. The structure of the new component model library is
easy to understand and follows the design rules presented in chapter 2. The flexible structure
is one of the key features of the new component model library and distinguishes it from other
object-oriented Modelica libraries in the field of thermodynamic system simulations. The
new component model library is called TIL which is short for TLK-IfT-Library. The name
reflects the significant contribution of both partners, the Institut für Thermodynamik and
the TLK-Thermo GmbH, that both work with the new component model library and extend
it with additional component models.

Figure 4.1 shows a CO2 air-conditioning system composed of models from the new com-
ponent model library. The shown system is used as a demonstrating example throughout this

49

Chapter 4. Object-Oriented Modeling of Fluid Systems

chapter. The refrigeration system features a compressor, two gas coolers in series connected
by a tube, a valve, an evaporator, and a low-pressure accumulator. In addition to these com-
ponents representing real-world objects, additional components are used in the refrigeration
system. A system information manager called sim specifies all important system information
such as the used medium models and collects information like the total refrigerant mass in the
system. Two pressure state components are used to compute the time derivative of pressure
at the high and at the low pressure side respectively. These components are required for the
simplification of the conservation laws explained in section 4.3. The StateViewerInterface

in front of the compressor allows for an automated generation of thermodynamic phase di-
agrams as explained in section 5.3. Sink and source components are used to represent the
air-side boundary conditions for the three heat exchangers.

dp/dt

sim

(1) (1) (1)

tube

va
lv

e

co
m

pr
es

so
r

gasCooler2

gasSource1
p, m_dot

gasSource2
p, m_dot

gasSink2
free

gasSink1
free

dp/dt

(2)
(2) (2)

evaporator
accumulator

gasSink3
free

gasSource3
p, m_dot

gasCooler1

pressureState1

pressureState2

0

Figure 4.1: CO2 refrigeration system using component models from the new component
model library TIL.

This chapter presents all component models used in the air-conditioning system that is
shown in figure 4.1. Section 4.2 explains the connectors and the connection equations that
are of great importance for all component models. The conservation laws are derived in
section 4.3 in a general form. Specific implementations of the conservation laws are presented
in section 4.4 for the accumulator model and in section 4.7 for the basic control volumes
used to assemble more complex models such as the heat exchanger models. Section 4.5

50

4.2. Connectors and Connection Equations

describes the heat transfer and pressure drop models used in the basic control volumes.
The heat exchanger model itself is explained in section 4.8. Section 4.10 describes some
additional component models. An advanced model for a swash plate compressor can be
found in section 4.9. Some numerical aspects concerning the CO2 refrigeration system shown
in figure 4.1 are presented in section 4.11. Further applications of the new component model
library are described in chapters 6 and 7.

Figure 4.2 shows the structure of the new component model library. The HeatTransfer

package contains base models for heat transfer correlations for fluids and for solids and the
PressureDrop package contains model for pressure drop correlations for fluids. The provided
models are further specialized on the component model level. The Material package contains
models for solids such as Aluminium, Steel, or Copper. Some general utility functions are
provided in the Utilities package. The HVAC (Heating, Ventilation, and Air-Conditioning)
package contains simple steady-state component models. This part of the new component
model library is explained in more detail in appendix C. It was successfully used as a design
tool for an ejector test bench as presented in Richter et al. (2006) and is also used for
educational purposes in university lectures and commercial training courses. The example in
section 5.4 also uses a simple system from this part of the new component model library. The
by far most important part of the new library is the HVAC p package that contains component
models for the transient simulation of refrigeration, air-conditioning, and heat-pump systems.
The p in the name of the package indicates the specific simplification of the balance equations
that is explained in section 4.3. Figure 4.2 also shows the structure of the HVAC p package.

HeatTransfer
TIL

Utilities
PressureDrop
Material
HVAC_p
HVAC

Systems

Valves

Cells
Boundaries
Accumulators

Internals
HeatExchangers
Controlers

Tubes
Splitters
Sensors

Connectors
Compressors
Common

HVAC_p

PressureState

Figure 4.2: Structure of the new component model library TIL and its most important
package HVAC p.

4.2 Connectors and Connection Equations

A very important feature of Modelica are the connectors which are instances of connector
classes. The connector classes define the variables that are part of the communication inter-

51

Chapter 4. Object-Oriented Modeling of Fluid Systems

face that is specified by a connector. Understanding the connector design and the resulting
connection equations is of great importance to avoid some common mistakes when dealing
with fluid systems that are described in this section. The fluid connector in the new compo-
nent model library is designed following the fluid connector design proposed by the Modelica
Association in the Modelica Fluid library (Elmqvist et al., 2003). Code listing 4.1 shows
the code for the fluid connector called FluidPort in the new component model library.

connector FluidPort ”Fluid port”
parameter Integer nc=1 ”Number of components”;
parameter String mediumName ”Medium name”;
Integer index ”Index for StateViewer”;

SI.AbsolutePressure p ”Pressure”;
flow SI.MassFlowRate m flow ”Mass flow rate”;

SI.SpecificEnthalpy h ”Specific enthalpy”;
flow SI.EnthalpyFlowRate H flow ”Enthalpy flow rate”;

SI.MassFraction xi[nc−1] ”Independent mixture mass fractions m i/m in the connection
point”;

flow SI.MassFlowRate mXi flow[nc−1] ”Mass flow rates of the independent substances
from the connection point into the component (mXi flow = m flow∗Xi if m flow > 0)”;

end FluidPort;

Code Listing 4.1: Modelica code for FluidPort from Connectors package.

A connector can contain two different kinds of variables: non-flow variables representing a
potential or an energy level and flow variables representing some kind of a flow. Equality
coupling is applied for the non-flow variables and sum-to-zero coupling for the flow variables.
A flow is defined to be positive when it flows into the component. One of the difficulties
when simulating fluid systems is the handling of flow reversal or zero-flow situations. The
enthalpy flow rate Ḣ in the connector can be computed as follows

Ḣ =

 ṁh1 ṁ > 0

ṁh2 otherwise
(4.1)

assuming that h1 is the specific enthalpy for positive mass flow rates and h2 the specific
enthalpy in the case of negative mass flow rates. Figure 4.3 shows the corresponding diagrams
for the enthalpy flow rate Ḣ and the specific enthalpy h respectively.

52

4.2. Connectors and Connection Equations

m

H

m

h

∆m

∆m

∆h1

∆h2

h2

h1

Figure 4.3: Enthalpy flow rate and specific enthalpy during flow reversal according to equa-
tion (4.1).

Note the discontinuity of the specific enthalpy h at zero mass flow rate in figure 4.3.
The solver has to keep the previous value of the specific enthalpy h in case of zero flow
that depends on the previous flow direction. In Modelica, the function semiLinear() was
introduced to support the solver in detecting flow reversals. In fluid systems, semiLinear()
is used to compute the enthalpy flow rate over the component boundary according to

port.H flow = semiLinear(port.m flow, port.h, h);

where port is an instance of type FluidPort (see code listing 4.1) and h is the specific
enthalpy within the component. The semiLinear() function can be written as shown in
equation (4.1) yielding an if-then-else expression in Modelica. Using semiLinear() instead
allows tools to perform advanced checks and symbolic simplifications on connection equations.
The resulting function for the enthalpy flow rate is plotted in figure 4.3 where h1 refers to
port.h and h2 to h.

An interesting special case is the connection of three (or more) connectors using the
semiLinear() function. Figure 4.4 shows the connection of three components to each other.
For reasons of simplicity, only the pressure p, the specific enthalpy h, the mass flow rate ṁ,
and the enthalpy flow rate Ḣ are considered. The independent mixture mass fractions ξ and
their mass flow rates ṁξ could be treated in the same way.

The connection itself can be treated like an infinitesimal control volume at the connection
point. The resulting equations are (taking into account the assumed flow directions)

p = pW = pE = pN (4.2a)

ṁW + ṁE = ṁN (4.2b)

h = hW = hE = hN (4.2c)

ḢW + ḢE = ḢN (4.2d)

In each of the three components W, E, and N the semiLinear() function is used to compute
the enthalpy flow rate across the component boundary. The problem arises when looking at
the values of the specific enthalpy in the connectors itself which is always the mixing enthalpy

53

Chapter 4. Object-Oriented Modeling of Fluid Systems

infinitesimal control volume
associated with connection

assumed flow
directions

p
h

W E

N

pW

hW

mW

pE

hE

mE

pN hN mN

Figure 4.4: Details of three-way connection.

h. This is not what most users expect and it was found to be a continuous source of errors.
From an object-oriented point of view, most users think of the connector as a representation
of the adaptor of the real component. From that users tend to assume that the values in
the connector correspond to the values one would obtain when conducting a measurement at
the adaptor of the real component. But this is only true for connections of two components
and for connector with a positive mass flow rate. In all other cases, the specific enthalpy
is not the specific enthalpy of the fluid leaving the component but the mixing enthalpy h

in the infinitesimal control volume. This is especially misleading when the components are
positioned far from each other in the Modelica icon layer. The direct connection of three
or more components involving refrigerant flows is not allowed in the new component model
library and explicit junction elements have to be used in these cases.

A simple control volume is assumed to demonstrate the usage of semiLinear() in Mo-
delica models. The control volume has two fluid ports called portA and portB. A refrigerant
model from TILFluids is instantiated at the center of the cell. Code listing 4.2 shows the
code that is required to couple the specific enthalpy of the refrigerant with the specific en-
thalpy in the port. An upwind differencing scheme (see for example Patankar, 1980) is used
to set the specific enthalpy of the refrigerant object, i.e., the specific enthalpy at the port
with negative mass flow rate is always equal to the specific enthalpy of the refrigerant.

model ControlVolume ”Simple control volume with semiLinear()”
FluidPort portA ”Port A”;
FluidPort portB ”Port B”;

TILFluids.Refrigerant refrigerant(refrigerantName=”IfTLibrary.R744”)
”Refrigerant model”;

equation
portA.H flow = semiLinear(portA.m flow, portA.h, refrigerant.h);
portB.H flow = semiLinear(portB.m flow, portB.h, refrigerant.h);

54

4.3. Conservation Laws

... // further code omitted
end ControlVolume;

Code Listing 4.2: Modelica code for simple control volume with semiLinear().

The Connectors package contains different connector models for refrigerants, gases, and
liquids. The main difference of these connector models is the icon that uniquely identifies the
type of fluid flowing through the connector. There also are different connectors for arrays of
connectors and for connectors with zero-flow that can be used to connect sensors from the
Sensors package. The FluidPort contains the additional integer index that can be used to
automatically determine the flow direction during online- or post-processing (see chapter 5).

The presented connector design is not the only way to formulate connectors for fluid
systems. Another common approach is to provide both, the upstream and the downstream
enthalpies, in the connectors as presented by Casella and Leva (2003, 2006) in their papers on
modeling of thermo-hydraulic processes. Which connector design is superior depends on the
kind of problem to be simulated and on the implementation of the semiLinear() function
and is still the topic of an ongoing discussion in the Modelica Association.

4.3 Conservation Laws

The balance equations for energy, mass, and momentum are the starting point for the for-
mulation of the system of equations describing a real system mathematically. Good intro-
ductions to the mathematical backgrounds are given in many fluid dynamics text book such
as Patankar (1980), Versteeg and Malalasekera (1995), and Ferziger and Perić (2002). For-
mulations specific to the the field of component models for thermodynamic simulations can
be found at Adiprasito (1998), Tegethoff (1999), Tummescheit (2002), and Pfafferott (2004).
Many libraries formulate the conservation laws in a base class that is inherited in each compo-
nent model. This tends to yield a very complex library structure that is hard to understand
for developers as well as for users as explained in chapter 2. The new component model
library does not define a base class like that but formulates the appropriate conservation laws
in each component model. This yields a very simple and thus easy to understand structure
where inheritance is only used to represent an is-a-relation as explained in section 2.3.3.

This section presents the formulation of the conservation laws that is used throughout
all transient components in the HVAC p package. The following section 4.4 shows how the
conservation laws are implemented in the accumulator model. The cell models that are used
as base elements for tubes and heat exchangers and that also implement the conservation laws
are presented in section 4.7. The advantages of the specific formulation of the momentum
balance that is based on a work by Lemke (2005) are explained in the last paragraphs of this
section.

55

Chapter 4. Object-Oriented Modeling of Fluid Systems

M
E
Vkv

Wt

Q

m1

m2

mk

Figure 4.5: General control volume used for the formulation of the mass and energy bal-
ances.

All actually three-dimensional fluid flows are treated as one-dimensional flows within
the scope of this thesis. This approach is applicable due to the distinct flow direction in
all described components. The simplification of three-dimensional flows to one-dimensional
flows is a very common technique in fluid modeling and is used by many authors (e.g.,
Tummescheit, 2002; Pfafferott, 2004; Casella et al., 2006; Casella and Leva, 2006). Figure 4.5
shows a control volume that is used for the formulation of the mass and energy balance where
E is the energy in the control volume. The mass balance can be written as

dM

dt
=
∑
k

ṁk (4.3)

where M is the total mass within the control volume and ṁk are k mass flow rates entering
and leaving the control volume. The first law of thermodynamics for an open system is (see
Köhler, 2007a)

dE

dt
=

d

dt

∫
Vkv

%

(
u+

w2

2
+ gz

)
dV =

∑
k

[
ṁ

(
h+

w2

2
+ gz

)]
k

+ Q̇+ Ẇt − p
dVkv
dt

(4.4)

where Vkv is the control volume, Q̇ is the heat flow rate, and Ẇt is the shaft work which is
called technische Arbeit in the German-speaking literature. Equation (4.4) can be simplified
to

dU

dt
=
∑
k

[
ṁh
]
k

+ Q̇+ Ẇt − p
dVkv
dt

(4.5)

when neglecting the influences of the potential and the kinetic energy and assuming constant
properties throughout the control volume. Equation (4.5) can be rewritten as follows using
the relation U = H − pVkv

dH

dt
− pdVkv

dt
− Vkv

dp

dt
=
∑
k

[
ṁh
]
k

+ Q̇+ Ẇt − p
dVkv
dt

(4.6)

This equation can be further simplified by taking into account

dH

dt
=
d(Mh)
dt

= M
dh

dt
+ h

dM

dt
= M

dh

dt
+ h

∑
k

ṁk (4.7)

where equation (4.3) has been used to transform dM/dt. This yields the following formulation
for the energy conservation

dh

dt
=

1
M

{∑
k

[
ṁk(hk − h)

]
+ Q̇+ Ẇt + Vkv

dp

dt

}
(4.8)

56

4.3. Conservation Laws

The momentum equation is the most difficult equation to solve and different approaches can
be found in the literature. For the derivation of the momentum balance, only two mass flow
rates, ṁin and ṁout , are considered as shown in figure 4.6.

M
I

Vkv

Iout

pout

Iin

pin

Ain Aout
length

Figure 4.6: Control volume used for the formulation of the momentum balance.

Assuming that the two areas Ain and Aout are equal, the momentum equation can be
written as (see Tummescheit, 2002; Pfafferott, 2004)

dI

dt
= İin + İout + (pin − pout)A−∆pfA (4.9)

where I is the momentum in the control volume, İin and İout are the momentum flows, and
∆pf is the friction pressure loss (see section 4.5 for details on friction pressure drop models).
The momentum equation can be solved for the pressure change of the refrigerant in the
control volume yielding

pout − pin = ∆p = − 1
A

dI

dt
+

1
A

(
İin + İout

)
−∆pf (4.10)

The time derivative of the momentum in the control volume dI/dt is assumed to be zero which
is reasonable as long as fast dynamic processes (e.g., sound propagation) are not considered
(see Casella and Leva, 2006). The term can easily be added to the momentum balance used
in the new component model library if dynamic processes are to be simulated for which this
term is required. In many cases it is also possible to neglect the difference between the two
momentum flows so that equation (4.10) can be written as

∆p = −∆pf (4.11)

Lemke (2005) showed that the time derivative of pressure can be treated as constant along
the direction of flow

dpin

dt
=
dpout

dt
(4.12)

yielding a very efficient system of equations for each control volume since dp/dt is no longer
an unknown in equation (4.8). It is important to note that the time derivative of pressure is
not treated as constant over time but in space along the direction of flow.

The presented formulation of the conservation laws still requires a symbolic manipulation
of the DAE system similar to an index reduction caused by the calculation rule for the mass
in the control volume

M = %Vkv (4.13)

that is differentiated for equation (4.3) yielding

dM

dt
=
d(%Vkv)
dt

= %
dVkv
dt

+ Vkv
d%

dt
(4.14)

57

Chapter 4. Object-Oriented Modeling of Fluid Systems

This yields three differential variables for each control volume assuming that the control
volume itself does not change over time (i.e., dVkv/dt = 0): pressure p, specific enthalpy h,
and density %. Only two of these three quantities are independent. The third quantity can
be computed from the other two using an equation of state. In order to avoid the symbolic
manipulation, the equation for the time derivative of density d%/dt is formulated explicitly
as

d%

dt
=
(
∂%

∂p

)
h

dp

dt
+
(
∂%

∂h

)
p

dh

dt
(4.15)

where the two partial derivatives are fluid properties that are computed in the refrigerant
model from TILFluids. The equation (4.15) itself is formulated in the component models
as shown in section 4.4 for the accumulator and in section 4.7.1 for the refrigerant cell. A
case differentiation between a one-phase state and a two-phase state is required to compute
the two partial derivatives of %(p, h) in equation (4.15). For the one-phase state, the partial
derivatives as functions of β, κ, and cp can be computed using Bridgman’s tables (see Bejan,
1988) yielding

(
∂%

∂h

)
p

= −β%
cp

(4.16)(
∂%

∂p

)
h

=
−Tβ2 + β + κ%cp

cp
(4.17)

where β is the isobaric coefficient of expansion, κ is the isothermal compressibility, and cp

is the specific heat capacity at constant pressure which can be determined from medium
properties

β = −1
%

(
∂%

∂T

)
p

, κ =
1
%

(
∂%

∂p

)
T

, and cp =
(
∂u

∂T

)
p

(4.18)

The equation for the two-phase state are slightly more complicated and are derived in ap-
pendix D.

Lemke (2005) was the first to describe the simplifying assumption from equation (4.12).
He uses this formulation in the basic cell of his heat exchanger model. The formulation is
extended in this thesis to all component models and used in cycle computations with very
satisfying results.

4.4 Accumulator Model

The accumulator model is a good example for a component model implementing the conser-
vation laws presented in the last section. The following set of equations describes a simple

58

4.4. Accumulator Model

transient accumulator with constant vapor properties at the outlet

M = V % (4.19a)

d%

dt
=
(
∂%

∂h

)
p

dh

dt
+
(
∂%

∂p

)
h

dp

dt
(4.19b)

V
d%

dt
= ṁin + ṁout (4.19c)

pout = pin (4.19d)

dh

dt
=

1
M

(
ṁin(hin − h) + ṁout(hout − h) + V

dp

dt

)
(4.19e)

hout = f(xin , h, . . .) (4.19f)

The mass, momentum, and energy balance are given in equation (4.19c), (4.19d), and (4.19e)
respectively. Equation (4.19b) describes the time derivative of density within the accumula-
tor. Note that the time derivative of pressure is provided as an input to the model according
to the simplification discussed in the previous section. The two partial derivatives of density
with respect to pressure and specific enthalpy are computed in the medium model. The outlet
enthalpy depends on the quality of the entering fluid, the specific enthalpy in the accumu-
lator, and various other factors such as the filling level as stated in equation (4.19f). In the
very simple accumulator model presented in code listing 4.3, a constant outlet condition of
xout = 1 is assumed.

import SI = Modelica.SIunits;

model Accumulator ”Simple accumulator model”
FluidPort inlet ”Inlet port”;
FluidPort outlet ”Outlet port”;

parameter SI.Volume volume=1e−3 ”Volume”;
SI.Mass mass ”Mass”;

SI.SpecificEnthalpy hOutlet ”Outlet specific enthalpy”;
Real drhodt ”Time derivative of density”;
Real dpdt ”Time derivative of pressure”;

TILFluids.Refrigerant refrigerant(refrigerantName=”IfTLibrary.R744”)
”Refrigerant model”;

equation
refrigerant.p = (inlet.p + outlet.p)/2.0;

inlet.H flow = semiLinear(inlet.m flow, inlet.h, refrigerant.h);
outlet.H flow = semiLinear(outlet.m flow, outlet.h, hOutlet);

mass = volume∗refrigerant.d;
drhodt = refrigerant.drhodh∗der(refrigerant.h) + refrigerant.drhodp∗dpdt;
hOutlet = refrigerant.sat.hv; // to be replaced in advanced models with more realistic

// relations based on measurements

59

Chapter 4. Object-Oriented Modeling of Fluid Systems

volume∗drhodt = inlet.m flow + outlet.m flow ”Mass balance”;
inlet.p − outlet.p = 0 ”Momentum balance”;
der(refrigerant.h) = 1/mass∗(inlet.m flow∗(inlet.h − refrigerant.h) +
outlet.m flow∗(outlet.h − refrigerant.h) + volume∗dpdt) ”Energy balance”;

... // further code omitted
end Accumulator;

Code Listing 4.3: Code for Accumulator.

This assumption can be replaced by more realistic descriptions based on measurements from
real accumulators. Raiser (2005) describes a dynamic model for an accumulator taking into
account the density distribution and a possible bypass. Another dynamic accumulator model
is described by Strupp et al. (2007) and Bockholt et al. (2008) and is also available in the
Accumulator package. This advanced model uses the filling level of the accumulator to specify
different operating regions and provides specific functions for the outlet properties depending
on the current operating region.

4.5 Heat Transfer and Pressure Drop Models

This section describes the heat transfer and pressure drop models implemented in the new
component model library that are used in different control volumes such as the cells pre-
sented in section 4.7. The pressure drop models compute the friction pressure loss ∆pf in
equation (4.11) depending on the flow condition and on the geometry. The most simple
pressure drop models assume the friction pressure drop ∆pf to be constant.

The heat flow rate Q̇ in equation (4.8) is computed from

Q̇ = αA(Tw − T) (4.20)

where α is the heat transfer coefficient, A is the heat transfer area, Tw is the wall tempera-
ture, and T the temperature in the control volume. The heat transfer models compute the
coefficient of heat transfer α depending on the flow condition and on the geometry. The most
simple heat transfer models assume a constant coefficient of heat transfer α.

Some advanced models for both, heat transfer and pressure drop, for refrigerants and gases
are explained in the following sections. Many models are only valid within certain regions.
Smooth transition functions that are described in section 4.6 are provided in the Utilities

package. These functions are used for a smooth transition between different regions.

4.5.1 Single-Phase Refrigerant Flows

The heat transfer coefficient α can be computed from

α =
Nu λ

dh
(4.21)

where Nu is the Nusselt number, λ is the thermal conductivity, and dh is the hydraulic
diameter. The hydraulic diameter for a channel is

dh = 4
A

U
(4.22)

60

4.5. Heat Transfer and Pressure Drop Models

where A is the cross sectional area and U is the perimeter. This definition can be replaced by
more advanced definitions in the case of complex three-dimensional geometries (see Wagner,
2001). All following relations are given for tubes with circular cross sectional area with a
single phase fluid flow. The Nusselt number can be computed depending on the flow regime.
For laminar flow, a constant Nusselt number

Nu = 3.6568 (4.23)

can be used. Gnielinski (see Baehr and Stephan, 2004) gives a correlation for the Nusselt
number that is valid from the laminar flow regime (Re < 2300) to Reynolds numbers up to
5 · 106 (for 0.5 ≤ Pr ≤ 2000)

Nu =
(ζ/8)(Re − 1000)Pr

1 + 12.7
√
ζ/8(Pr2/3 − 1)

(4.24)

where Pr is the Prandtl number, and ζ is the friction factor which can be computed from

ζ =
1

(0.79 ln Re − 1.64)2
(4.25)

For higher Reynolds numbers (Re ≥ 104) the correlation by Dittus-Bölter can be used

Nu = 0.023 Re4/5 Pr1/3 (4.26)

to compute the Nusselt number.

For the description of the pressure drop, the pipe friction factor λ is used as proportionality
factor

∆pf = λ
L

d

%

2
wm|wm| (4.27)

where L is the length, d is the diameter, and wm is the average velocity. For complex
geometries, the total proportionality factor λ · L/d is usually determined from experiments.
This factor is called friction factor ζ yielding the following relation for the pressure drop

∆pf = ζ
%

2
w|w| (4.28)

For tubes

ζ = λ
L

d
(4.29)

The pipe friction factor for laminar flow is given by

λ =
64
Re

(4.30)

The pipe friction factor for higher Reynolds numbers (2300 ≤ Re ≤ 107) is given by the
relation by Konakov (see Wagner, 2001) that is valid for smooth pipes

λ =
1

(1.80 log Re − 1.5)2
(4.31)

61

Chapter 4. Object-Oriented Modeling of Fluid Systems

4.5.2 Two-Phase Refrigerant Flows

The condensation in tubes can be described with a simple model by Shah (1979) that is also
referenced by Baehr and Stephan (2004) and that describes the turbulent film condensation
inside pipes. This model computes the Nusselt number as

Nu = 0.023 Re0.8 Pr0.4
l

(
(1− x∗)0.8 +

3.8(1− x∗)0.04 x∗0.76

p0.38
red

)
(4.32)

where
Nu =

α dh
λl

, Re =
ṁ dh
%lA νl

, and pred =
p

pc
(4.33)

The flow steam quality x∗ can be computed from

x∗ =
ṁg

ṁ
(4.34)

where ṁg is the mass flow rate of the gas phase. A slip factor s is introduced to describe the
velocity differences between the liquid and the gas phase

s =
wg
wl

=
x∗

1− x∗
1− ε
ε

%l
%g

(4.35)

where ε is the void fraction defined as

ε =
Vg
V

(4.36)

Note that the flow steam quality x∗ is equal to the quality x = mg/m if the velocities of the
two phases are equal, i.e., s = 1. The void fraction for this simple case called homogeneous
flow can be simplified to

ε =
(
%g
%l

1− x∗

x∗
+ 1
)−1

(4.37)

For all other cases, many empirical relations are given in the literature to compute the void
fraction ε depending on the flow steam quality x∗, the saturation densities %l and %g, the
saturation viscosities µl and µg, and geometric parameters. Woldesemayat and Ghajar (2007)
give a very good overview of various empirical relations and compare them to results from
measurements. All currently available models in the new component model library assume
non-slip flow by default but allow for the explicit formulation of an empirical correlation for
ε. First tests with the correlation by Premoli et al. (1970) that is also suggested by Heinrich
and Berthold (2006) showed promising results but requires further testing that goes beyond
the scope of this thesis.

For evaporation, two different models are used depending on the Froude number Fr that
compares the inertial and the gravitational forces and is defined as

Fr =
ṁ

A2%2
l gdh

(4.38)

For Fr < 0.04, Baehr and Stephan (2004) use a correlation given by Shah (1976) to compute
the heat transfer coefficient α

α = 3.9 Fr0.24

(
x∗

1− x∗

)0.64(%l
%g

)0.4

αK (4.39)

62

4.5. Heat Transfer and Pressure Drop Models

where

αK =
λl
dh

0.023 Re0.8Pr0.4, and Re =
ṁ(1− x∗)dh

%lA νl
(4.40)

For Fr > 0.04, an approach by Chen (1966) is proposed by Baehr and Stephan (2004) in which
a heat transfer coefficient for bulk boiling αB and a heat transfer coefficient for convective
boiling αK are used to determine the total coefficient of heat transfer according to

α = SαB + FαK (4.41)

The factors S and F can be computed from

F = 1 + 2.4 · 104 Bo1.16 + 1.37 X−0.86
tt (4.42)

S =
(
1 + 1.15 · 10−6F 2Re1.17

)−1 (4.43)

with

Re =
ṁ(1− x∗)dh

%lA νl
, Bo =

q̇A

ṁ(hg − hl)
, and Xtt =

(
1− x∗

x∗

)0.9(νl%l
νg%g

)0.1(%g
%l

)0.5

(4.44)
The heat transfer coefficient αK can be computed using a relation for turbulent single-phase
flow as presented in section 4.5.2. αB can be computed from a relation for evaporation in a
free flow. This relation is based on a known heat transfer coefficient α0 and the corresponding
heat flux density q̇0. The heat transfer coefficient for other pressures and heat flux densities
can be determined from

αB = α0F (pred)
(
q̇

q̇0

)n
(4.45)

Stephan (1988) gives the following relation for the pressure correction F (pred) and the coef-
ficient n that is valid for organic fluids and for ammonia

F (pred) = 2.1 p0.27
red +

(
4.4 +

1.8
1− pred

)
pred, and n = 0.9− 0.3p0.3

red (4.46)

Reference values for α0 are available for many fluids. Some of them are stored in TILFluids

and can be obtained via a function call. Smooth transition functions (see section 4.6) are
used to switch between single-phase and two-phase flows depending on the quality x. The
sign of the heat flux density q̇ is used to switch between evaporation and condensation models
in the case of two-phase flows.

The pressure drop in two-phase flows consists of two different parts, a static and a dynamic
pressure, and can be computed from (see Baehr and Stephan, 2004)

∆p = −τ0
U

A
− 1
A

d(ṁw)
dx

(4.47)

where τ0 is the wall shear stress, A the cross-sectional area, U the perimeter of the chan-
nel, and x the coordinate in flow direction. The momentum flow ṁw is composed of the
momentum flow of the gas and of the liquid respectively

ṁw = ṁgwg + ṁlwl (4.48)

63

Chapter 4. Object-Oriented Modeling of Fluid Systems

Mayinger (1982) uses a two-phase multiplier R to compute the static pressure of a two-phase
flow according to the relation for single-phase flow

U

A
τ0 = R

ζl
2dh%l

ṁ|ṁ|
A2

(4.49)

where the two-phase multiplier R can be computed from

R = (1− x∗)2 + x∗2
(
%lζg
%gζl

)
+ 3.43x∗0.24(1− x∗)0.24·(

%l
%g

)0.8(µg
µl

)0.22(
1− µg

µl

)0.89

Fr−0.047We−0.0334 (4.50)

where the Froude number Fr and the Weber number We are defined as

Fr =
ṁ2

gdh%2A2
, and We =

ṁ2dh
%σA2

(4.51)

The friction factors ζl and ζg of the liquid and the gas flow depend on the Reynolds numbers
Re l and Reg. The Reynolds numbers are used to switch between a laminar and a turbulent
approach according to

ζl,g =

64
Re l,g

Re l,g ≤ 1055

and(
0.86859 ln

(
Re l,g

ln(Re l,g)− 3.8215

))−2

Re l,g > 1055

(4.52)

where
Re l,g =

ṁdh
Aµl,g

(4.53)

Again, smooth transition functions (see section 4.6) are used to switch between the single-
phase and two-phase and between the different flow regimes.

4.5.3 Gas Flows

The most advanced heat transfer and pressure drop correlations in gas cells are correlations
based on the work of von Haaf (1988) that were also used by Tegethoff (1999) and Schmidt
(2002). This approach uses the following hydraulic diameter to compute the Reynolds and
the Nusselt numbers

dh =
4VΨ
Aa

(4.54)

where Ψ is the void fraction, V is the total volume of the heat exchanger, and Aa is the total
surface area of the heat exchanger. The following relations can be derived from geometrical
considerations

V = llamzlslzqsq (4.55)

Ψ = 1− δR
tR
− πd2

a(tR − δR)
4sqsttR

(4.56)

Aa =
[
2sqsl + πda

(
tR − δR −

da
2

)]
llam

tR
zqzl (4.57)

64

4.5. Heat Transfer and Pressure Drop Models

where llam is the length of the finned tube, and zl and zq are the number of serial and parallel
tubes respectively. All other geometric parameters are shown in figure 4.7.

sl

da

sq

sl

da sq

tR

da

δR

Figure 4.7: Fin geometry.

The Reynolds number is computed using the average air velocity wl,m determined by

wl,m =
vl
Ψ

(4.58)

where vl is the air velocity in the clear cross section. Haaf uses the experimental results from
six different publications to derive the following correlation for the heat transfer correlation

Nu = 0.31 Re5/8Pr1/3

(
dh
sl

)1/3

(4.59)

The coefficient of heat transfer α is computed from this equation using equation (4.21).
Von Haaf uses the friction factor ξ as dimensionless parameter for the pressure drop

correlation
∆pf =

sl
dh
ξ
%

2
wl
Ψ2
|wl| (4.60)

An empirical approach is used to determine ξ

ξ = 10.5 Re−1/3

(
dh
sl

)3/5

(4.61)

4.5.4 Solids

Figure 4.8 shows a schematic drawing of the temperature distribution in a solid wall. The
heat flow rate Q̇ can be computed from

Q̇ =
T1 − T2

R
(4.62)

where T1 and T2 are the surface temperatures at each side and R is the thermal resistance.

T
1

T
2

Q

d

Figure 4.8: Heat flow through solid wall.

65

Chapter 4. Object-Oriented Modeling of Fluid Systems

The thermal resistance R depends on the geometry of the wall. For a planar wall with
thickness d, total area A, and thermal conductivity λ, the thermal resistance R is

R =
d

Aλ
(4.63)

The thermal resistance for concentric tube walls with an inner radius r1, an outer radius r2,
and a total length L can be computed from (see Polifke and Kopitz, 2005)

R =
ln
(
r2

r1

)
2πλL

(4.64)

4.6 Smooth Transition Functions

Transition functions are required in many component models to switch smoothly and con-
tinuously between different functions. A good example are heat transfer and pressure drop
correlations that are usually only valid within certain regions. The continuous transition
between those regions is a typical problem in numerical simulations. Transition functions
are provided in the Utilities package to allow for a smooth transition between different
functions with a variable number of smooth derivatives. These functions T (x) can be used
in the following way to switch between the two functions f(x) and g(x)

z(x) = T (x) · f(x) + (1− T (x)) · g(x) (4.65)

where the transition function T (x) is defined as

T (x) =

1 x ≤ xt − ∆x

2

t(x) for xt − ∆x
2 < x < xt + ∆x

2

0 x ≥ xt + ∆x
2

(4.66)

xt being the transition point, ∆x the transition length, and t(x) a function with

t(xt−∆x
2

) = 1 and t(xt+
∆x
2

) = 0 (4.67)

In order that T (x) is smooth, the following restrictions apply for t(x)

dt(x)
dx

∣∣∣∣
x=xt−∆x

2

= 0 and
dt(x)
dx

∣∣∣∣
x=xt+

∆x
2

= 0 (4.68)

The simplest way to find a suitable function is to start with the restrictions stated in equa-
tion (4.68). The fundamental trigonometric function

dt(ϕ)
dϕ

= a cos(ϕ) (4.69)

where a is a scaling factor and ϕ the phase defined by

ϕ =
x− xt

∆x
π (4.70)

66

4.6. Smooth Transition Functions

fulfills these restrictions. This yields the following function for t(ϕ)

t(ϕ) = a sin(ϕ) + b (4.71)

The two parameters a and b can be computed from equation (4.67). From equation (4.69)
follows that the first derivative of the transition function T (x) defined as

dT (x)
dx

=

0 x ≤ xt − ∆x

2

dt(x)
dx

for xt − ∆x
2 < x < xt + ∆x

2

0 x ≥ xt + ∆x
2

(4.72)

is not smooth at x = xt − ∆x
2 and x = xt + ∆x

2 . This discontinuity can have negative effects
on the solution process because the solver has to handle functions with discontinuous first
derivatives. Equation (4.69) can be generalized to

dt(ϕ)
dϕ

= a cosn(ϕ) (4.73)

where n is a positive integer yielding the following function for t(ϕ)

t(ϕ) = a
cosn−1(ϕ) sin(ϕ)

n
+
n− 1
n

∫
cosn−2(ϕ)dϕ+ b (4.74)

The two parameters a and b can again be computed from equation (4.67). The resulting
function t(ϕ) is (n − 1)th order continuous. Table 4.1 shows the functions and values for a
and b for t(ϕ) for n = 1, 2, 3, 4. Figure 4.9 and 4.10 show the function T (x) and its derivative
dT (x)/dx respectively for n = {1, 2, 3}.

0

1

0 xt − ∆x
2 xt xt + ∆x

2

Smooth transition function T (x)

n = 1
n = 2
n = 3

Figure 4.9: Smooth transition functions T (x) for n = {1, 2, 3}.

67

Chapter 4. Object-Oriented Modeling of Fluid Systems

n t(ϕ) a b

1 a sin(ϕ) + b −1
2

1
2

2 a

(
1
2

cos(ϕ) sin(ϕ) +
1
2
ϕ

)
+ b − 2

π

1
2

3 a

(
1
3

cos(ϕ)2 sin(ϕ) +
2
3

sin(ϕ)
)

+ b −3
4

1
2

4 a

(
1
4

cos(ϕ)3 sin(ϕ) +
3
8

cos(ϕ) sin(ϕ) +
3
8
ϕ

)
+ b − 8

3π
1
2

Table 4.1: Functions t(ϕ) used in smooth transition functions T (x) provided in the
Utilities package of the new component model library.

-0.5

0

0 xt − ∆x
2 xt xt + ∆x

2

1st derivative of smooth transition function dT (x)/dx

n = 1
n = 2
n = 3

Figure 4.10: Derivatives of smooth transition function dT (x)/dx for n = {1, 2, 3}.

A smooth function t(x) that is (n−1)th order continuous is only one requirement to obtain
a function z(x) that is (n− 1)th order continuous. The other two requirements concern the
two functions f(x) and g(x). Differentiating equation (4.65) yields

dz(x)
dx

=
dT (x)
dx

f(x) + T (x)
df(x)
dx

− dT (x)
dx

g(x) + (1− T (x))
dg(x)
dx

(4.75)

from which follows that f(x) has to be (n− 1)th order continuous for x < xt + ∆x
2 and g(x)

has to be (n − 1)th order continuous for x > xt − ∆x
2 in order that z(x) is (n − 1)th order

continuous.

A simple example is used to demonstrate how the smooth transition function is used. A
function g(x) is defined with a discontinuity at x = 2 according to

z∗(x) =

x x ≤ 2

and
x2 + 1 x > 2

(4.76)

68

4.6. Smooth Transition Functions

This function is smoothed using the transition function from equation (4.65) which yields

z(x) = T (x) · x+ (1− T (x)) ·
(
x2 + 1

)
(4.77)

The two functions x and x2 + 1 and the smooth transition function z(x) for n = 1, 2 are
shown in figure 4.11. The transition length is chosen to be ∆x = 2. Figure 4.12 shows the
corresponding derivatives. Note the discontinuity in dz(x)/dx, n = 1 at x = 3.

0

2

4

6

8

10

12

14

0 0.5 1 1.5 2 2.5 3 3.5 4
x

f(x)
g(x)

z(x), n = 1
z(x), n = 2

Figure 4.11: Example for smooth transition between two functions.

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5 2 2.5 3 3.5 4
x

df(x)/dx
dg(x)/dx

dz(x)/dx, n = 1
dz(x)/dx, n = 2

Figure 4.12: Example for derivative of smooth transition between two functions.

69

Chapter 4. Object-Oriented Modeling of Fluid Systems

4.7 Cells for Refrigerants, Liquids, Gases, and Solids

Cells are the base elements that are used to assemble more complex structures such as tubes
and heat exchangers in the new component model library. This section presents the four
most important cells which are the RefrigerantCell, the GasCell, the LiquidCell, and the
WallCell. A MoistAirCell that handles moist air including condensation and evaporation
is also available but its description goes beyond the scope of this work. Having different cell
models to handle refrigerants, gases, liquids, and moist air seems to be an overhead due to
the duplication of the balance equations and is avoided in many other Modelica libraries by
combining all these models into one base model as already discussed in chapter 3 for the
fluid property library Modelica.Media. The major drawback of this one-can-fit-all solution
is the high complexity of the resulting component model library due to the fact that the same
model is used for such different media as ideal gases, simple liquids, and two-phase fluids.
The cells in the new component model library were instead designed based on the design
rules presented in chapter 2 and the medium models presented in section 3.5.

4.7.1 Refrigerant Cell

The RefrigerantCell is the base element for tubes and many heat exchanger models de-
scribing a finite volume of a discretized model. Each refrigerant cell contains a refrigerant
object of type Refrigerant from TILFluids representing the fluid properties in the control
volume. An upwind scheme is used for the discretization, i.e., the fluid properties at the outlet
of the cell are identical with the fluid properties of the refrigerant model. The conservation
laws described in section 4.3 are formulated in each refrigerant cell yielding the following set
of equations

M = V % (4.78a)

d%

dt
=
(
∂%

∂h

)
p

dh

dt
+
(
∂%

∂p

)
h

dp

dt
(4.78b)

V
d%

dt
= ṁin + ṁout (4.78c)

pout = pin −∆pf (4.78d)

dh

dt
=

1
M

(
ṁin(hin − h) + ṁout(hout − h) + Q̇+ V

dp

dt

)
(4.78e)

h = hout (4.78f)

p =
pin + pout

2
(4.78g)

Note that the acceleration term is skipped in equation (4.78e) for simplicity but that it can
be reintroduced if needed. The friction pressure drop ∆pf in equation (4.78d) is computed
in the pressure drop model. For the heat transfer, an additional equation is formulated in
the refrigerant cell

Q̇ = αA(Tw − T) (4.79)

where Tw is the wall temperature and T is the temperature of the refrigerant. The coefficient
of heat transfer αA is computed in the heat transfer model.

70

4.7. Cells for Refrigerants, Liquids, Gases, and Solids

Refrigerant
TILFluids

FluidPort
Connectors

HeatPort
Connectors

RefrigerantCell
Cells

<<partial>>
BaseHeatTransfer

TIL.HeatTransfer.Fluids

<<partial>>
BasePressureDrop

TIL.PressureDrop

PropertyRecord
TILFluids.Common

2

Figure 4.13: UML class diagram of RefrigerantCell. The two shown partial base models
for heat transfer and pressure drop correlations are replaced when instantiating
the refrigerant cell by one of the models presented in section 4.5.

Figure 4.13 shows the class diagram of a refrigerant cell. The gray models are models
from TILFluids. The PropertyRecord provides a standardized interface to fluid properties
independent from the type of the model itself (e.g., Refrigerant, Gas). Aggregation (see
section 2.3.2) is used to make the fluid properties available in the pressure drop and heat
transfer models. Two fluid ports and a heat port define the interfaces of the refrigerant cell.
To simplify matters, the class diagram does not show a couple of additional variables made
available in the heat transfer and pressure drop models using aggregation which are listed in
table 4.2.

Variable Unit Description

mdotHydraulic kg/s Hydraulic mass flow rate used to compute the pressure drop
qdotHydraulic W Hydraulic heat flow rate used to compute the heat transfer
wallTemperature K Wall temperature used to compute the heat transfer

Table 4.2: Additional variables in cells that are provided to the heat transfer and pressure
drop models using aggregation as presented in section 2.3.2.

The most advanced heat transfer and pressure drop models for refrigerant cells combine
the correlations described in sections 4.5.1 and 4.5.2. Table 4.3 shows the heat transfer
correlations implemented in the AdvancedHeatTransfer model. Smooth transition functions
are used to switch between the different correlations.

q̇ ≥ 0 q̇ < 0

Single-Phase Flow Re ≤ 2300 constant Nusselt number (4.23)
2300 < Re ≤ 1e4 Gnielinski (4.24)
Re > 1e4 Dittus-Bölter (4.26)

Two-Phase Flow Fr ≤ 0.04 Shah (4.39)
Fr > 0.04 Chen (4.41)

Shah (4.32)

Table 4.3: Heat transfer correlations implemented in AdvancedHeatTransfer model.

71

Chapter 4. Object-Oriented Modeling of Fluid Systems

Table 4.4 shows the pressure drop correlations implemented in the AdvancedPressureDrop
model. Smooth transition functions are used to switch between the different correlations. All
correlations work in both flow directions, ṁ ≥ 0 and ṁ < 0.

Single-Phase Flow Re ≤ 2300 laminar flow (4.30)
Re > 2300 turbulent flow (4.31)

Two-Phase Flow Re l,g ≤ 1055 laminar flow (4.49) and (4.52)
Re l,g > 1055 turbulent flow (4.49) and (4.52)

Table 4.4: Pressure drop correlations implemented in AdvancedPressureDrop model.

The structure of the cell is kept as simple as possible with no inheritance following the
design rules presented in chapter 2. The flat structure makes it very straightforward for users
as well as for developers to understand the structure of the cell and to find potential errors.
Other libraries such as the AirConditioning library use structures that are much more
complicated and therefore harder to understand for developers as well as for users as discussed
in section 2.7. Figure 2.12 for example shows the inheritance relations for the refrigerant cell
used in heat exchanger models in the AirConditioning library. The inheritance tree is five
levels deep and uses multiple inheritance in three places making it very hard to understand
especially if no tools for an automated object-oriented analysis are available.

4.7.2 Gas Cell

Figure 4.14 shows the class diagram of a gas cell. Each gas cell contains a gas model Gas
from TILFluids representing the fluid properties in the control volume. An upwind scheme is
used for the discretization. The conservation laws are formulated steady-state in the control
volume yielding the following set of equations

0 = ṁin + ṁout (4.80a)

pout = pin −∆pf (4.80b)

0 = ṁinhin + ṁouthout + Q̇ (4.80c)

h = hout (4.80d)

p =
pin + pout

2
(4.80e)

The friction pressure drop ∆pf in equation (4.80b) is computed in the pressure drop model.
An additional equation is formulated in the gas cell to compute the heat flow rate

Q̇ = (αA)eff (Tw − T) (4.81)

where Tw is the wall temperature, T the gas temperature, and (αA)eff the effective coefficient
of heat transfer which is computed from

(αA)eff = |ṁ|cp exp
(
αA

|ṁ|cp
− 1
)

(4.82)

72

4.7. Cells for Refrigerants, Liquids, Gases, and Solids

The derivation of this equation as presented by Tegethoff (1999) uses an analytical approxima-
tion of the gas temperature in the control volume based on the ideal gas law. The coefficient
of heat transfer α in equation (4.82) is computed in the heat transfer model.

Gas
TILFluids

PortGas
TILFluids

<<partial>>
BaseHeatTransfer

TIL.HeatTransfer.Fluids

<<partial>>
BasePressureDrop

TIL.PressureDrop

PropertyRecord
TILFluids.Common

GasPort
Connectors

HeatPort
Connectors

GasCell
Cells

2

2

Figure 4.14: UML class diagram of GasCell. The two shown partial base models for heat
transfer and pressure drop correlations are replaced when instantiating the
refrigerant cell by one of the models presented in section 4.5.

The PropertyRecord from TILFluids and aggregation are used to propagate the fluid
properties from the gas cell to the heat transfer and pressure drop models. The additional
variables listed in table 4.2 are also propagated using aggregation. Two gas ports and a heat
port define the interfaces of the gas cell. The most advanced heat transfer and pressure drop
models for the gas cell use the correlations presented in section 4.5.3.

4.7.3 Liquid Cell

The new component model library also provides liquid cells to model incompressible fluid
flow. Figure 4.15 shows the class diagram of a liquid cell. A liquid model Liquid from
TILFluids is used to model the fluid properties in the control volume. The liquid cell uses
the same set of equation as the gas cell presented in the previous section except for a transient
formulation of the energy balance.

Liquid
TILFluids

<<partial>>
BaseHeatTransfer

TIL.HeatTransfer.Fluids

<<partial>>
BasePressureDrop

TIL.PressureDrop

PropertyRecord
TILFluids.Common

LiquidPort
Connectors

HeatPort
Connectors

LiquidCell
Cells

2

Figure 4.15: UML class diagram of LiquidCell.

73

Chapter 4. Object-Oriented Modeling of Fluid Systems

4.7.4 Wall Cell

The wall cell is used to model walls separating fluid flows in tubes and heat exchangers.
Figure 4.16 shows the class diagram of a wall cell. A replaceable material model is used
to compute all material properties. A PropertyRecord is used to propagate the material
properties to the heat transfer model. Four heat ports define the interfaces to the neighboring
wall and fluid cells.

<<partial>>
BaseMaterial
TIL.Material

HeatPort
Connectors

WallCell
Cells

4

Steel
TIL.Material

Copper
TIL.Material

Aluminium
TIL.Material

<<partial>>
BaseHeatTransfer

TIL.HeatTransfer.Solids

PropertyRecord
TIL.Material

Figure 4.16: UML class diagram of WallCell.

The four heat ports in the wall cell are labeled using the cardinal points (e.g., heatPortN
for the heat port at the north side). Two different thermal resistances RNS and RWE can
be specified within the wall cell representing the thermal vertical and horizontal thermal
resistance of the cell. The four heat flows are computed from

Q̇N,S = 2
TN,S − T
RNS

(4.83a)

Q̇W,E = 2
TW,E − T
RWE

(4.83b)

where T is the temperature of the wall material in the center of the wall cell. The energy
balance is formulated as

mcv
dT

dt
= Q̇N + Q̇E + Q̇S + Q̇W (4.84)

where cv is the specific heat capacity of the wall material and m the mass of the cell.

4.8 Heat Exchangers

The heat exchanger model is the most complex model in the component model library and
was designed based on the experiences of earlier projects by Kossel (2005) and Ahlbrink
(2007). The major design goal was to create a heat exchanger library that is both, simple in
its structure and easy to extend and customize. This section explains the basic concept and
the structure of the heat exchanger models.

Many different approaches are possible when modeling heat exchangers in Modelica. Schi-
avo and Casella use finite-element models derived using the Galerkin/Least-Squares approach

74

4.8. Heat Exchangers

to describe homogeneous two-phase flows in heat exchangers (Schiavo and Casella, 2007).
The heat exchanger model included in Modelica Fluid consists of two discretized pipe mod-
els connected to a wall element (Casella et al., 2006). The pipe models use a spatial dis-
cretization according to the finite-volume method (Elmqvist et al., 2003). There are two
different pipe models in Modelica Fluid, DistributedPipe including n volumes with dy-
namic mass and energy balances and static momentum balances on a staggered grid and
DistributedPipeLumpedPressure with n dynamic energy balances but only one mass bal-
ance (one pressure) and two momentum balances (two flow rates). Combining the pressure
states in a distributed pipe into one single state is one possibility to avoid stiff models but
only works when the distributed friction is small. The approach discussed in section 4.3
is another possibility to avoid a large number of fast pressure states. Using this approach
of locally constant time derivatives of pressure yields to control volumes where the specific
enthalpy h is the only differential variable.

This section uses the model of a fin-and-tube heat exchanger to explain the basic structure
and the design of the heat exchanger model. All other heat exchangers are composed in a
similar way.

4.8.1 Sandwich Concept

All heat exchanger models in the new component model library are composed using cells to
model the two fluid flows and the separating wall as shown in figure 4.17 for the fin-and-
tube heat exchanger. Three cells can be combined into a single basic element that is used
to discretize the heat exchanger. The resulting structure is called sandwich structure by
Tegethoff (1999) and is described in detail by Kossel (2005) in a Modelica context. It offers
both, a simple structure and high flexibility.

Refrigerant

Gas

Refrigerant Cell

Wall Cell

Fluid Port
Heat Port

Gas Cell

Figure 4.17: Basic element for the FinAndTube heat exchanger in the new component model
library.

A basic element contains a refrigerant cell, a wall cell, and a third cell depending on the
type of the heat exchanger. The different types of heat exchangers in the HeatExchangers

package are listed in table 4.5. The cells are explained in section 4.7. Each heat exchanger
instantiates n primary, n wall, and n secondary cells and connects them depending on the
flow pattern that can be counter flow, co-current flow, or cross flow.

75

Chapter 4. Object-Oriented Modeling of Fluid Systems

Heat Exchanger Primary Cell Wall Cell Secondary Cell

FinAndTube RefrigerantCell WallCell GasCell

FinAndTube moistAir RefrigerantCell WallCell MoistAirCell

IHX RefrigerantCell WallCell RefrigerantCell

TubeInTube liquidRef RefrigerantCell WallCell LiquidCell

Table 4.5: Structure of a basic element for different types of heat exchangers in the new
component model library.

Figure 4.18 shows the structure of the heat exchanger models for all flow patterns. The
cell numbering is designed in the most natural way in which only cells with equal numbers are
connected vertically. Different models exists for co-current and counter flow heat exchangers
though this is not mandatory due to the application of semiLinear() in each fluid cells (see
section 4.2). One advantage of having two separate models instead of a single model is that
the two separate models can have unique icons in the icon layer making it much easier for
users to distinguish between the two models. Another advantage is that the cells can be
connected differently in the two models to ensure that the fluid port called inlet in each cell
model is the inlet port for the designed flow direction.

The cross flow heat exchanger model uses a splitter to split the entering gas mass flow
rate into n equal mass flow rates and a joiner to unite the n gas mass flow rates again. It is
also possible to use a distribution matrix to split the entering gas mass flow rate to model
a non-uniform incident air flow. This was successfully tested by Mazen (2007) using models
from the new component model library.

Fluid Port
Heat Port

Connection
Connection (optional)

Co-Current Flow

Counter Flow

Co-Current Flow
Counter Flow

1 2 n
Primary Cells

Wall Cells

Secondary Cells

1 2 n

splitter

joiner

Figure 4.18: Structure of heat exchanger models. The left-hand side shows the structure
for co-current and counter flow heat exchangers, the right-hand side for cross
flow heat exchangers.

76

4.8. Heat Exchangers

4.8.2 Class Structure

Figure 4.19 shows the class diagram of the fin-and-tube heat exchanger model. All cells are
instantiated in the BaseHX model. The connections are made in the derived classes depending
on the flow pattern (e.g., counter flow). The light gray classes represent the inheritance tree
which is only two levels deep. The heat exchanger model extends from PartialComponent

that is explained in detail in section 4.10.3. The dark gray classes are medium models from
TILFluids that are used to compute additional fluid properties at the inlets and outlets of
the heat exchanger.

All heat transfer and pressure drop models are defined as replaceable local model in the
heat exchanger model. The modifiers of the cells are used to propagate the selected models
to the cells. The same technique is used for the wall and for the fin material model. The
geometry record is used to store all geometrical information and to compute the discretized
quantities. The discretized quantities (e.g., the cell volumes) are propagated to the cell
models using the modifiers of the cells. Aggregation is used to make the geometry record
available in each heat transfer and pressure drop model by using the inner/outer-concept
as explained in section 2.3.2.

A summary record is used to collect the most important information on the heat exchanger
making it easier for the user to analyze the numerical results. Note that more complex heat
exchangers can also be modeled using the presented structure by either combining several of
the available heat exchanger models into a new more complex heat exchanger model or by
connecting the cells manually representing the structure of the complex heat exchanger to be
modeled.

77

Chapter 4. Object-Oriented Modeling of Fluid Systems

C
oC

ur
re

nt
Fl

ow
H

X
Fi

nA
nd

Tu
be

C
ou

nt
er

Fl
ow

H
X

Fi
nA

nd
Tu

be
C

ro
ss

Fl
ow

H
X

Fi
nA

nd
Tu

be

Fl
ui

dP
or

t
C

on
ne

ct
or

s

G
as

Po
rt

C
on

ne
ct

or
s

<<
pa

rti
al

>>
B

as
eH

X
Fi

nA
nd

Tu
be

<<
pa

rti
al

>>
Fi

nH
XG

eo
m

et
ry

Fi
nA

nd
Tu

be
.G

eo
m

et
ry

Sc
hm

id
t0

6
Fi

nA
nd

Tu
be

.G
eo

m
et

ry

<<
pa

rti
al

>>
B

as
eM

at
er

ia
l

TI
L.

M
at

er
ia

l

A
lu

m
in

iu
m

TI
L.

M
at

er
ia

l

C
op

pe
r

TI
L.

M
at

er
ia

l

St
ee

l
TI

L.
M

at
er

ia
l

2 2 2R
ef

rig
er

an
tC

el
l

C
el

ls

W
al

lC
el

l
C

el
ls

G
as

C
el

l
C

el
ls

nC
el

ls

nC
el

ls

nC
el

ls

Sy
st

em
In

fo
rm

at
io

nM
an

ag
er

C
om

m
on

<<
pa

rti
al

>>
Pa

rt
ia

lC
om

po
ne

nt
In

te
rn

al
s.

P
ar

tia
lB

as
eC

la
ss

es

H
XS

um
m

ar
y

Fi
nA

nd
Tu

be
.In

te
rn

al
s

Po
rt

R
ef

rig
er

an
t

TI
LF

lu
id

s

Po
rt

G
as

TI
LF

lu
id

s
2

2

C
on

st
an

tA
lp

ha
Fi

nA
nd

Tu
be

.T
ub

eS
id

eH
ea

tT
ra

ns
fe

r

C
on

st
an

tA
lp

ha
A

Fi
nA

nd
Tu

be
.T

ub
eS

id
eH

ea
tT

ra
ns

fe
r

C
om

bi
ne

dG
ni

el
in

sk
iD

itt
us

B
oe

lte
r

Fi
nA

nd
Tu

be
.T

ub
eS

id
eH

ea
tT

ra
ns

fe
r

C
on

st
an

tA
lp

ha
Fi

nA
nd

Tu
be

.F
in

S
id

eH
ea

tT
ra

ns
fe

r

C
on

st
an

tA
lp

ha
A

Fi
nA

nd
Tu

be
.F

in
S

id
eH

ea
tT

ra
ns

fe
r

Vo
nH

aa
f

Fi
nA

nd
Tu

be
.F

in
S

id
eH

ea
tT

ra
ns

fe
r

C
on

st
an

tP
re

ss
ur

eD
ro

p
Fi

nA
nd

Tu
be

.T
ub

eS
id

eP
re

ss
ur

eD
ro

p

M
as

sF
lo

w
D

ep
en

de
nt

Fi
nA

nd
Tu

be
.T

ub
eS

id
eP

re
ss

ur
eD

ro
p

C
om

bi
ne

dL
am

in
ar

K
on

ak
ov

Fi
nA

nd
Tu

be
.T

ub
eS

id
eP

re
ss

ur
eD

ro
p

C
on

st
an

tP
re

ss
ur

eD
ro

p
Fi

nA
nd

Tu
be

.F
in

S
id

eP
re

ss
ur

eD
ro

p

M
as

sF
lo

w
D

ep
en

de
nt

Fi
nA

nd
Tu

be
.F

in
S

id
eP

re
ss

ur
eD

ro
p

<<
pa

rti
al

>>
B

as
eH

ea
tT

ra
ns

fe
r

TI
L.

H
ea

tT
ra

ns
fe

r.F
lu

id
s

<<
pa

rti
al

>>
B

as
eH

ea
tT

ra
ns

fe
r

TI
L.

H
ea

tT
ra

ns
fe

r.F
lu

id
s

C
on

st
an

tR
Fi

nA
nd

Tu
be

.W
al

lC
el

lH
ea

tT
ra

ns
fe

r

<<
pa

rti
al

>>
B

as
eH

ea
tT

ra
ns

fe
r

TI
L.

H
ea

tT
ra

ns
fe

r.S
ol

id
s

<<
pa

rti
al

>>
B

as
eP

re
ss

ur
eD

ro
p

TI
L.

P
re

ss
ur

eD
ro

p

<<
pa

rti
al

>>
B

as
eP

re
ss

ur
eD

ro
p

TI
L.

P
re

ss
ur

eD
ro

p

Figure 4.19: UML class diagram of FinAndTube heat exchanger in the new component
model library. Class diagrams of the cells can be found in figures 4.13, 4.14,
and 4.16.

78

4.9. Compressor Model

4.8.3 Initialization

The initialization of all heat exchanger models is handled in the base class of the specific
heat exchanger (e.g., FinAndTube.BaseHX) using a string parameter called initialization.
Table 4.6 shows the implemented initialization methods for heat exchangers.

Parameter Value Description

"none" No initial equation is formulated.
"steady-state" The heat exchanger is initialized in steady-state, i.e.,

dh/dt = 0 in each refrigerant cell.
"constant enthalpy" The heat exchanger is initialized with constant specific en-

thalpy, i.e., h = const in each refrigerant cell. The user has
to specify a value for the specific enthalpy.

"linear constant enthalpy" The heat exchanger is initialized with a linear profile for
the specific enthalpy in the refrigerant cells. The user has
to specify the specific enthalpy to be used for the first and
the last refrigerant cell.

"constant temperature" The heat exchanger is initialized at constant temperature,
i.e., T = const in each refrigerant cell. The user has to
specify a value for the temperature.

Table 4.6: Initialization methods for heat exchanger models.

4.9 Compressor Model

Compressor models with different levels of detail are available in the Compressors package.
One of the advanced models describes a swash plate compressor based on characteristic
curves for the compressor efficiencies. This model was initially developed by Försterling
(2003). An improved model was first published by Tummescheit et al. (2005a) though it
was also developed by Försterling as stated in Tummescheit et al. (2005b). The model uses
three evaluation parameters to describe the compressor regarding the mass flow rate ṁeff ,
the driving power Peff , and the discharge temperature Td: the volumetric efficiency λeff , the
effective isentropic efficiency ηeff ,is , and the isentropic efficiency ηis defined as

λeff =
ṁeff

V n%(ps, Ts)
(4.85)

ηeff ,is =
Pis

Peff
=

(hd,is − hs)ṁeff

2π|M |n
(4.86)

ηis =
hd,is − hs
hd − hs

(4.87)

where V is the displacement volume, n the speed, and M the torque. The subscript d refers to
the discharge side, s to the suction side, is to isentropic conditions, and eff to effective values.
The efficiency functions are factored in two parts. One part f(π, n) captures the influence
of the pressure ratio and rotational speed and a second part g(x, n) to take into account the

79

Chapter 4. Object-Oriented Modeling of Fluid Systems

control of the swash plate angle and rotational speed. Due to this separation, a derivation
of efficiencies for the full load case is possible even if measurements for the influence of the
swash plate are not available. The following relation is used for all efficiencies

λ, η(π, n, x) = f(π, n) · g(x, n) with g(π, x = 1) = 1 (4.88)

The following correlations are used to describe the full load case (i.e., g(π, x = 1) = 1) for a
CO2 swash plate compressor

λeff (π, n) =
(
π0 − π
π0 − 1

)2

(a2n
2 + a1n+ a0) (4.89)

with three coefficients and one constant. The same correlation can be used to describe the
effective isentropic efficiency ηeff ,is and the isentropic efficiency ηeff

η(π, n) = b
π0 − π
π0

− b c
(

1
c

π0 − 1
π0

)π
(4.90)

where
b(n) = b1n+ b0 and c(n) = c1n

c2 (4.91)

with four coefficients and one constant. The coefficients for equation (4.89) and (4.90) have
to be adapted to measurement data. Fitted sets of coefficients for various compressors are
not included in the Compressors package but are provided in an add-on library.

4.10 Basic Component Models

This section describes additional component models. The first described component model
is the system information manager that handles information about the entire system to be
modeled. The second model is the pressure state component model which is used to compute
the time derivative of pressure required for the specific simplification of the balance equations
described in section 4.3. The third described component model is the partial base component
model that all other component models extend from. The last component models described in
this section are the boundary models used for all sources and sinks in testers for components
as well as in system simulations.

4.10.1 System Information Manager

Each system requires basic information including technical information (e.g., the used re-
frigerants, gases, and liquids) as well as numerical information (e.g., the total refrigerant
mass) that are required for a simulation. The new component model library uses a compo-
nent called sim of type SystemInformationManager to store all required information in one
central place for each system. It is furthermore used to compute the total refrigerant mass
and the total inner volume which are important system properties. Aggregation is used to
propagate information from the system information manager to the system and vice versa as
described in section 2.3.2. The SystemInformationManager contains one SIMPort (see code
listing 4.4) that is used to determine the total refrigerant mass and volume and to propagate

80

4.10. Basic Component Models

the number of refrigerants used in the system. Each component model has access to the sys-
tem information manager via the definition of an outer SystemInformationManager named
sim (see also section 4.10.3). Besides the definition of media required for the simulation, the
system information manager also allows for the specification of post-processing parameters
(e.g., color schemes).

import SI = Modelica.SIunits;

connector SIMPort ”System information manager port”
parameter Integer nRefrigerants ”Number of refrigerants used in the system”;

flow SI.Mass[nRefrigerants] refrigerantMass ”Accumulated refrigerant mass”;
flow SI.Volume[nRefrigerants] refrigerantVolume ”Accumulated refrigerant volume”;

end SIMPort;

Code Listing 4.4: Code for SIMPort.

Figure 4.20 shows how multiple instances of SystemInformationManager can be used in a
single simulation. Air-conditioning systems are independently instantiated in each railway
car. Each air-conditioning system has its own system information manager named sim.
This is possible due to the inner/outer-concept in Modelica where an outer element always
references the inner element with the same name that is nearest in the enclosing instance
hierarchy of the outer element declaration. It would therefore also be possible to instantiate
the entire train in a model of a railway station where the railway station itself contains a
system information manager for the air-conditioning system of the building itself.

sim sim sim

Figure 4.20: Multiple instances of SystemInformationManager in a single simulation.

4.10.2 Pressure State

The time derivative of pressure is assumed to be constant in flow direction at each pressure
level as explained in section 4.3. The derivative is handled in a model called PressureState

which is sketched in code listing 4.5. Different concepts have been tested to propagate
the computed time derivative from the PressureState component to other components as
discussed in the following paragraphs.

model PressureState ”Component to determine time derivative of pressure”
Connectors.FluidPort inlet ”Inlet port”;
Connectors.FluidPort outlet ”Outlet port”;

Real dpdt ”Time derivative of pressure”;
equation

dpdt = der(inlet.p); // the time derivative of pressure is handled by this equation;

81

Chapter 4. Object-Oriented Modeling of Fluid Systems

// inlet.p is a state variable

inlet.m flow + outlet.m flow = 0 ”Static mass balance”;
inlet.H flow + outlet.H flow = 0 ”Static energy balance”;
inlet.p = outlet.p ”Static momentum balance”;

... // further code omitted
end PressureState;

Code Listing 4.5: Modelica code for PressureState from HVAC p package.

One straightforward concept to propagate the dp/dt-information is to use the fluid ports.
The main disadvantage of this concept is that each component has to process the provided
information even if this information is of no importance for the specific component (e.g., in
simple valve and compressor models) making it harder to understand the system of equations
for developers as well as for users. A second concept is the introduction of an additional
connector to propagate the derivative information. This concept would allow the developer
to decide for each component whether this additional connector is required or not. The main
disadvantage of this concept is that the additional connectors have to be manually connected
in each system which is cumbersome and quite confusing for new users. The third concept is
to use the inner/outer-concept in Modelica to propagate the derivative information among
components. This concept neither requires additional explicit connections nor each model
to consider the information. The dp/dt-approach explained in section 4.3 requires that a
pressure state is computed at each pressure level in a system. The system information
manager explained in section 4.10.1 is used to store the time derivatives of the different system
pressures. The numbers (1) and (2) in figure 4.1 refer to the two independent pressure states
in the CO2 refrigeration system computed in the two PressureState components.

4.10.3 Partial Base Component

All components in the HVAC p package extend from the partial base component model Partial-
Component. Unlike in other component libraries for the computation of thermodynamic sys-
tems (e.g., Modelica Fluid, ACLibrary) no conservation laws are formulated in this base
model. Instead, all conservation laws have to be formulated in the component model itself.
This allows for a component-specific formulation of the conservation laws and makes it as
simple as possible for new users and developers to understand the component models. The
PartialComponent model provides standardized access to the system information manager
(see section 4.10.1) and additional information for post-processing or external GUIs. Code
listing 4.6 shows the Modelica code for the PartialComponent.

import TIL.HVAC p.Common.∗;

partial model BaseComponent ”Partial base model for all components”
parameter ComponentType componentType ”Component type”;
parameter RefrigerantID refrigerantID ”Refrigerant ID”;

... // further code omitted

82

4.10. Basic Component Models

protected
outer SystemInformationManager sim ”System information manager”;
SIMPort simPort(
final nRefrigerants=sim.nRefrigerants) ”SIM port”;

equation
connect(sim.simPort,simPort);

end BaseComponent;
Code Listing 4.6: Code for PartialComponent.

ComponentType is an enumeration that uniquely identifies the type of the component model
(e.g., Boundary, OrificeValve) allowing external GUIs and post-processing tools like the
StateViewer (see section 5.3) to determine the type of an instance from the result file. The
BaseComponent also provides access to the system information manager and connects the
local SIMPort to the SIMPort of the system information manager using implicit connections
briefly discussed in section 2.6.1. The refrigerantID specifies which refrigerant defined in
the system information manager is used in the component. If more than one refrigerant is
used, an additional parameter such as refrigerantID2 has to be defined. Similar parameters
are used in components utilizing gases or liquids.

An additional partial base model for components PartialVolumelessComponent extends
from PartialComponent and sets the volume and the refrigerant mass of the component to
zero.

4.10.4 Boundaries

All sink and source elements for fluids are called boundaries in the new component model
library. Boundary component models are for example used in the CO2 refrigeration system
presented in figure 4.1 to specify the air-side boundary conditions for each of the three heat
exchangers. Different boundary models exist for refrigerants, gases, and liquids using the
corresponding ports (see section 4.2) and fluid models from TILFluids (see table 3.3). The
type of the boundary is specified by a string parameter called boundaryType defined in each
boundary model. All possible values for boundaryType are listed in table 4.7.

Identifier Description

”free” No parameter is fixed at the boundary. This boundary condition represents a
reservoir at fixed temperature and unspecified pressure.

”p” The pressure is fixed at the boundary. This boundary condition represents a
reservoir at a fixed temperature that impresses a fixed pressure on the system.

”m dot” The mass flow rate is fixed at the boundary. This boundary condition represents
a reservoir at a fixed temperature with a fixed mass flow rate. The boundary
can be used as a source (negative mass flow rate) or sink (positive mass flow
rate) element.

”p, m dot” All parameters are fixed at the boundary. This boundary condition represents
a reservoir at a fixed temperature and pressure with a fixed mass flow rate. The
boundary can be used as a source (negative mass flow rate) or sink (positive
mass flow rate) element.

83

Chapter 4. Object-Oriented Modeling of Fluid Systems

Table 4.7: Values for boundaryType to specify the type of a fluid boundary element. Note
that the specific enthalpy h or the temperature T always have to be specified to
allow for flow reversal.

Each boundary defines two medium models: one at the port of the boundary and the
other one representing the properties at the outside. The medium model at the port uses the
pressure and the specific enthalpy in the connector instance to compute all other medium
properties of the fluid leaving or entering the boundary. The second medium model uses the
port pressure and a specified temperature or specific enthalpy to compute the fluid properties
at the outside. The two fluid models in each boundary are identical if the mass flow rate in
the port is negative (i.e., the boundary is a source).

Additional boundary elements that can be connected to heat ports are also provided in
the Boundaries package. Table 4.8 lists the different types for these boundaries.

Identifier Description

”free” No parameter is fixed at the boundary. This boundary condition represents a
reservoir at unspecified temperature.

”T” The temperature is fixed at the boundary. This boundary condition represents
a reservoir at a fixed temperature.

”Q dot” The heat flow rate is fixed at the boundary. This boundary condition represents
a reservoir with a fixed heat flow rate. The boundary can be used as a source
(negative heat flow rate) or sink (positive heat flow rate) element.

”T, Q dot” All parameters are fixed at the boundary. This boundary condition represents
a reservoir at a fixed temperature with a fixed heat flow rate. The boundary
can be used as a source (negative heat flow rate) or sink (positive heat flow
rate) element.

Table 4.8: Values for boundaryType to specify the type of a heat boundary element.

4.11 Numerical Aspects

The demonstrating example presented in the introduction to this chapter is used to discuss
some of the benefits of the handling of numerical states in the new component model librray.
The CO2 refrigeration system sketched in figure 4.1 consists of ten components on the refrig-
erant side. Each heat exchanger is modeled using ten refrigerant cells, ten gas cells, and ten
wall cells in a sandwich structure as described in section 4.8. The numerical results obtained
from the simulation are shown in a pressure-enthalpy diagram and in a temperature-entropy
diagram in figures 5.3 and 5.4 respectively. The resulting system of equations describing
the real-world problem is a DAE (differential algebraic equation) that can be written in its
implicit form as

F (x(t), ẋ(t), y(t), t) = 0 (4.92)

84

4.11. Numerical Aspects

where t is the time, x(t) are the state variables, and y(t) the algebraic variables. The DAE
in equation (4.92) is called linear-implicit if it is linear in its derivatives ẋ(t) in which case it
can be written as

A(x(t), y(t), t) ẋ(t) + f(x(t), y(t), t) = 0 (4.93)

This DAE can be transformed in a semi-explicit non-linear form if A(x(t), y(t), t) in equa-
tion (4.93) is not singular yielding

ẋ(t) = f(x(t), y(t), t) (4.94a)

0 = g(x(t), y(t), t) (4.94b)

The main difference between a DAE and an ODE (ordinary differential equation) are the
algebraic constraints g(x(t), y(t), t) that very often restrict the number of degrees of freedom,
i.e., not all differentiated variables are numerical states, resulting in a higher order problem.
Index reduction is applied to transform the higher order system into an index one problem
that can be solved numerically. Much more detailed descriptions of this numerical procedure
can be found in the standard literature such as Brenan et al. (1996) or Hairer and Wanner
(1996). The demonstrating example from figure 4.1 does not require index reduction due to
the specific formulations of the conservation laws discussed in section 4.3, thus simplifying
the process of numerical transformations for the simulation environment.

From a numerical point of view, many semi-explicit DAEs can be solved like an ODE if
the initial conditions are known. The initial conditions x0 and y0 that are sometimes hard
to find (see section 5.4) have to be consistent with the algebraic constraints 0 = g(x0, y0, t0).
A basic requirement is that the Jacobian

∂g(x, y)
∂y

(4.95)

is invertible near the solution of equation (4.94a).
The DAE system resulting from the CO2 refrigeration system sketched in figure 4.1 con-

tains 63 numerical state variables distributed among the components as listed in table 4.9.

The major difference between the new component model library and other Modelica
libraries is the number of pressure states. The pressure states are often the fastest states in
thermo-fluid systems and are strongly coupled to the mass flow rates (see section 4.5) and
can cause a stiff DAE system, i.e., a system where the eigenvalues of the Jacobian ∂f/∂x

differ in magnitude by a factor of 104 to 106. The dp/dt-approach that is described in
section 4.3 reduces the number of pressure states to a single numerical state per pressure
level. It is important to notice that this simplification does not yield a constant pressure at
each pressure level. The pressure distribution in the heat exchanger model for example still
depends on the selected pressure drop model and thus on the mass flow rate. A detailed
analysis of the differences between the numerical approach used in the new component model
library and the approaches used in other component model libraries is a very interesting topic
but goes beyond the scope of this work.

85

Chapter 4. Object-Oriented Modeling of Fluid Systems

Component Name No. of States States

compressor -
pressureState1 1 Pressure at inlet of pressure state component 1
gasCooler1 10 Specific enthalpy in each refrigerant cell

10 Temperature in each wall cell
tube -
gasCooler2 10 Specific enthalpy in each refrigerant cell

10 Temperature in each wall cell
valve -
evaporator 10 Specific enthalpy in each refrigerant cell

10 Temperature in each wall cell
accumulator 1 Specific enthalpy of refrigerant
pressureState2 1 Pressure at inlet of pressure state component 2
sim -

Total 63

Table 4.9: States in CO2 refrigeration system from figure 4.1.

86

Chapter 5

Visualization

Visualization is an important part of the process of model devel-
opment, model verification and validation, and simulation. This
chapter presents a tool for the automated generation of class dia-
grams and explains the unique features of the object-based fluid
property modeling approach presented in chapter 3 that allows
for an automated generation of thermodynamic plots during and
after the simulation.

5.1 Introduction

The visual abilities belong to the strongest cognitive abilities of human beings. Visualization
of complex structures or numerical results is of great importance when working with simula-
tions and allows for a fast and reliable detection and interpretation of sources of error. As
pointed out in chapter 2, a profound object-oriented analysis before and during the devel-
opment process of an object-oriented model library supports the developer in developing a
library with a simple yet powerful object-oriented structure. The same analysis helps new
developers when starting to maintain or extend an existing library. It can also support users
to better understand the library they are working with. Generating class diagrams as visual
representation of the hierarchical structure is thus a very important task during the entire life
cycle of an object-oriented model library. Nevertheless, no tool currently exists to generate
those diagrams automatically from Modelica code. Section 5.2 presents a simple tool that
was developed to demonstrate the benefits of an automated generation of class diagrams.
The tool features a proprietary Modelica parser and should be seen as a proof-of-concept.

Of even greater importance is the visualization of numerical results during the develop-
ment process of component models as well as during and after the simulation of entire systems.
The 3-dimensional visualization of numerical results from mechanical models in Dymola using
imported CAD meshes is a good example for a visualization that is strongly coupled with the
simulation. Engineers working a lot with thermodynamic systems are used to analyze compo-
nents and systems in phase diagrams (e.g., pressure-enthalpy diagrams, temperature-entropy
diagrams). There are no software tools available that support the automatic generation of
phase diagrams from numerical results. Instead, existing libraries to simulate thermodynamic

87

Chapter 5. Visualization

systems such as the AirConditioning library by Modelon add the thermodynamic visual-
ization of results as an afterthought that is quite limited in its functionality. TILFluids

was especially designed for an easy support of thermodynamic visualizations that can be
set-up automatically and that can be used in the post-processing process but also during the
simulation and even during initialization. This approach is described in section 5.3.

5.2 Automated Generation of UML Class Diagrams

The object-oriented analysis is a very important tool before and during the development and
extension of object-oriented component libraries as pointed out in chapter 2. The result of
this analysis is a graphical representation of the hierarchical structure of a Modelica library.
Many different formats exist for this graphical representation. The UML standard that is
introduced for Modelica in chapter 2 is a widely used standard. Many specific tools exist for
the automated generation of UML class diagrams for various object-oriented programming
languages but not for Modelica. ModelicaCDV (Modelica Class Diagram Visualizer) is a first
attempt to develop a class diagram visualizer for Modelica libraries and is described in detail
by Loeffler (2006) (see also Loeffler et al., 2006). ModelicaCDV uses its own Modelica parser
to transform the Modelica source code into an internal data representation. ModelicaCDV is
written in Java and uses the GUI toolkit Swing (Sun Microsystems, Inc.). Figure 5.1 shows a
screenshot of ModelicaCDV visualizing the example for an exchangeable base class as shown
in figure 2.9.

Figure 5.1: Screenshot of ModelicaCDV showing example from figure 2.9.

The UML specifies the elements in class diagrams and their graphical representation but
does not prescribe how classes and associations should be arranged. There exist a number of
common criteria for the generation of nice graphs: (compare Siebenhaller, 2003)

88

5.2. Automated Generation of UML Class Diagrams

• Edge Length: Edges should be as short as possible. The longer an edge, the harder it
is to conceive the connection.

• Area: The area required to display a graph should be minimized to allow understanding
its structure at a glance. The smaller the graph, the closer positioned the classes are
and the shorter the edges.

• Intersecting Edges: Intersecting edges make it harder to receive their path. The number
of intersecting edges should be as small as possible. The ideal graph is planar.

• Distance between Nodes: The distance between nodes should be as small as possible.
This also minimizes the edge lengths.

Some additional criteria for class diagrams significantly improve their readability and com-
prehensibility:

• Hierarchy : It is common practice in inheritance to place the derived class below the
base class. This yields a tree structure and makes it easier to understand the hierarchy.

• Labeling : The text contained in class diagrams should always be horizontally aligned.
This also applies to the cardinality of aggregations.

• Edges and Nodes: Edges represent inheritance and aggregation relationships. Classes
that are related with each other should be arranged as close as possible so that it is
possible to visualize the relationship without the need of scrolling. The size with which
classes are displayed is always a trade-off between readability of the class name and
attributes and the number of elements visible on a single screen.

• Computational Efficiency : The algorithms for the automatic layout of UML diagrams
should be capable of shortly delivering a class diagram for graphs with a large number
of nodes and edges.

Computation of graphical information for each class

Generation of trees for the visualization of inheritance

Computation of graphical information for each tree

Generation of graphs for the visualization of aggregations

Computation of graphical information for each graph

Arrangement of graphs and trees

Arrangement of associations

Figure 5.2: Layout algorithm used in ModelicaCDV.

Figure 5.2 shows the sequence of operations performed by ModelicaCDV when generating a
class diagram. The first step after parsing is the computation of the layout for each class.

89

Chapter 5. Visualization

This step includes computing the size of the rectangle representing the class and the layout
of the attributes as shown in figure 2.1. The next step only takes into account classes with
inheritance relations and generates the trees representing the hierarchical structure of the
inheritance relations. Classes that do not have inheritance relations are neither base classes
nor derived classes. These classes can only be related to other classes via aggregation. In the
next step, graphs for aggregations are computed where each edge represents an aggregation.
All generated graphs (including the trees) are arranged separately and then combined in one
class diagram in a final step.

The presented software for the automated generation of class diagrams could furthermore
be extended to automatically check some of the design rules for object-oriented model li-
braries. The software could analyze the library based on the design rules 1, 4, and 6 and
could generate a list of warnings whenever the design rules are violated. As a proof of con-
cept, ModelicaCDV was extended to generate a list of warnings for all inheritance relations
that are based on the Cardelli type system without an explicit extent statement as presented
in section 2.3.3.

5.3 Thermodynamic Phase Diagrams

The visualization of numerical results in thermodynamic phase diagrams supports the de-
veloper when testing new models and helps the user to better understand simulated compo-
nent models or entire thermodynamic systems. The advanced object-based approach used in
TILFluids to model fluid properties which is described in section 3.5 supports the automated
generation of thermodynamic phase diagrams. This section explains the basic concept and
presents a simple example demonstrating the advantages of the new concept.

Each medium model in TILFluids contains an integer called stateViewerIndex that
is used for the automated generation of thermodynamic phase diagrams. This index has
to be specified for each medium object in a component model. A tool can then collect all
thermodynamic information for the generation of a phase diagram by searching for these
indices in the result file and by displaying the fluid properties of the corresponding medium
object. The tool can also generate a cycle from the visualized medium objects by connecting
state points with consecutive indices. The stateViewerIndex is automatically assigned in
component models using the additional variable index in the connector definition (see code
listing 4.1). In order to allow for an automated numeration, a starting point has to be
specified. This starting index can be set in the boundary models described in section 4.10.4
if single components are simulated or with a special component shown in figure 4.1 in front
of the compressor if closed cycles are simulated. Code listing E.1 in appendix E lists the
Modelica code for this special component called StateViewerInterface.

90

5.3. Thermodynamic Phase Diagrams

The requirements for the software tool used to generate the thermodynamic phase diagram
from the simulation results can be summarized as follows:

• search the result file for all variables called stateViewerIndex and store the corre-
sponding parent items in a list

• use the fluid properties provided in the result file for each item with a stateViewerIndex
to draw state points in the thermodynamic phase diagram

• connect points with consecutive indices

• use the time information stored in the result file to visualize transient processes

Different software tools are available to plot thermodynamic phase diagrams. For refrigerants,
REFPROP (Lemmon et al., 2007) or CoolPack (Andersen et al., 1999) can be used to generate
various thermodynamic phase diagrams. The AirConditioning library provides specified
classes that allow for the visualization of a pressure-enthalpy diagram in Dymola for a couple
of refrigerants. Some other tools generate thermodynamic phase diagrams in Microsoft Excel
(e.g., ThermoFluids by Wagner and Overhoff, 2006). None of the commercially available
software tools is able to fulfill the requirements presented in the beginning of this paragraph.
Therefore, a new software tool called StateViewer was developed to generate thermodynamic
phase diagrams (see TLK-Thermo GmbH, 2007).

Figure 5.3: Pressure-enthalpy diagram of CO2 refrigeration system from figure 4.1 in
StateViewer.

Figure 5.3 shows a screenshot of the developed software tool visualizing the numerical
results from the CO2 refrigeration system shown in figure 4.1. The StateViewer uses the C++
interface to the TILFluidsLib presented in section 3.5.2 to generate the thermodynamic phase
diagrams and can therefore display thermodynamic phase diagrams for all media available in
the TILFluidsLib.

91

Chapter 5. Visualization

Figure 5.4: Temperature-entropy diagram of CO2 refrigeration system from figure 4.1 in
StateViewer.

Figure 5.5: Temperature distribution in gascooler1 of CO2 refrigeration system from fig-
ure 4.1 in TILPlot.

The StateViewer offers many other convenient features that further simplify analyzing
numerical simulation results. One example are plots of the temperature distribution in heat
exchangers from the new component model library that can be provided in an additional

92

5.4. Online Visualization during Initialization

StateViewer window called TILPlot. Figure 5.5 shows the temperature distribution in the
first gas cooler in the CO2 refrigeration system shown in figure 4.1 that was automatically
generated from the simulation results. The component type is determined from the corre-
sponding parameter in the heat exchanger model as explained in section 4.10.3. Specialized
plots like that are provided for many component models enabling the developer to check the
model behavior and the user to better understand the numerical results.

5.4 Online Visualization during Initialization

Specifying good initial values to allow for the initialization of a simulation of a thermodynamic
system can be a time-consuming procedure (see for example Raiser, 2005). One drawback of
the Modelica language is the missing standardization of methods to influence the initialization
process (e.g., by allowing for the explicit specification of tearing variables). A graphical
representation of the numerical solution during initialization that is supported by the new
component model library as well as by the fluid property library is a powerful tool to allow for
quick error detection and improvements of initial values. The middleware TISC is used for
the communication between the fluid property library TILFluids and the StateViewer. TISC
is a co-simulation environment for exchanging data between different simulation applications.
Kossel et al. (2006) give a good introduction to TISC. Some of the numerical benefits, mainly
the advantages of a multi-rate integration, are presented by Tegethoff et al. (2007). TILFluids
uses TISC to send all computed values including the time information to the StateViewer
which is possible during transient simulations but also during initialization. Note that the
indices for the StateViewer included in the fluid port definition (see code listing 4.1) and used
for the automatic numbering of medium objects as explained in the beginning section 5.3
result in a system of equations that is solved during initialization. The connection of the
visualized medium objects in the thermodynamic phase diagram has thus to be reevaluated
for each sent value of a stateViewerIndex during initialization. The graphical representation
of the simulated system during initialization helps the user to find medium objects that might
cause numerical problems due to fluid property computations in invalid regions. The user
can resolve this kind of problems by supplying reasonable start values to the affected medium
objects.

A simple example illustrates the possibilities of the presented approach. The example
uses component models from the HVAC package that is part of the new component model
library. All models in this package are steady state models and are explained in appendix C.
The LoopBreaker is required in the simulated system due to an algebraic loop for the mass
flow rates which is characteristic for pure steady-state systems. The resulting triangular
cycle is shown in the StateViewer screenshot in figure 5.6 in a pressure-enthalpy diagram.
The resulting system of equation contains two non-linear equations. Dymola selects the
pressure in the receiver and the pressure of the ideal outlet medium in the gas cooler as
iteration variables of the initialization problem after aliasing. Any other combination of
a pressure at the high and a pressure at the low pressure side would be an equally good
choice for the iteration variables. The system of equations cannot be solved without the

93

Chapter 5. Visualization

co
m

pr
es

so
r

va
lv

e

accumulator

gasCooler

loopBreaker

Figure 5.6: Triangular cycle modeled with component models from the HVAC package and
representation of the numerical result in a pressure-enthalpy diagram.

specification of start values for the two pressure levels. Table 5.1 shows the three different
combinations of pressures that were used as start values and motivates the selection of the
specific combination.

Start Values Motivation
Low Pressure High Pressure

1 bar 10 bar Both selected pressures are below the steady-state solu-
tion yielding a solution process that starts at a too low
pressure level.

32 bar 57 bar The selected pressures are already close to the steady-
state solution and yield a very fast initialization process.

100 bar 200 bar Both selected pressures are higher than the steady-state
solution yielding a solution process that starts at a too
high pressure level.

1 bar 200 bar This selection of pressures does not yield a solution.

Table 5.1: Sets of start values for the triangular cycle shown in figure 5.6.

The TILFluidsLib uses the C++ interface of TISC to send all important properties of a
medium object directly after its setState XX() function has been called. The StateViewer
uses a specialized TISC interface to receive the sent values from the TISC simulation server
and visualizes them in thermodynamic phase diagrams and in time plots where the iteration
number is used as time information. The graphical visualization of the iteration process
allows the user to find out which variables are used in the process and in which direction
the iteration process develops. Both information can be used to specify appropriate start

94

5.4. Online Visualization during Initialization

values or to fine-tune existing start values to allow for a successful iteration or to speed-up
the process.

Figure 5.7 shows the iteration process for the high pressure depending on the specified
start values listed in table 5.1. The number of iterations is the total number of calls of
setState XX() functions of the TILFluidsLib during initialization. Figure 5.8 presents the
same diagram for the iteration of the low pressure. As expected, the iteration process with
start values of 32 bar and 57 bar for the low and the high pressure respectively requires the
smallest number of calls of the TILFluidsLib. The other two sets of start values require more
function calls to obtain the steady-state solution.

0

50

100

150

200

0 20 40 60 80 100 120 140 160 180 200

P
re

ss
ur

e
[b

ar
]

Iteration

1 bar, 10 bar
32 bar, 57 bar

100 bar, 200 bar

Figure 5.7: Iteration of high pressure for different start values.

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180 200

P
re

ss
ur

e
[b

ar
]

Iteration

1 bar, 10 bar
32 bar, 57 bar

100 bar, 200 bar

Figure 5.8: Iteration of low pressure for different start values.

95

Chapter 6

Thermoelectric Applications

This chapter presents a model for a Peltier water-water heat ex-
changer that was developed by combining existing models from
the new component model library with a new model for the Peltier
element and with electric component models from the Modelica
Standard Library. The new model demonstrates the extendibil-
ity of the presented component model library to cover multidis-
ciplinary thermodynamic problems. The numerical results ob-
tained with the new heat exchanger model are compared to mea-
surements from a prototype Peltier heat exchanger.

6.1 Introduction

Thermoelectric technology allows for the direct conversion of a temperature difference into
an electric potential and vice versa. The French physicist Jean Peltier discovered in 1834 that
an electric current sent through a circuit made of dissimilar conducting materials yields heat
absorption at one junction and heat rejection at the other. Modern thermoelectric modules
utilize doped bismuth telluride as semi-conductor to achieve optimum performance. They can
act as coolers, heaters, or power generators and applications of small capacity thermoelectric
modules are widespread. However, applications of large capacity thermoelectric devices have
been limited in the past by the low efficiency of thermoelectric modules. Recent scientific
advances regarding new materials and assembly methods for thermoelectric modules as well
as the increasing concerns about fuel economy, harmful emissions of particulate matter, and
chemical refrigerants revived the interest in thermoelectric technology. The inherent advan-
tages of thermoelectric systems such as the absence of moving parts, quiet operation, and
environmental friendliness of the module itself have further increased the interest. Several
investigations for applications of large capacity thermoelectric modules in the fields of re-
frigeration and air-conditioning (Winkler et al., 2006), waste heat recovering (Zorbas et al.,
2007), or superconduction (Bos et al., 1998) have been carried out with promising results.

The IfT is working on Peltier heat exchangers for new applications. The main focus of
this research is an optimization of the thermoelectric efficiency of Peltier heat exchanger by
developing new concepts and by improving the heat transfer as well as the proposal of control

96

6.2. Thermoelectric Refrigeration

strategies. The new component model library presented in chapter 4 was used to develop
a model for a prototype Peltier water-water heat exchanger. The new model demonstrates
the application and the extendibility of the new component model library as well as its
multidisciplinarity. It combines existing models, a new model for the Peltier element, and
electric component models from the Modelica Standard Library. The dynamic behavior of the
heat exchanger model is compared to measurements from a prototype Peltier heat exchanger
subjected to a sudden reversion of the applied voltage.

Section 6.2 gives a short introduction to thermoelectric refrigeration and derives the equa-
tions used to model the Peltier element. The prototype Peltier water-water heat exchanger is
explained in section 6.3. Section 6.4 gives a detailed description of the new model for Peltier
heat exchangers that was developed by combining existing models with a new model for a
Peltier element.

6.2 Thermoelectric Refrigeration

Thermoelectric refrigeration is achieved when a direct current I is passed through one or more
pairs of n-type and p-type semiconductors connected with a metal with high conductivity
such as copper as sketched in figure 6.1.

electrical
power
input

+

n-type

p-type

THTC

heat absorbed heat rejected

I

co
pp

er

Figure 6.1: The Peltier effect (thermoelectric cooling) from Rowe (2006).

When the electric current passes from the n-type to the p-type semiconductor, electrons
pass from a low energy level in the p-type material through the interconnecting conductor to
a higher energy level in the n-type material. Thus the temperature TC of the interconnect-
ing conductor decreases and heat is absorbed from the environment. The absorbed heat is
transferred by electron transport through the semiconductors to the other end of the device.
It is liberated as the electrons return to a lower energy level in the p-type material yielding
an increased temperature TH .

This phenomenon is known as the Peltier effect and is described by the Peltier coefficient
π defined as the product of the Seebeck coefficient α of the semiconductor material and the
absolute temperature. The Peltier coefficient relates to a cooling effect when the electric
current passes from the n-type to the p-type semiconductor and a heating effect when the
polarity of the power supply is changed. Reversing the direction of the electric current also
reverses the temperatures of the hot and cold ends.

97

Chapter 6. Thermoelectric Applications

The amount of heat absorbed at the cold end does not only depend on the product of
the Peltier coefficient and the electric current flowing through the thermoelectric module but
also on two other effects: Due to the temperature difference between the cold and the hot
ends of the semiconductors, heat is conducted through the semiconducting material from the
hot to the cold end. The amount of conducted heat depends on the thermal conductance κ
of the material as well as on the temperature difference. The second effect occurs when the
electric current is passing through the semiconductors. The electrical resistance R causes the
generation of the so-called Joule heat in equal shares at the cold and the hot side of the ther-
moelectric device. The Joule heat is dependent on the electrical resistance and proportional
to the square of the electric current and therefore eventually becomes the dominant factor.

The heat absorption rate at the cold side of the thermoelectric module can be described
taking into account the three different effects mentioned above by

Q̇ = α TC I −
1
2
I2R− κ(TH − TC) (6.1)

where α is the differential Seebeck coefficient sometimes referred to as αab , R the electrical
resistance of the thermoelements in series, and κ the thermal conductance of the thermoele-
ments in parallel. The energy efficiency of the thermoelectric device is described by its coef-
ficient of performance (COP) defined as the net heat absorbed at the cold junction divided
by the electric power input

COP =
Q̇

Pel
=
α TC I − 1

2I
2R− κ(TH − TC)

α ∆T I + I2R
(6.2)

The refrigeration capability of a semiconductor material depends on a combined effect of
the Seebeck coefficient α, the electrical resistivity ρ, and the thermal conductivity κ of the
material over the operational temperature range between the cold and the hot junctions. The
electrical resistivity is defined as

ρ = R
A

l
(6.3)

where A is the cross-sectional area of resistive material and l its length. The three material
properties are combined in the thermoelectric figure of merit Z defined as

Z =
α2

κρ
(6.4)

The figure of merit is often used by material scientists to describe semiconductor materials.

6.3 Prototype Peltier Heat Exchanger

The Peltier effect can be used for heating and cooling in practical applications by combining
thermoelectric modules with conventional heat exchangers. The fluid flowing through the
heat exchanger acts as a heat sink at the hot side of the thermoelectric module and as a
heat source at the cold side. Figure 6.2 shows the assembly of the prototype Peltier heat
exchanger used for all measurements.

98

6.3. Prototype Peltier Heat Exchanger

Figure 6.2: CAD drawing of the prototype Peltier water-water heat exchanger. The Peltier
elements are the flat cuboids between two aluminium channels. The orientation
of the Peltier elements successively changes between the rows of channels.

Because of the consolidated design and small size of the prototype heat exchanger, water
was chosen as refrigerant at both sides. The heat exchanger consists of rectangular aluminium
channels whose endings are covered by plates. Aluminium cores act as connecting tubes.

The prototype heat exchanger is assembled so that both sides of the thermoelectric module
are in contact with a channel. The arrangement of the thermoelectric modules has to be
taken into account for an efficient utilization of the Peltier effect. It is necessary to either
heat or cool the channels. A combination of heating and cooling does not yield a reasonable
application.

To increase the flow velocity and the heat exchange between the fluid and the wall, three
barriers were installed in each channel. A Computational Fluid Dynamics (CFD) simulation
was carried out to determine the flow situation in the channel. The simulation results proved
that the fluid meanders through the channel and showed that fluid circulation caused by the
barriers leads to a decrease in dead storage capacity and thus to an improvement in the heat
exchange between fluid and wall. Figure 6.3 shows a single channel and the flow path.

flow path

length

he
ig

ht

Figure 6.3: Single channel element of prototype Peltier heat exchanger.

99

Chapter 6. Thermoelectric Applications

6.4 Peltier Heat Exchanger Model

In order to model the prototype Peltier heat exchanger presented in the previous section,
a model for the Peltier element had to be developed. The new component model library
presented in chapter 4 does not contain any models for electrical components. Instead, the
electrical component model library provided in the Modelica Standard Library as described
by Clauß et al. (2002) was used as a starting point for the development of the model for the
Peltier element. Figure 6.4 shows a class diagram of the developed model for a Peltier element.
The material properties of the semiconductor material are stored in records extending from
BaseMaterial. Two heat ports derived from the HeatPort connector defined in the new
component model library and two electrical pins defined in the Modelica Standard Library
are the interface of the Peltier element.

<<partial>>
BaseMaterial

SemicondutorMaterials

BismuthTelluride
SemicondutorMaterials

SiliconGermanium
SemicondutorMaterials

HeatPortCold
Connectors

HeatPortHot
Connectors

NegativePin
Analog.Interfaces

PositivePin
Analog.Interfaces

PeltierElement
Cells

Modelica.Electrical

Figure 6.4: UML class diagram of PeltierElement.

The equations to model a Peltier element were presented in section 6.2. Based on these
equations, the following set of equations is formulated in the PeltierElement model

Inegative + Ipositive = 0 (6.5a)

Upositive − Unegative = RInegative (6.5b)

Pel = Inegative(Upositive − Unegative) (6.5c)

Pel + Q̇C + Q̇H = 0 (6.5d)

COP =
α TC I − 1

2I
2R− κ(TH − TC)

α ∆T I + I2R
(6.5e)

Q̇C = −COP · Pel (6.5f)

Q̇H = (1 + COP) · Pel (6.5g)

The PeltierElement model is instantiated in the PeltierCell model along with two models
for electrical insulators as shown in figure 6.5.

100

6.4. Peltier Heat Exchanger Model

heatPortCold

heatPortHot

pinNegative

pinPositive

PeltierCell

Electrical
Insulator

Electrical
Insulator

Peltier
Element

Figure 6.5: PeltierCell defined in TIL AddOn ThermoElectrics.

The electrical insulators prevent a short circuit between the Peltier elements and the
aluminium channels. The ElectricalInsulator model allows for the specification of a
thermal resistance R and uses the following equation to model the heat flow

Q̇in =
Tin − Tout

R
(6.6)

where Q̇in is the entering heat flow rate, Tin the temperature at the inlet port, and Tout the
temperature at the outlet port. Note that the naming of the heat ports in figure 6.5 is chosen
for the default case that is a positive electric current in the conventional current notation.
The hot side eventually becomes the cool side and vice versa if the direction of the current is
reversed. The swapping of the corresponding temperatures TC and TH is implemented using
a smooth transition function as explained in section 4.6 with a very short transition period.

pinNegative

pinPositive

BaseElement
TubeAndTubePeltier

PeltierCell

WallCell

WallCell

heatPortCold

outletColdinletCold
Refrigerant

Cell

WallCell

WallCell

heatPortHot

outletHotinletHot

Refrigerant
Cell

outletCold

outletHot

inletCold

inletHot

pinNegative

pinPositive

CoCurrentFlowHX
TubeAndTubePeltier

PeltierCell

Base
Element

Base
Element

Figure 6.6: BaseElement and its usage in a Peltier water-water heat exchanger model from
TIL AddOn ThermoElectrics. The PeltierCell is shown in figure 6.5.

101

Chapter 6. Thermoelectric Applications

In order to model the prototype Peltier heat exchanger shown in figure 6.2 in a flexible
way, an additional model called BaseElement is introduced that models a single layer of the
prototype Peltier heat exchanger. A layer consists of two aluminium channels as sketched in
figure 6.3 and the Peltier element in between these two channels. The model is illustrated in
the left picture in figure 6.6. A refrigerant cell and two wall cells from the new component
model library (see section 4.7 for more information) are combined to model a single channel.
The reason for using a RefrigerantCell instead of a LiquidCell is that the new model was
developed to cover cases of evaporating and condensing fluids in both fluid paths. The two
channels are connected using a PeltierCell described above. Note that the BaseElement

model in figure 6.6 can be directly used as a single pass heat exchanger.
The model for the prototype Peltier heat exchanger assembles instances of the BaseElement

and the PeltierCell model as shown in the right picture in figure 6.6. The prototype heat
exchanger from figure 6.2 is for example composed of four base elements and three Peltier
cells in between. Figure 6.7 shows the class diagram of the new TubeAndTubePeltier heat
exchanger model. Note that the wall material model and all heat transfer and pressure drop
models are skipped for simplicity. The complete structure would be similar to the structure
of the FinAndTube heat exchanger model shown in figure 4.19.

BaseElement
TubeAndTubePeltier

PeltierCell
Cells

WallCell
Cells

RefrigerantCell
Cells

CounterFlowHX
TubeAndTubePeltier

CoCurrentFlowHX
TubeAndTubePeltier

<<partial>>
BaseHX

TubeAndTubePeltier

NegativePin
Analog.Interfaces

PositivePin
Analog.Interfaces

Modelica.Electrical

HeatPortCold
Connectors

HeatPortHot
Connectors

PortRefrigerant
TILFluids

4

SystemInformationManager
Common

<<partial>>
PartialComponent

Internals.PartialBaseClasses

TIL.HVAC_p

<<partial>>
TubeAndTubeHXGeometry

TubeAndTubePeltier.Geometry

PrototypeGeometry
TubeAndTubePeltier.Geometry

Figure 6.7: UML class diagram of TubeAndTubePeltier heat exchanger in
TIL AddOn ThermoElectrics. The wall material model and all heat transfer
and pressure drop models are skipped for simplicity. Class diagrams of the
cells can be found in figures 4.13, 4.16, and 6.4.

102

6.5. Measurements

6.5 Measurements

A series of measurements was carried out with the prototype Peltier water-water heat ex-
changer presented in section 6.3. Figure 6.8 shows a schematic diagram of the test stand used
for all measurements.

Peltier Heat
Exchanger

Pump 2

Pump 1

Reservoir 2 Reservoir 1

V

V

ϑ7

ϑ0

ϑ15

ϑ8

Figure 6.8: Schematic diagram of Peltier heat exchanger test stand.

To ensure a constant temperature at the water inlet of the prototype, a reservoir was
used in both cycles. Water was pumped from the reservoirs into the prototype and flowed
back after running through the heat exchanger. The volume flow rates were regulated with
appropriate throttling devices and measured by using conventional water meters.

Besides the volume flow rates characteristic parameters such as the water temperatures
at the inlet and outlet of each aluminium tube or the electric current and voltage drop over
every Peltier element were taken up. The boundary conditions for the measurements were
selected in consideration of showing the applicability of the simulation for different premises.
Therefore a low, a medium, and a high water inlet temperature were chosen and each condition
measured by using a low and a high volume flow rate respectively. Each measurement was
carried out at a working-voltage of 10 V. A summary of the boundary conditions for all
measurements is given in table 6.1.

Water Stream 1 Water Stream 2
V̇1 [l/min] ϑ0 [◦C] V̇2 [l/min] ϑ8 [◦C]

1 2.05 4.00 2.00 4.00
2 0.90 4.00 0.85 4.00
3 2.20 18.00 2.10 18.00
4 0.85 18.00 0.80 18.00
5 2.35 30.00 2.40 30.00
6 1.00 30.00 1.10 30.00

Table 6.1: Measurements with prototype Peltier water-water heat exchanger.

103

Chapter 6. Thermoelectric Applications

All measurements were carried out in the same way: After reaching a stationary point for
the boundary conditions listed in table 6.1, the direction of the electric current was changed
from positive to negative in the conventional current notation. The resulting change in
temperature was detected until the values became stationary again.

An evaluation of the quality of the measurements was carried out by comparing the sum
of the input power and the gained cooling capacity to the achieved heating capacity according
to

Pel + Q̇cooling = Q̇heating (6.7)

The cooling capacity as well as the heating capacity was calculated from

Q̇ = ṁcp∆T (6.8)

and the electric power from

Pel = IU (6.9)

The deviation within the balance has to be zero for the ideal case. The deviation of the two
balances for each measurement is shown in figure 6.9. It can be seen that the deviation lies
between 1% and 8%, and that the average value lies around 4%. A connection between the
direction of the electric current and the resulting deviation could not be identified.

-8

-6

-4

-2

0

2

4

6

8

1 2 3 4 5 6

D
ev

ia
ti

on
of

B
al

an
ce

s
[%

]

Measurement

positive current flow
negative current flow

Figure 6.9: Deviation of electrical and thermal balances for all measurement points.

To exclude the existence of a statistical error and to confirm that the deviations of the
balances are lying within the measuring accuracy, an error analysis was carried out. Therefore,
Gauss’ error propagation law was used according to

∆F =

√(
∂F

∂x
∆x
)2

+
(
∂F

∂y
∆y
)2

+ . . . (6.10)

Measurement 4 from table 6.1 was selected for an exemplarily error analysis. A variation of
relevant measurands was carried out to find out the impact of these measurands on the total
error and to identify possible potentials for further optimization.

104

6.6. Numerical Results

Figure 6.10 shows the impact of the error occurring during the measurement of the tem-
perature difference ∆∆T between the inlet and outlet of the Peltier prototype heat exchanger
and during the estimation of the volume flow rate ∆V̇ on the resultant heating or cooling
capacity.

0

2

4

6

8

10

12

14

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

∆
Q

[%
]

Error

∆T1 < ∆T2

∆V̇ [l/min]
∆∆T (∆T1) [K]
∆∆T (∆T2) [K]

Figure 6.10: Error for measurement 4 from table 6.1. The corresponding units are given in
the key.

Due to the fact that the measuring accuracy of a thermocouple lies at about 0.3 K, the
maximum error for the mathematical calculation of the temperature difference can be ex-
pected to be 0.6 K when using temperatures measured with two independent thermocouples.
This error can be reduced to 0.1 K if the temperature difference is measured using two ther-
mocouples connected in series which was done for all measurements presented in table 6.1.

In consideration of the volume flow rate measurements, the deviation of the values esti-
mated with conventional flow meters and the actual values lies between 4% and 9% which
results in a maximum deviation of 0.09 l/min. The concluding summation yields - under
consideration of these conditions - the result that even the measurements with a deviation of
balances of 8% are lying within measuring accuracy.

6.6 Numerical Results

Simulations were carried out for all measurements listed in table 6.1. A complete system
setup in Dymola is shown in figure E.2 in appendix E.2. Measurement values were used for
the electric current, for two volume flow rates, and for the water temperatures ϑ0 and ϑ8

at the two heat exchanger inlets. The Peltier modules used in the prototype Peltier heat
exchanger are standard low-cost bismuth telluride modules without any further specification
from the manufacturer. Constant properties for the Seebeck coefficient α and the thermal
conductance κ taken from Rowe (2006, table 9.1) were used in the Peltier element model. The
electrical resistance R of the thermoelectric module was not specified by the manufacturer
and had to be determined from the measurements. The reversion of the applied voltage
was implemented using a smooth transition function with a period of ∆t = 1 s. This section

105

Chapter 6. Thermoelectric Applications

describes the results obtained for the simulation of measurement 4 from table 6.1. A constant
coefficient of heat transfer α = 4, 100 W/(m2 K) was used. This coefficient of heat transfer
was determined based on a CFD simulation of the flow through a single aluminium channel
as presented in appendix E.2.

Figure 6.11 shows the temperature distribution in the prototype Peltier heat exchanger
before and after reversion of the applied voltage. The numbering of the water streams and
of the walls refers to the numbering of the two independent water circuits as presented in
figure 6.8. The water temperatures are shown for the inlet of each channel and for the
outlet of the last channel for both water streams. The wall temperatures are averages of the
temperatures in the center of both wall cells connected to the same refrigerant cell as shown
in figure 6.6.

0

5

10

15

20

25

30

35

40

45

0 0.25 0.5 0.75 1

T
em

pe
ra

tu
re

[◦
C

]

Dimensionless Length [-]

Before Reversion of Applied Current

Water Stream 1
Wall 1

Water Stream 2
Wall 2

0

5

10

15

20

25

30

35

40

45

0 0.25 0.5 0.75 1

T
em

pe
ra

tu
re

[◦
C

]

Dimensionless Length [-]

After Reversion of Applied Current

Water Stream 1
Wall 1

Water Stream 2
Wall 2

Figure 6.11: Temperature distribution in prototype Peltier heat exchanger before and after
reversion of the applied voltage for measurement 4 from table 6.1.

Figure 6.11 shows that the temperature change in the entrance channel of each water
stream is smaller than in all other subsequent channels. This is caused by the fact that the
entrance channels are insulated at one side and connected to a Peltier element at the other
side whereas all other channels are connected to a Peltier element at both sides. The two
diagrams shown in figure 6.11 are mirror-symmetrical which demonstrates the reversibility
of the process.

Figure 6.12 shows a comparison of the measured outlet temperature for each water stream
with the values obtained from the transient simulation. The top picture shows the change in
the electric current I caused by the reversion of the applied voltage.

106

6.6. Numerical Results

-50

-25

0

25

50

0 10 20 30 40 50 60 70E
le

ct
ri

ca
l

C
ur

re
nt

[A
]

12

16

20

24

28

32

0 10 20 30 40 50 60 70

T
em

pe
ra

tu
re

[◦
C

] ϑ0

ϑ7

ϑ7 , sim

12

16

20

24

28

32

0 10 20 30 40 50 60 70

T
em

pe
ra

tu
re

[◦
C

]

Time [s]

ϑ8

ϑ15

ϑ15 , sim

Figure 6.12: Measured and simulated water temperatures at inlets and outlets of prototype
Peltier heat exchanger for measurement 4 from table 6.1.

Figure 6.12 illustrates that the simulated start and end temperatures differ from the
measured temperatures. The simulated system also reacts slower to the sudden reversal of
the applied voltage than the real system. Further measurements are required to improve the
model of the Peltier element that is currently based on material constants taken from the
literature and the measured electrical resistance as explained in the beginning of this section.

The presented model for a prototype Peltier water-water heat exchanger was used success-
fully in transient simulations. It was shown that the new component model library presented
in chapter 4 can be extended with new models and with models form other existing compo-
nent model libraries to allow for the simulation of multidisciplinary systems. The presented
model can be extended to cover other Peltier heat exchangers. A very interesting alternative
concept to be analyzed in the future is a refrigerant-air heat exchanger with Peltier modules
in between.

107

Chapter 7

Ejector Refrigeration System

This chapter presents a model for an ejector that was developed
to analyze the achievable coefficient of performance improvements
when using an ejector as a throttling device in a CO2 refrigeration
system. The new ejector model was developed based on measure-
ment results from a prototype ejector partly developed within
the scope of this thesis. With the new ejector model, a com-
parison between a conventional CO2 refrigeration system and an
ejector CO2 refrigeration system both featuring an internal heat
exchanger was carried out using steady-state component models
from the new component model library. It could be shown that
an ejector yields an increased efficiency for those kind of systems.

7.1 Introduction

The pressure difference between the high and low pressure part of a CO2 refrigeration system
is relatively high compared to other refrigerants (e.g., R134a) due to the transcritical cycle
design. Lorentzen (1983) was one of the first to realize that this high pressure difference
causes significant throttling losses. Using an ejector instead of the throttling valve is one
very promising way to recover parts of the otherwise lost kinetic energy. The main advantage
of an ejector compared to other expansion devices is its simple design without any moving
parts thus not requiring any maintenance. Many researchers worldwide, such as Li and Groll
(2006), Elbel and Hrnjak (2006a), Drescher et al. (2007), and Ozaki et al. (2004), are working
on ejectors for CO2 refrigeration cycles. The pure number of projects carried out in this field
already indicates two things: the high power saving potential of this new system design as
well as the many problems that arise from designing a device to mix two two-phase flows at
high velocities. The Japanese company Denso was the first company that introduced ejectors
in commercial CO2 systems in 2003 (DENSO Cooperation, 2003). The first application was
in a heat-pump system used to reheat bath water allowing an entire family to enjoy a bath
using the same water which is very common in Japan.

This chapter first gives a general introduction to ejector cycles and to the history of CO2

as a refrigerant in sections 7.2 and 7.3 respectively. The state of the art for CO2 ejectors

108

7.2. Ejector Refrigeration Systems

is summarized in section 7.4. The test stand and the prototype ejector designed and built
at IfT partly within the scope of this thesis are described in section 7.5. The results from
measurements presented in section 7.7 were used to determine the parameters required for
the ejector model described in section 7.6. The model was then used to study the COP
(coefficient of performance) for various boundary conditions. Some of the numerical results
are presented in section 7.8.

7.2 Ejector Refrigeration Systems

An ejector is composed of the driving nozzle, the suction nozzle, the mixing section, and
the diffuser as illustrated in figure 7.1. The driving flow is accelerated in the primary nozzle
and enters the mixing section at a pressure lower than the pressure at the suction inlet. The
pressure difference between the inlet and the outlet of the suction nozzle yields an acceleration
of the suction flow. Both flows are mixed in the mixing section. The diffuser reduces the
velocity of the mixed CO2 stream resulting in a pressure increase.

Driving nozzle

Driving flow Outlet flow

Suction flow

Suction nozzle

Mixing section
Diffuser

12

4 8

Figure 7.1: Schematic cross sectional view of a CO2 ejector.

Figure 7.2 shows a schematic diagram of a CO2 ejector refrigeration system. Three com-
ponents are different compared to a conventional refrigeration system. The ejector replaces
the throttling valve, a separator is used instead of the accumulator, and an additional control
valve is introduced at the liquid outlet of the separator. The pressure-enthalpy diagram of a
CO2 ejector refrigeration system is shown in figure 7.3 using the same numbering scheme as
in figure 7.2.

Three different pressure levels exist in the ejector refrigeration system: The high pressure
level ph, the intermediate pressure level pim , and the evaporation pressure level pevap . The
separator splits the refrigerant flow into a vapor stream (1) and a liquid stream (10). The
vapor stream is compressed from the intermediate to the high pressure level in the compressor
(2). The high pressure gas stream then flows through the gas cooler where it is cooled to a
lower temperature (4) before it enters the ejector through the driving inlet. The liquid stream
leaving the separator (10) is flowing through a control valve where it is expanded from the
intermediate to the evaporation pressure level (11). It is evaporated in the evaporator and
enters the ejector through the suction inlet (12). The point (12) can be as shown in the
two-phase region but it might also be superheated. The driving flow is leaving the driving
nozzle at (5) and is mixed with the suction flow from the suction nozzle (6) as shown in

109

Chapter 7. Ejector Refrigeration System

figure 7.1. The mixed stream then enters the diffuser in (7) and is decelerated yielding an
increase in pressure. It leaves the ejector at (8) and is again split into a vapor and a liquid
stream in the separator. Note that the points (3) and (9) are skipped on purpose for the case
that an internal heat exchanger is added to the system.

M

Ejector

Compressor

Control valve

Separator

Gascooler

Evaporator

24

5 6 7 8
1

10

11

12

Figure 7.2: Schematic diagram of a CO2 ejector refrigeration system.

Specific Enthalpy

Pr
es

su
re

0

12
11

10 8

4

5 7 6

1

2

Figure 7.3: Pressure-enthalpy diagram of a CO2 ejector refrigeration system.

110

7.3. A Brief History of CO2 as Refrigerant

7.3 A Brief History of CO2 as Refrigerant

Carbon dioxide is a natural refrigerant that was first used in the 19th century and the
beginning of the 20th century in various air-conditioning and refrigeration applications. In
Europe, CO2 machines were often the only choice due to the legal restrictions on the use of
toxic or inflammable refrigerants like NH3, SO2, and hydrocarbons. A good description of
the rise and fall of CO2 systems can be found in an article by Bodinus (1999). However, CO2

was replaced in the 1930s by CFCs (chlorofluorocarbons) that were discovered as refrigerants
by Thomas Midgley who had developed the tetra-ethyl lead additive to gasoline before and
who ”had more impact on the atmosphere than any other single organism in Earth history”
(McNeill and Kennedy, 2001).

In the early 1980s, the decrease in the ozone layer was predicted to be roughly 7% over a
sixty-year period. It was not before the famous article by Farman et al. (1985) that scientists
as well as the public realized that there was a substantial hole in ozone layer. The especially
rapid ozone depletion in Antarctica had previously been dismissed as measurement error.
The stratospheric ozone depletion started to worry many and led to the Montreal Protocol,
an international agreement that defines a global schedule for the phase-out of CFCs.

The CFCs in many applications were replaced by HCFCs (hydrochlorofluorocarbons) and
HFCs (hydrofluorocarbons). These substances have no ozone depletion level but are thought
to contribute to anthropogenic global warming due to their relatively high GWP (global
warming potential) values. The regulation (EC) No 842/2006 of the European Parliament
and the Council that implements the Kyoto Protocol defines a phase-out schedule of HFCs
with a GWP higher than 150, especially of the widely used R134a with a GWP of about
1,300, for all mobile air-conditioning systems. The natural coolant CO2 with a GWP of one
by definition is a very promising replacement for R134a in these systems and was recently
selected by the German automotive manufacturers as future refrigerant.

Lorentzen (1993) was the first to rediscover CO2 for air-conditioning applications resulting
in a 1989 international patent application in which he devised a transcritical CO2 refrigeration
system with a throttling valve that controls the high-side pressure. Over the last two decades,
many researchers worked on CO2 refrigeration and air-conditioning systems.

7.4 State of the Art

Ejectors are used to create a vacuum pressure in steam turbine exhaust condensers in thermal
power stations, for the bulk handling of grains, to pump turbid water, and in many other
applications. Gay (1931) was the first one to place an ejector between the evaporator and
the separator in a refrigeration system. Many researchers worked on ejectors for refrigeration
systems. Kornhauser (1990) and Domanski (1990) showed that cycle efficiency improvements
of about 20% are theoretically possible for most HCFCs and PFCs (perfluorocarbons). Mene-
gay (1997) measured an increase in cycle efficiency of 4% for R12. Junior (2006) compares
different concepts to improve the efficiency of CO2 refrigeration systems based on idealized
system simulations in EES and reports COP improvements of up to 20% for ejector systems.

111

Chapter 7. Ejector Refrigeration System

Several research groups worldwide are working on ejectors for CO2 refrigeration and air-
conditioning systems. Elbel and Hrnjak (2006b) designed and built an ejector and reported
maximal COP improvements of 44%. Li and Groll (2005) also present an ejector prototype
and reports COP improvements of up to 16%. Bou Lawz Ksayer (2007) presents an ejector for
CO2 systems and report COP improvements of 8 to 14%. The ejector prototype designed and
built at the IfT is based on the prototype design of Elbel and Hrnjak with some modifications.
Figure 7.7 shows a picture and an exploded view of the prototype ejector.

7.5 Layout of the Test Stand

An ejector test stand and a prototype ejector were designed and built at the IfT. The test
stand was designed based on system simulations carried out with steady-state models from the
HVAC package of the new component model library as presented by Richter et al. (2006). The
ejector was described by using the efficiency-based ejector model presented by Kornhauser
(1990). Figure 7.4 shows a schematic diagram of the ejector test stand that allows to test
ejectors and ejector cycles with boundary conditions and cooling capacities common for car
air-conditioning systems or small heat-pumps for residential buildings. The gas cooler is
using water as secondary fluid whereas the evaporator uses a mixture of water and glycol to
prevent freezing. The cooling capacity of the gas cooler is 8kW.

M

Compressor

Separator

Ejector

Gascooler

Evaporator
Control Valve

Heating Coil

Oil Separator

Oil Recirculation

m

m

4

2 1

12

11

10

8
0

Figure 7.4: Schematic diagram of ejector test stand.

The black dots in figure 7.4 mark the points where pressure and temperature are measured.
The mass flow rates in the driving and in the suction loop of the ejector cycle are measured
using Coriolis mass flow meters. The liquid mass flow leaving the separator is subcooled to

112

7.6. Ejector Model

avoid bubbling which would affect the accuracy of the mass flow meter. Note that this is not
shown in the pressure-enthalpy diagram in figure 7.3. An electric heating at the vapor outlet
of the separator protects the compressor from sucking in two-phase CO2. The accumulated
mass in the separator is determined using a scale. The test stand was designed to allow for
operating points with overfilled separator. A heating coil is used in those operating points
and evaporates the remaining liquid fraction of the driving mass flow from (0) to (1) which
is also shown in the pressure-enthalpy diagram in figure 7.3. An oil recirculation is used to
ensure that the oil is returned to the compressor.

7.6 Ejector Model

The ejector model is based on the definition of the ejector efficiency ηe which is defined
independently from other components and that can be computed from simple measurements
and was presented at the VDA Alternative Refrigerant Winter Meeting 2007 (Köhler et al.,
2007). Similar efficiencies are defined by Kornhauser (1990), Matsuo et al. (1982), and Elbel
and Hrnjak (2006b). The ejector model is based on a black box model as shown in figure 7.5.

The black box contains a compressor and a turbine that are mounted on a common shaft.
In the black box ejector model, the driving mass flow ṁD is expanded from the high pressure
level ph to the intermediate pressure level pim . The expansion energy is used to compress the
suction mass flow ṁS from the evaporation pressure level pevap to the intermediate pressure
level pim . Both processes are shown in the pressure-enthalpy diagram in figure 7.5 where
the drawn through lines correspond to the ideal processes and the dashed lines to the real
processes.

Compressor

Turbine

4 12’

124’

Specific Enthalpy

Pr
es

su
re

12

12’

4

4’

p
h

p
im

p
evap

Figure 7.5: Schematic sketch of black box ejector model and corresponding pressure-
enthalpy diagram.

113

Chapter 7. Ejector Refrigeration System

The isentropic efficiencies of the compressor ηc and the turbine ηt can be computed as

ηc =
h′12 isen − h12

h′12 − h12
(7.1)

ηt =
h4 − h′4

h4 − h′4 isen
(7.2)

respectively and depend on the specific enthalpies at the inlet and outlet of the compressor
and the turbine. h′12 isen and h′4 isen are the specific enthalpies at the outlet of the compressor
and turbine if those components work isentropic.

The ejector efficiency ηe is defined as the product of the two single component efficiencies
and can be computed from

ηe = ηc · ηt =
h′12 isen − h12

h′12 − h12
· h4 − h′4
h4 − h′4 isen

(7.3)

From an energy balance of the black box ejector model follows that

ṁS

ṁD
=

h4 − h′4
h′12 − h12

= ψ (7.4)

where ψ is the ratio of suction to driving mass flow rate. Inserting this equation in equa-
tion (7.3) yields

ηe =
ṁS

ṁD
· h
′
12 isen − h12

h4 − h′4 isen
(7.5)

Figure 7.5 illustrates that the enthalpy differences in the definition of the ejector efficiency
are strongly influenced by the pressure differences between high and intermediate pressure
and between evaporation and intermediate pressure. The higher the pressure raise within the
ejector and the higher is the suction mass flow rate, the higher the ejector efficiency.

The ejector efficiency is an important characteristic of an ejector but is not sufficient to
describe it entirely. The second important characteristic is the shape of the primary nozzle
determining the driving mass flow rate. The converging shape of the primary nozzle of the
prototype ejector suggests that a simple flow correlation can be used for its description. The
most important geometrical parameter affecting the mass flow rate through a nozzle is its
smallest flow area A0. Figure 7.6 shows the flow through a nozzle. The entering refrigerant
stream is accelerated in the converging part of the nozzle. The effective flow area Aeff is
smaller than the geometrically smallest flow area A0.

A0

mD, ρ4, p4 mD, ρ5, p5

Figure 7.6: Schematic sketch of flow through a nozzle.

114

7.7. Measurements

Wein (2002) showed that the throttling of subcooled fluids in short pipes into the two-
phase region does not yield a phase change due to the short time span of the process. This
implies that Bernoulli’s equation for single-phase flow can be used to compute the mass flow
rate through the nozzle

ṁD = Aeff

√
2%4(ph − p5) (7.6)

where p5 is the mixing pressure (see figure 7.3). The effective flow area Aeff can be computed
from the geometric flow area A0 using the following relation

Aeff = α ε A0 (7.7)

where the flow coefficient α accounts for the effects of flow contraction whereas the expansion
coefficient ε takes compressibility effects into account.

The ejector efficiency ηe and the flow coefficient α of the prototype ejector were deter-
mined in two series of measurements presented in section 7.7. The simple ejector model,
implemented in an add-on library to the new component model library presented in chap-
ter 4, uses equations (7.5) and (7.6) to describe the ejector. The separator model is based on
the accumulator model presented in section 4.4 with an additional liquid outlet. Section 7.8
presents some numerical results obtained from the ejector model.

7.7 Measurements

A series of measurements at different operating points was carried out to determine the ejector
efficiency for the ejector prototype shown in figure 7.7.

Figure 7.7: Prototype ejector designed and built at IfT.

The measurements covered different combinations of high pressures and evaporation pres-
sures as listed in table 7.1. The ejector efficiency ηe was determined for each measurement
according to equation (7.3).

115

Chapter 7. Ejector Refrigeration System

Point 4 Point 12 Derived Quantities
p [bar] T [◦C] p [bar] ψ [-] ηe [%]

31 80.4 35.2 32.8 0.317 10.97
32 85.4 37.2 32.4 0.321 12.67
33 90.0 42.5 30.8 0.375 12.63
34 95.1 45.4 30.1 0.363 13.44
35 100.6 48.2 29.4 0.349 13.59
36 79.6 36.8 31.0 0.240 8.69
37 85.0 39.2 30.8 0.263 10.48
38 79.8 38.5 32.9 0.398 15.70
39 84.9 40.4 32.6 0.406 16.55
40 90.0 39.5 34.2 0.404 17.46
41 94.9 40.9 33.9 0.388 17.32
42 80.0 36.8 35.4 0.502 15.66
43 84.8 38.9 34.7 0.488 17.23
44 89.4 41.3 34.0 0.479 18.88

Table 7.1: Measurements with prototype ejector to determine its efficiency ηe.

Figure 7.8 shows the computed ejector efficiencies against the mass flow ratio ψ. The fitted
curve represents the relation that was implemented in the new ejector model to describe the
correlation between the mass flow ratio ψ and the ejector efficiency ηe for the prototype
ejector. Note that a constant ejector efficiency of ηe = 20% was used in the model for mass
flow ratios ψ ≥ 0.54.

0

5

10

15

20

25

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

η e
[%

]

ψ [-]

measured data
fitted curve

Figure 7.8: Ejector efficiency ηe from measurements listed in table 7.1.

The ejector efficiency ηe describes the amount of kinetic energy that the ejector recovers.
The relatively low values of this efficiency that were achieved with the prototype ejector

116

7.7. Measurements

indicate a large potential for further optimizations of the ejector design. This is one of
the major objectives of the current research at IfT. System simulations can support this
research by allowing for an evaluation of new system designs with respect to the theoretically
attainable efficiency improvements of the complete cycle.

Another series of measurements with two different gas cooler outlet temperatures and
varying high pressures was carried out to determine whether Bernoulli’s equation can be
used to describe the flow through the primary nozzle. Table 7.2 lists these measurements.

Gas Cooler Outlet Temperature Gas Cooler Outlet Temperature
ϑ4 = 20 ◦C ϑ4 = 30 ◦C

p4 [bar] p12 [bar] α [-] # p4 [bar] p12 [bar] α [-]
45 89.9 39.7 0.94 51 89.6 39.9 0.78
46 89.8 40.0 0.93 52 79.9 40.1 0.69
47 99.9 40.3 0.93 53 80.4 40.3 0.70
48 99.8 40.3 0.93 54 90.0 40.2 0.78
49 79.5 39.6 0.91 55 110.3 40.3 0.87
50 80.2 40.1 0.94 56 109.7 40.1 0.87
59 89.7 40.1 0.95 57 100.1 39.9 0.85
60 79.6 38.9 0.97 58 100.2 40.0 0.84
61 79.7 39.8 0.95

Table 7.2: Measurements with prototype ejector to determine the flow coefficient α.

Figure 7.9 shows the computed flow coefficients α over the high pressure p4. A constant
pressure difference of ∆p = 2 bar was assumed between the evaporation pressure p12 and the
mixing pressure p5 for the computation of the flow coefficient α. The prototype ejector will
be modified to allow for a direct measuring of the mixing pressure to test this assumption
and to allow for a more precise computation of the flow coefficient α. Furthermore a constant
expansion coefficient ε = 1 was assumed for the computation of the flow coefficient α.

0.5

0.6

0.7

0.8

0.9

1

80 85 90 95 100 105 110

F
lo

w
C

oe
ffi

ci
en

t
α

[-
]

Pressure p4 [bar]

ϑ4 = 20 ◦C
ϑ4 = 30 ◦C

fitted curves

Figure 7.9: Flow coefficient α from measurements listed in table 7.1.

117

Chapter 7. Ejector Refrigeration System

The results in figure 7.9 show that the flow coefficient α can be assumed to be constant
for a gas cooler outlet temperature ϑ4 = 20 ◦C but not for ϑ4 = 30 ◦C. This can be explained
with a delay in boiling in the primary nozzle for low nozzle inlet temperatures. Higher
inlet temperatures do not yield a delay in boiling resulting in a significant influence of the
compressibility, i.e., ε 6= 1. The new ejector model uses a constant value for the effective
flow area Aeff from equation (7.6). This constant parameter will have to be replaced by
more advanced correlations describing the flow through the primary nozzle based on further
measurements.

7.8 Numerical Results

This section presents some numerical results obtained with the new ejector model presented
in section 7.6. The two refrigeration systems shown in figure 7.10 were simulated. Both
systems were composed of steady-state component models from the HVAC package that is
part of the new component model library presented in chapter 4. The steady-state models
are described in appendix C. Table 7.3 lists the boundary conditions for both steady-state
simulations.

Component Specified Parameters

Compressor n = 1, 000 1/min, V = 30 cm3, ηeff ,is = 70%, λeff = 70%
Internal Heat Exchanger η = 70%
Evaporator p12 = 35 bar

Table 7.3: Parameter settings for COP comparison between conventional CO2 refrigeration
system and CO2 ejector refrigeration system.

The ejector model uses a simple correlation for the ejector efficiency ηe depending on the
mass flow ratio ψ and a constant value for the effective flow area Aeff as presented in the
previous section.

Simulations were carried out for various high pressures and different gas cooler outlet
temperatures. Figure 7.11 shows the results of the simulations. The COP is normalized to
the maximum COP of the reference system at a gas cooler outlet temperature ϑ4 = 45 ◦C.
It can be seen that the total efficiency of a CO2 refrigeration system can be improved by
up to 15% when the prototype ejector designed and built at the IfT is used instead of the
conventional throttling valve. Similar results were obtained in other projects for example by
Zha et al. (2007).

118

7.8. Numerical Results

EjectorSystem ReferenceSystem

co
m

pr
es

so
r

ih
x

se
pa

ra
to

r
co

nt
ro

lV
al

ve

ejector

evaporator

gasCooler

loopBreaker

co
m

pr
es

so
r

ih
x

va
lv

e

ac
cu

m
ul

at
or

gasCooler

evaporator

loopBreaker

Figure 7.10: EjectorSystem and ReferenceSystem used for a COP comparison composed
of models from the HVAC package which is part of the new component model
library.

119

Chapter 7. Ejector Refrigeration System

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

70 80 90 100 110 120 130

R
el

at
iv

e
C

O
P

[-
]

High Pressure [bar]

ReferenceSystem - ϑ4 = 45 ◦C
EjectorSystem - ϑ4 = 45 ◦C

ReferenceSystem - ϑ4 = 40 ◦C
EjectorSystem - ϑ4 = 40 ◦C

ReferenceSystem - ϑ4 = 35 ◦C
EjectorSystem - ϑ4 = 35 ◦C

Figure 7.11: Results of high pressure variation for various gas cooler outlet temperatures.
The COP is normalized to the maximum COP of the reference system with
45◦C gas cooler outlet temperature.

The results obtained from the steady-state simulation of the ejector system using the new
ejector model motivate further research in this field. The equations used in the new ejector
model can easily be transferred to an ejector model that can be used with other component
models from the HVAC p package of the new component model library. This would allow for a
more detailed analysis of the described systems including the simulation of transient operation
conditions. Providing component models with different levels of detail in a single component
model library allows for a basic evaluation of new thermodynamic systems as presented in
this chapter as well as for a detailed analysis as presented in the previous chapter and thus
supports the entire spectrum of possible users of the library.

120

Chapter 8

Conclusions and Outlook

The new object-oriented component model library for thermo-
dynamic systems meets the major objective by supporting the
entire spectrum of possible users from developers to design engi-
neers. This chapter summarizes all important topics discussed in
the previous chapters and outlines the visions for future develop-
ments.

8.1 Conclusions

System simulations are an important foundation of modern engineering. They allow for a
deeper understanding and for a reliable prediction of the behavior of existing and future
systems. The major objective of this thesis was the proposal of new object-oriented model
libraries for thermodynamic systems. The proposed libraries should overcome the limitations
of existing model libraries in this field by meeting the requirements of the entire spectrum of
users from developers to design engineers. Two major design principles were identified that
are important to achieve this goal: first of all, the model libraries and the models themselves
have to feature an object-oriented structure that is simple to understand and that allows for
multiple extensions. In addition, the automated visualization in relevant diagrams has to be
supported throughout the entire process of development and application. A fluid property
library was presented that allows for a numerically efficient inclusion of external fluid property
computation codes in Modelica and in various software tools. This new fluid property library
was used in a new component model library for the simulation of thermodynamic systems
developed based on the proposed design rules. The capabilities of the new libraries were
demonstrated in two example applications covering different thermodynamic systems.

Modelica was selected amongst other equation-based modeling languages due to its strong
object-oriented features and its open-source character. The structure of the new component
model library was based on an object-oriented analysis and follows a set of novel design rules.
Graphical representations for all object-oriented features of the Modelica language based on
the UML standard were formally introduced for the first time to allow for a scientific dis-
cussion of object-oriented structures in this thesis and beyond. The object-oriented analysis
was based on two simple relations: the is-a-relation and the part-of -relation. The proposed

121

Chapter 8. Conclusions and Outlook

design rules specify a limited depth of the resulting inheritance tree, forbid complex nestings,
and constrict multiple inheritance. They are formulated in a general way and can be applied
to the design of any new component model library. In order to support the object-oriented
analysis, a new software tool was presented that allows for an automated generation of class
diagrams based on the defined graphical representations.

A new generalized approach was presented that allows for the inclusion of external fluid
property code in Modelica models using the standard fluid property interface provided in the
Modelica Standard Library. Based on an object-oriented analysis and the design rules men-
tioned above, a new simpler object-based approach for a fluid property library was developed
that provides separate models for different fluid types such as gases, liquids, or refrigerants.
The models from this new fluid property library were used in all new component models. An
external interface library was developed to handle multiple external fluid property compu-
tation codes in a numerically efficient way. This interface library can easily be extended to
include new external fluid property computation codes. It was shown that the new approach
to include fluid properties in Modelica is compatible to state-of-the-art medium models writ-
ten in Modelica. The new approach supports the automated visualization of numerical results
during and after the solution process and provides interfaces to many software tools such as
MS Excel of MATLAB/Simulink.

The new component model library provides models for all components required for the
steady-state as well as for the transient simulation of refrigeration, air-conditioning, and heat-
pump systems. The formulation of conservation laws and of pressure drop and heat transfer
correlations including smooth transition functions to switch between different regions were
presented in detail. A special approach to handle the time derivative of pressure based on
a previous work by Lemke (2005) was consistently introduced throughout the entire compo-
nent model library. The heat exchanger model was presented in detail to demonstrate the
feasibility of the new object-oriented structure for complex component models. The manage-
ment of system information such as the refrigerant mass or the inner volume was integrated
in a single component model that is required in each system. The new component model
library supports the automated generation of thermodynamic plots in relevant diagrams such
as pressure-enthalpy diagrams. A software tool was developed that allows for the automated
generation of thermodynamic phase diagrams during and after simulations. This software
tool uses the new fluid property library to create all thermodynamic phase diagrams.

Two demonstrating examples were provided to show the capabilities of the new component
model library. The first demonstrating example was a prototype Peltier water-water heat
exchanger. The component model library was extended by the model of a Peltier element.
Furthermore, electrical components from the Modelica Standard Library were used to set up
the system simulation. The numerical results obtained from the transient simulation showed
good agreement with the results obtained from measurements. The second demonstrating
example was a prototype ejector partly developed within the scope of this thesis. A new
efficiency-based model for an ejector was presented and was used to evaluate the potential
COP improvements when using an ejector as a replacement for the valve in a CO2 refrigeration
system.

122

8.2. Future Development

The developed component model library is already used and extended by a team of users
and developers at the Institut für Thermodynamik and at the TLK-Thermo GmbH. It has
been deployed in the simulation of stationary and mobile heat-pump systems, to evaluate
novel system designs for thermodynamic systems, and to develop control strategies. It offers
a structure that supports the entire spectrum of users from developers to design engineers.

8.2 Future Development

The development of the new component model library and of the new fluid property library
has been an iterative process driven by the major design goals described in chapters 2 to 4
resulting in some minor flaws that have to be removed in a future version. The development
was furthermore influenced by the development of the Modelica language itself over the last
three years. Especially the new Modelica 3.0 standard released on September 10th, 2007, will
require some minor adaptations in both libraries. Besides these very technical aspects there
is always room for extensions. This section outlines the vision for future developments and
points out possible milestones.

Improved Support for Design Engineers

Three types of users were mentioned in the first section of this thesis: developers, simulation
specialists, and design engineers. The proposed component model library does support all
three of these user types. Nevertheless, the support for design engineers could be improved
significantly in the future by providing a new software tool for system computations and
parameter studies. Starting point for the future developments should be the executable
generated by any of the available Modelica simulators such as Dymola, MathModelica, or
SimulationX. This executable combines system model and solver and can be called after
specifying all input parameters to simulate the initial system used for the creation of the
executable. The new software tool has to provide a graphical user interface (GUI) that
allows for the management of different executables, the specification of relevant parameters,
and the management of result files. It should incorporate the visualization tool presented in
section 5.3 to generate thermodynamic phase diagrams and other plots. Within the scope of
this thesis, a first beta version of such a software tool was implemented as a proof-of-concept.

Models for Real-Time Applications

Models for real-time applications have gained much attention over the last couple of years
especially in hardware-in-the-loop simulations and non-linear model predictive control. The
new component model library developed within the scope of this thesis could be extended
to include component models for real-time applications. The new component models can be
partly derived by simplifying existing component models already available in the proposed
library. The proposed external interface library for fluid property computations could be
extended to include simple and fast medium models suitable for real-time applications. Due
to the standardized interface, a direct comparison of simple and advanced medium mod-

123

Chapter 8. Conclusions and Outlook

els can be used to evaluate their performance versus accuracy. The new models could be
used in hardware-in-the-loop simulations or for a non-linear model predictive control in real
applications.

The main purpose of such non-linear models for a predictive controller is to recognize
the trends of a real plant instead of capturing all phenomenological effects to optimize cost
functionals. First efforts to simplify models such as the heat exchanger model were carried
out successfully using the provided interfaces. Thus, a number of projects have been proposed
in close cooperation with computer and software specialists and companies to speed-up the
development of models for real-time applications based on the model libraries developed in
this thesis.

Further Numerical Aspects

The dp/dt-approach used in all component models in the HVAC p package of the new com-
ponent model library to reduce the number of pressure states as explained in sections 4.3
and 4.11 results in a DAE with less and/or different numerical states compared to other
approaches. A detailed numerical analysis should be carried out to better understand these
differences and its consequences from a mathematical point of view. The outcome of this
analysis could help to improve the dp/dt-approach and to define sharp acceptance levels.

Another important numerical aspect is the non-linear solution process during initializa-
tion. Tegethoff (1999) allows for the explicit selection of algebraic variables and residues in
his platform thus incorporates the expertise of experienced simulation experts. Unfortunately
Modelica does not offer means to manually influence the transformation of equations and the
selection of appropriate tearing variables although these issues have been discussed at a num-
ber of Modelica design meetings. A new proposal should be formulated to include features
to influence the equation transformation into a future version of the Modelica language.

124

Chapter 9

References

M. Abadi and L. Cardelli. A Theory of Objects. Monographs in Computer Science. Springer-
Verlag, 1996.

H. Abelson, J. G. J. Sussman, and J. Sussman. Structure and Interpretation of Computer
Programs. The MIT Press, Cambridge, MA, 1985.

B. Adiprasito. Simulation des instationären Verhaltens einer Pkw-Klimaanlage mit CO2 als
Kältemittel. VDI-Verlag, 1998.

N. Ahlbrink. Optimierung eines objektorientierten Wärmeübertragers in Modelica. Studien-
arbeit, TU Braunschweig, January 2007.

S. E. Andersen, A. Jakobsen, and B. D. Rasmussen. User Interface Design Considerations
EESCoolTools - A Collection of Simulation Models for Reftigeration Applications. In Proc.
of SIMS 99, Linköping, Sweden, October 1999.

P. J. Ashenden, G. D. Peterson, and D. A. Teegarden. The System Designer’s Guide to
VHDL-AMS. Analog, Mixed-Signal, and Mixed-Technology Modeling. Morgan Kaufmann,
2002.

H. D. Baehr. Thermodynamik: Grundlagen und technische Anwendungen. Springer-Verlag,
11th edition, 2002.

H. D. Baehr and K. Stephan. Wärme- und Stoffübertragung. Springer, Berlin, 4th edition,
2004.

M. Becker. Automatisierung kältetechnischer Anlagen auf Basis der mathematischen Mod-
ellierung des Gesamtsystems. Fortschritt-Berichte VDI Reihe 19 Nr. 86, VDI Verlag,
Düsseldorf, 1996.

A. Bejan. Advanced Engineering Thermodynamics. John Wiley and Sons, 1988.

M. Bockholt, W. Tegethoff, N. Lemke, N.-C. Strupp, and C. Richter. Transient Modelling
of a Controllable Low Pressure Accumulator in CO2 Refrigeration Cycles. In Proc. of 6th
International Modelica Conference, Bielefeld, March 2008.

125

Chapter 9. References

W. S. Bodinus. The Rise and Fall of Carbon Dioxide Systems. ASHRAE Journal, pages
37–42, April 1999.

G. Booch. Objektorientierte Analyse und Design. Mit praktischen Anwendungsbeispielen.
Addison-Wesley, 6th edition, 1995.

K. Bos, R. Huebener, and C. Tsuei. Prospects for Peltier cooling of superconducting elec-
tronics. Cryogenics, 38(3):325–328, March 1998.

E. Bou Lawz Ksayer. Study and Design of Systems with Improved Energy Efficiency Operating
with CO2 as Refrigerant. PhD thesis, Centre Energétique et Procédés - Ecole des Mines
de Paris, November 2007.

K. E. Brenan, S. L. Campbell, and L. R. Petzold. Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations. Soc for Industrial & Applied Math, 1996.

J. A. Burke and J. Haws. Vehicle Thermal Systems Modeling Using Flowmaster2. In Proc.
of Vehicle Thermal Management Systems Conference & Exposition, number 2001-01-1696,
Warrendale, PA, May 2001.

F. Casella and A. Leva. Modelling of distributed thermo-hydraulic processes using Modelica.
In Proceeding of the IV MathMod Conference, pages 514–521, Vienna, September 2003.

F. Casella and A. Leva. Modelling of thermo-hydraulic power generation processes using Mo-
delica. Mathematical and Computer Modelling of Dynamical Systems, 12(1):19–33, Febru-
ary 2006.

F. Casella, M. Otter, K. Proelß, C. Richter, and H. Tummescheit. The Modelica Fluid and
Media library for modeling of incompressible and compressible thermo-fluid pipe networks.
In Proc. of 5th International Modelica Conference, pages 631–640, Vienna, September 2006.

J. C. Chen. Correlation for boiling heat transfer to saturated fluids in convective flow. I &
EC Process Design and Development, 5(3):322–329, 1966.

E. Christen and K. Bakalar. VHDL-AMS - A Hardware Description Language for Analog
and Mixed-Signal Applications. IEEE Transactions on Circuits and Systems -II: Analog
and Digital Signal Processing, 46(10):1263–1272, October 1999.

C. Clauß, A. Schneider, and P. Schwarz. Schaltungssimulation mit Modelica/Dymola. In Proc.
of Diskussionssitzung Entwicklung von Analogschaltungen mit CAE-Methoden (ANALOG),
pages 177–182, Bremen, June 2002.

B. Cullimore and T. Hendricks. Design and Transient Simulation of Vehicle Air Conditioning
Systems. In Proc. of Vehicle Thermal Management Systems Conference & Exposition,
number 2001-01-1692, Warrendale, PA, May 2001.

O.-J. Dahl and K. Nygaard. SIMULA - an ALGOL-Based Simulation Language. Communi-
cations of the ACM, 9(9):671–678, September 1966.

126

DENSO Cooperation. Staying the Course - Annual Report 2003, 2003.

P. A. Domanski. The Use of an Ejector as a Refrigerant Expander. In Proc. of 1990
USNC/IIR-Purdue Refrigeration Conference, pages 10–19, Purdue University, July 1990.

M. Drescher, A. Hafner, A. Jakobsen, P. Neksa, and S. Zha. Experimental Investigation of
Ejector for R-744 Transcritical Systems. In Proc. of International Congress of Refrigera-
tion, Beijing, 2007.

J. Eborn. On Model Libraries for Thermo-hydraulic Applications. PhD thesis, Department
of Automatic Control, Lund Institute of Technology, March 2001.

B. Eckel. Thinking in Java. Prentice Hall PTR, 4th edition, 2006.

S. Elbel and P. Hrnjak. Experimental Validation and Design Study of a Transcritical CO2

Prototype Ejector System. In Proc. of 7th IIR Gustav Lorentzen Conference on Natural
Working Fluids, Trondheim, Norway, May 2006a.

S. Elbel and P. Hrnjak. Experiments and Modeling of Ejector Systems. Presentation at c-dig
(the carbon dioxide interest group) Meeting, Purdue University, West Lafayette, IN, March
2006b.

H. Elmqvist. A structured model language for large continuous systems. PhD thesis, Depart-
ment of Automatic Control, Lund Institute of Technology, 1978.

H. Elmqvist and S. E. Mattson. Modelica - The Next Generation Modeling Language, An
International Effort. In Proc. of the 1st World Congress on System Simulation, Singapore,
September 1997.

H. Elmqvist, H. Tummescheit, and M. Otter. Object-Oriented Modeling of Thermo-Fluid
Systems. In Proc. of 3rd International Modelica Conference, pages 269–286, Linköping,
November 2003.

J. Farman, B. Gardiner, and J. Shanklin. Large losses of total ozone in Antarctica reveal
seasonal ClOx/NOx interaction. Nature, 315:207–210, May 1985.

M. Ferziger and M. Perić. Computational Methods for Fluid Dynamics. Springer-Verlag,
Berlin, 3rd edition, 2002.

M. Fowler. UML Distilled. Third Edition. A Brief Guide to the Standard Object Modeling
Languange. Addison-Wesley Longman, Amsterdam, 2003.

M. Fowler. Analysis Patterns: Reusable Object Models. The Addison-Wesley Object Tech-
nology Series. Addison-Wesley Professional, 1996.

P. Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley-
IEEE Press, 2004.

S. Försterling. Vergleichende Untersuchung von CO2-Verdichtern in Hinblick auf den Einsatz
in mobilen Anwendungen. Doktorarbeit, TU Braunschweig, December 2003.

127

Chapter 9. References

N. H. Gay. REFRIGERATION SYSTEM. U.S. Patent 1,836,318, December 1931.

J. Haase, E. Hessel, A. Graßmann, and J. Schäfer. Model Exchange Process in Automo-
tive Industry with VHDL-AMS – Philosophy and Examples. In Tagungsband, 2. Aachen
Electronics Symposium 2004, September 2004.

E. Hairer and G. Wanner. Vol.2 : Stiff and Differential-Algebraic Problems. Springer, Berlin,
1996.

H. Hasse, M. Becker, K. Grossmann, and G. Maurer. Top-Down Model for Dynamic Simu-
lation of Cold Storage Plants. International Journal of Refrigeration, 19(1):10–18, 1996.

C. Heinrich and K. Berthold. A Modelica Library for Simulation of Household Refrigeration
Appliances, Features and Experiments. In Proc. of 5th International Modelica Conference,
pages 677–684, Vienna, September 2006.

C. Junior. Energetische Gegenüberstellung von Kältesystemvarianten mit dem Arbeitstoff
CO2 für den Einsatz in der Tiefkühltechnik. Diplomarbeit, TU Braunschweig, February
2006.

J. Köhler. Skriptum zur Vorlesung: Thermodynamik. Institut für Thermodynamik, TU
Braunschweig, 2007a.

J. Köhler. Skriptum zur Vorlesung: Wärme- und Stoffübertragung. Institut für Thermody-
namik, TU Braunschweig, 2007b.

J. Köhler, W. Tegethoff, C. Richter, and C. Tischendorf. Experimental and theoretical study
of a CO2 ejector refrigeration cycle. In VDA Alternative Refrigerant Winter Meeting,
Saalfelden, 2007.

S. A. Klein. EES - Engineering Equation Solver - User Manual. F-Chart Software, Middleton,
WI, 1999.

A. Kornhauser. The Use of an Ejector as a Refrigerant Expander. In Proc. of USNC/IIR
Purdue Refrigeration Conference, pages 10–19, Purdue, Indiana, 1990.

R. Kossel. Objektorientierte Modellierung von Wärmeübertragern in Modelica. Studienar-
beit, TU Braunschweig, June 2005.

R. Kossel, W. Tegethoff, M. Bodmann, and N. Lemke. Simulation of complex systems using
Modelica and tool coupling. In Proc. of 5th International Modelica Conference, pages
485–490, Vienna, September 2006.

R. Krauss, J. Luettmer-Strathmann, J. Sengers, and K. Stephan. Transport Properties of
1,1,1,2-Tetrafluoroethane (R134a). International Journal of Thermophysics, 14(4):951–987,
1993.

N. C. Lemke. Untersuchung zweistufiger Flüssigkeitskühler mit dem Kältemittel CO2.
Forschungsberichte des Deutschen Kälte- und Klimatechnischen Vereins Nr. 73, DKV,
Stuttgart, 2005.

128

E. W. Lemmon, M. Huber, and M. McLinden. NIST Standard Reference Database 23: Ref-
erence Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0. National
Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg,
2007.

D. Li and E. A. Groll. Transcritical CO2 refrigeration cycle with ejector-expansion device.
International Journal of Refrigeration, 28(5):766–773, 2005.

D. Li and E. A. Groll. Analysis of an Ejector Expansion Device in a Transcritical CO2

Air Conditioning System. In Proc. of 7th IIR Gustav Lorentzen Conference on Natural
Working Fluids, Trondheim, Norway, May 2006.

D. Limperich, M. Braun, G. Schmitz, and K. Prölß. System Simulation of Automotive
Refrigeration Cycles. In Proc. of the 4th International Modelica Conference, pages 193–
199, Hamburg-Harburg, March 2005.

M. Loeffler. Ein Werkzeug zur Strukturanalyse von MODELICA-Bibliotheken. Diplomarbeit,
TU Braunschweig, October 2006.

M. Loeffler, M. Huhn, C. Richter, and R. Kossel. ModelicaCDV - A Tool for Visualizing the
Structure of Modelica Libraries. In Proc. of 5th International Modelica Conference, pages
55–62, Vienna, September 2006.

G. Lorentzen. Throttling - The Internal Hemorrhage of the Refrigeration Process. In Proc.
of Institute of Refrigeration, volume 80, pages 39–47, 1983.

G. Lorentzen. TRANS-CRITICAL VAPOUR COMPRESSION CYCLE DEVICE. EP
1989910211, issued October 1993. filed September 1989.

J. Martin and J. J. Odell. Object-Oriented Methods: A Foundation, UML Edition. Pearson
Education Ltd., 2nd edition, 1998.

K. Matsuo, K. Sasaguchi, Y. Kiyotoki, and H. Mochizuki. Investigation of Supersonic Air
Ejectors : Part 2, Effects of Throat-Area-Ratio on Ejector Performance. Bulletin of JSME,
25(210):1898–1905, December 1982. ISSN 00213764.

S. Mattsson and M. Andersson. The Ideas Behind Omola. In Proc. of 1992 IEEE Symposium
on Computer Aided Control System Design, pages 23–29, Napa, CA, March 1992.

F. Mayinger. Strömung und Wärmeübergang in Gas-Flüssigkeits-Gemischen. Springer-Verlag,
Berlin, 1982.

J. Mazen. Auswirkung der partiellen Einschränkung der Kondensatorluftzufuhr bei Pkw-
Klimaanlagen mit den Kältemitteln R134a und R744. Diplomarbeit, TU Braunschweig,
May 2007.

M. McLinden, E. Lemmon, and R. Jacobsen. Thermodynamic properties for the alternative
refrigerants. International Journal of Refrigeration, 21(4):332–338, 1998.

129

Chapter 9. References

J. R. McNeill and P. Kennedy. Something New Under the Sun: An Environmental History of
the Twentieth-Century World. Global Century Series. W. W. Norton & Company, 2001.

P. Menegay. A Computational Model for Two-Phase Ejector Flow. PhD thesis, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia, January 1997.

S. Meyers. Effective C++: 50 Specific Ways to Improve Your Programs and Design. Addison-
Wesley Professional, 2nd edition, 1997.

Modelica Association. Modelica R© - A Unified Object-Oriented Language for Physical Systems
Modeling, Language Specification, Version 2.2, February 2nd, 2005.

Modelica Association. Modelica R© - A Unified Object-Oriented Language for Physical Systems
Modeling, Language Specification, Version 3.0, September 5th, 2007.

R. E. Nance. Simulation Programming Languages: An Abridged History. In Proc. of the
1995 Winter Simulation Conference, pages 1307–1313, Arlington, VA, December 1995.

OMG. The Object Management Group (OMG), 2007. URL www.omg.org.

T. M. Ortiz, D. Li, and E. A. Groll. Evaluation of the Performance Potential of CO2 as
a Refrigerant in Air-To-Air Air Conditioners and Heat Pumps: System Modeling and
Analysis. Technical Report 1275-2, Final Report of ARTI Project 610-10030, Herrick Labs
2003-20, 2003.

M. Otter, B. Bachman, H. Elmqvist, S. Mattson, C. Schlegel, P. Beater, H. Tummescheit,
C. Clauß, A. Schneider, P. Schwarz, H. Wiesman, and M. Tiller. Objektorientierte Model-
lierung Physikalischer Systeme, Teil 1 - 17. at Automatisierungstechnik, 1999-2000.

Y. Ozaki, H. Takeuchi, and T. Hirata. Regeneration of Expansion Energy by Ejector in
CO2 Cycle. In Proc. of 6th IIR Gustav Lorentzen Conference on Natural Working Fluids,
Glasgow UK, 2004.

S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Tylor & Francis, 1980.

T. Pfafferott. Dynamische Simulation von CO2-Kälteprozessen für mobile Kälteanwendungen.
Doktorarbeit, Technische Universität Hamburg-Harburg, 2004.

B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.

W. Polifke and J. Kopitz. Wärmeübertragung, Grundlagen, analytische und numerische
Methoden. Pearson Studium, Munich, 2005.

A. Premoli, D. Francesco, and A. Prima. An empirical correlation for evaluating two-phase
mixture density under adiabatic conditions. In European Two-Phase Flow Group Meeting,
Milan, Italy, 1970.

A. A. B. Pritsker and N. R. Hurst. GASP IV: A combined continuous - discrete FORTRAN-
based simulation language. SIMULATION, 21(3):65–70, 1973.

130

www.omg.org

H. Raiser. Untersuchung des transienten Verhaltens von CO2-PKW-Klimaanlagen mit
Niederdrucksammler. Doktorarbeit, TU Braunschweig, January 2005.

C. Richter and F. Casella. ExternalMedia: a Library for Easy Re-Use of External Fluid
Property Code in Modelica. In Proc. of 6th International Modelica Conference, Bielefeld,
March 2008.

C. Richter, C. Tischendorf, R. Fiorenzano, P. Cavalcante, W. Tegethoff, and J. Köhler. Using
Modelica as a Design for an Ejector Test Bench. In Proc. of 5th International Modelica
Conference, pages 501–508, Vienna, September 2006.

D. M. Robinson and E. A. Groll. Theoretical Performance Comparison of CO2 Transcritical
Cycle Technology Versus HCFC-22 Technology for a Military Packaged Air Conditioner
Application. International Journal HVAC&R Research, 6(4):325–348, October 2000.

A. Roccatello, S. Mancò, and N. Nervegna. Modelling a Variable Displacement Axial Piston
Pump in a Multibody Simulation Environment. Journal of Dynamic Systems, Measure-
ment, and Control, 129(4):456–468, July 2007.

D. Rowe, editor. Thermoelectrics Handbook, Macro to Nano. Taylor & Francis, 2006.

F. Schiavo and F. Casella. Object-Oriented Modelling and Simulation of Heat Exchangers
with Finite Element Methods. Mathematical and Computer Modelling of Dynamic Systems,
13(3):211–235, June 2007.

R. Schmidt. Eine Methode zur numerischen Untersuchung von Strömung und
Wärmeübertragung in komplexen Geometrien. Doktorarbeit, TU Braunschweig, Juni 2002.

M. Shah. A new correlation for heat transfer during boiling flow through pipes. ASHRAE
Transactions, 82(1):66–86, 1976.

M. Shah. A general correlation for heat transfer during film condensation inside pipes.
International Journal of Heat and Mass Transfer, 22(4):547–556, April 1979.

M. Siebenhaller. Automatisches Layout von UML-Klassendiagrammen. Diplomarbeit,
Eberhard-Karls-Universität Tübingen, June 2003.

R. Span. Multiparameter Equations of State, An Accurate Source of Thermodynamic Property
Data. Springer, 2000. ISBN 3-540-67311-3.

R. Span and W. Wagner. A New Equation of State for Carbon Dioxide Covering the Fluid
Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. Journal
of Physical and Chemical Reference Data, 25(6):1509–1596, 1996.

K. Stephan. Wärmeübergang beim Kondensieren und beim Sieden. Springer-Verlag, Berlin,
1988.

N.-C. Strupp, N. Lemke, W. Tegethoff, and J. Köhler. Investigation of Low Pressure Accu-
mulators in CO2 Refrigeration Cycles. In Proc. of International Congress on Refrigeration,
Beijing, China, 2007. ICR07-E1-1480.

131

Chapter 9. References

Sun Microsystems, Inc. Swing (JavaTM Foundation Classes). URL http://java.sun.com/

javase/6/docs/technotes/guides/swing/.

W. Tegethoff. Eine objektorientierte Simulationsplattform für Kälte-, Klima- und
Wärmepumpensysteme. Fortschritt-Berichte VDI Reihe 19 Nr. 118, VDI Verlag, Düsseldorf,
1999.

W. Tegethoff, N. Lemke, and J. Köhler. Component modelling and specification using a
new approach for transient simulation. In VDA Alternative Refrigerant Winter Meeting -
Automotive Air-Conditioning and Heat Pump Systems, Saalfelden, 2004.

W. Tegethoff, T. Horst, C. Richter, R. Kossel, M. Bodmann, and N. Lemke. Modeling and
Simulation of Compressors in Mobile Air-Conditioning Systems. In Proc. of EUROSIM
2007, Ljubljana, Slovenia, September 2007.

M. M. Tiller. Introduction to Physical Modeling with Modelica. Kluwer Academic Publishers,
2001. ISBN 0-7923-7367-7.

R. Tillner-Roth, J. Li, A. Yokozeki, H. Sato, and K. Watanabe. Thermodynamic Properties of
Pure and Blended Hydrofluorocarbon (HFC) Refrigerants. Japan Society of Refrigerating
and Air-Conditioning Engineers, 1998.

TLK-Thermo GmbH. StateViewer - Documentation, Version 1.3. Braunschweig, November
2007.

H. Tummescheit. Design and Implementation of Object-Oriented Model Libraries using Mode-
lica. PhD thesis, Department of Automatic Control, Lund Institute of Technology, August
2002.

H. Tummescheit and J. Eborn. Chemical Reaction Modeling with ThermoFluid/MF and
MultiFlash. In Proc. of 2nd International Modelica Conference, pages 31–39, Oberpfaffen-
hofen, March 2002.

H. Tummescheit, J. Eborn, and F. J. Wagner. Development of a Modelica Base Library
for Modeling of Thermo-Hydraulic Systems. In Proc. of Modelica Workshop 2000, pages
41–51, Lund, October 2000.

H. Tummescheit, J. Eborn, and K. Prölß. AirConditioning - a Modelica Library for Dynamic
Simulation of AC Systems. In Proc. of 4th International Modelica Conference, pages 185–
192, Hamburg-Harburg, March 2005a.

H. Tummescheit, J. Eborn, K. Prölß, S. Försterling, and W. Tegethoff. PKW-Klimatisierung
IV, Klimakonzepte, Zuheizkonzepte, Regelungsstrategien und Entwicklungsmethoden, vol-
ume 57, chapter Air-Conditioning: Eine Modelica-Bibliothek zur dynamischen Simulation
von Kältekreisläufen, pages 196–214. expert verlag, 2005b.

VDI, editor. VDI-Wärmeatlas: Berechnungsblätter für den Wärmeübergang. Springer-Verlag,
9th edition, 2002.

132

http://java.sun.com/javase/6/docs/technotes/guides/swing/
http://java.sun.com/javase/6/docs/technotes/guides/swing/

H. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynamics. Pear-
son Education Ltd., 1995.

V. Vesovic, W. Wakeham, G. Olchowy, J. Sengers, J. Watson, and J. Millat. The Transport
Properties of Carbon Dioxide. Journal of Physical and Chemical Reference Data, 19(3):
763–808, 1990.

L. Viklund and P. Fritzson. ObjectMath - an object-oriented language and environment for
symbolic and numerical processing in scientific computing. Scientific Programming, 4(4):
229–250, Winter 1995.

S. von Haaf. Wärmeübergang in Luftkühlern. In F. Steimle and K. Stephan, editors,
Wärmetauscher. Springer-Verlag, Berlin, 1988.

W. Wagner. Strömung und Druckverlust. Kamprath-Reihe. Vogel Fachbuch, 5th edition,
2001.

W. Wagner and U. Overhoff. ThermoFluids. Springer-Verlag Berlin, 2006.

M. Wein. Numerische Simulation von kritischen und nahkritischen Zweiphasenströmungen
mit thermischen und fluiddynamischen Nichtgleichgewichtseffekten. Doktorarbeit, Technis-
che Universität Dresden, April 2002.

J. Winkler, V. Aute, B. Yang, and R. Radermacher. Potential benefits of thermoelectric
elements used with air-cooled heat exchangers. In Proc. of 2006 International Refrigera-
tion and Air Conditioning Conference at Purdue, volume 1, pages R091.1–R091.8, West
Lafayette, July 2006.

M. Woldesemayat and A. Ghajar. Comparison of void fraction correlations for different flow
patterns in horizontal and upward inclined pipes. International Journal of Multiphase
Flow, 33(4):347–370, April 2007.

S. Zha, A. Jakobsen, A. Hafner, and P. Neksa. Design and Parametric Investigation on
Ejector for R-744 Transcritical System. In Proc. of International Congress of Refrigeration
2007, number ICR07-B1-743, Beijing, 2007.

K. Zorbas, E. Hatzikraniotis, and K. Paraskevopoulos. Power and Efficiency Calculation in
Commercial TEG and Application in Wasted Heat Recovery in Automobile. In Proc. of
5th European Conference on Thermoelectrics, 2007.

133

Appendix A

Nomenclature

Latin Characters

A area [m2]
A cross sectional area [m2]
Aa total outer surface area [m2]
Aeff effective flow area [m2]
A0 smallest flow area [m2]
cp specific heat capacity at constant

pressure [J
kg·K]

d density [kg
m3]

d diameter [m]
d thickness [m]
da outer tube diameter [m]
dh hydraulic diameter [m]
E total energy [J]
F factor in eqn. (4.41) [-]
Fr Froude number [-]
g gravitational constant [m

2

s]
h specific enthalpy [Jkg]

h1+x specific enthalpy of moist air
per kilogram of dry air [J

kgdry air
]

H enthalpy [J]
I momentum [kg·ms]
I current [A]
İ momentum flow [kg·m

s2
]

k heat transfer coefficient [W
m2·K]

llam length of finned tube [m]
L length [m]
m mass [kg]
ṁ mass flow rate [kgs]

ṁD driving mass flow rate [kgs]
ṁS suction mass flow rate [kgs]
M total mass in control volume [kg]
M torque [N ·m]
MM molar mass [kgmol]
n exponent [-]
n speed [1

s]
nX number of mass fractions [-]
nXi number of independent mass

fractions [-]
Nu Nusselt number [-]
p pressure [Pa]
pevap evaporation pressure level [Pa]
ph high pressure level [Pa]
pim intermediate pressure level [Pa]
∆p pressure loss [Pa]
∆pf friction pressure loss [Pa]
P power [W]
Pel electrical power [W]
Pr Prandtl number [-]
q̇ heat flux density [W

m2]
Q̇ heat flow rate [W]
Q̇C absorbed heat flow rate [W]
Q̇H rejected heat flow rate [W]
r radius [m]
R gas constant [J

kg·K]

R two-phase multiplier in eqn. 4.49 [-]
R thermal resistance [KW]

134

R electrical resistance [Ω]
Re Reynolds number [-]
s specific entropy [J

kg·K]

s slip factor [-]
s1+x specific entropy of moist air

per kilogram of dry air [J
kgdry air·K]

sl distance between serial tubes [m]
sq distance between parallel tubes [m]
S factor in eqn. (4.41) [-]
t time [s]
tR distance between fins [m]
T temperature [K]
Tw wall temperature [K]
TC temperature at cold side [K]
TH temperature at hot side [K]
TM average temperature [K]
u specific internal energy [Jkg]

U internal energy [J]
U perimeter [m]
v specific volume [m

3

kg]

vl air velocity in clear cross section [ms]
V volume [m3]

V displacement volume [m3]
Vkv control volume [m3]
w velocity [ms]
wl,m average air velocity [ms]
wm average velocity [ms]
We Weber number [-]
Ẇt shaft work (technische Arbeit) [W]
x quality [-]
x state variable [-]
x∗ flow steam quality [-]
xt transition point
xw water content per kilogram

of dry air [kg
kgdry air

]

∆x transition length
X mass fraction [-]
Xi independent mass fraction [-]
Xtt Martinelli parameter [-]
y algebraic variable [-]
z z-coordinate [m]
zl number of serial tubes [-]
zq number of parallel tubes [-]
Z figure-of-merit [1

K]

Greek Characters

α coefficient of heat transfer [W
m2·K]

α Seebeck coefficient [VK]
α flow coefficient [-]
αab relative Seebeck coefficient [W

A·K]
β isobaric expansion coefficient [1

K]
δ dimensionless density [-]
δR fin thickness [m]
ε void fraction [-]
ε expansion coefficient [-]
ζ friction factor [-]
η efficiency [-]
ηc isentropic compressor efficiency [-]
ηe isentropic ejector efficiency [-]
ηt isentropic turbine efficiency [-]
κ isothermal compressibility [1

Pa]
κ thermal conductance [W

m·K]

λ thermal conductivity [W
m·K]

λ pipe friction factor [-]
λ volumetric efficiency [-]
µ dynamic viscosity [Pa · s]
ν kinematic viscosity [m

2

s]
ξ steam concentration [-]
ξ friction factor [-]
π pressure ratio [PaPa]
πmax maximum pressure ratio [PaPa]
ρ electrical resistivity [Ω ·m]
% density [kg

m3]
σ surface tension [Nm]
σ electrical conductivity [Sm]
τ dimensionless inverse temperature [-]
τ0 wall shear stress [Pa]
φ dimensionless Helmholtz energy [-]

135

Chapter A. Nomenclature

φ relative humidity [%]
φ coefficient of performance [-]
ϕ phase [rad]

ψ mass flow ratio [-]
Ψ void fraction [-]

Subscripts

0 initial conditions
ambient ambient conditions
c critical properties
d discharge properties
eff effective values
E East
g gas properties
id ideal conditions
in entering

is isentropic conditions
l liquid properties
N North
out leaving
s suction properties
S South
W West

Abbreviations

BLT Block-Lower-Triangle
CFC Chlorofluorocarbon
COP Coefficient of Performance
CPU Central Processing Unit
DAE Differential Algebraic Equation
EES Engineering Equation Solver
EOS Equation of State
GUI Graphical User Interface
GWP Global Warming Potential
HCFC Hydrochlorofluorocarbon
HDL Hardware Description Language
HFC Hydrofluorocarbons
HVAC Heating, Ventilation, and Air-Conditioning
IfT Institut für Thermodynamik
MBWR Modified Benedict-Webb-Rubin Equation of State
ModelicaCDV Modelica Class Diagram Visualizer
NIST National Institute of Standards and Technology
ODE Ordinary Differential Equation
PFC Perfluorocarbon
TIL TLK-IfT-Library
TILFluids TLK-IfT-Fluid Property-Library
TISC TLK Inter Software Connector
UML Unified Modeling Language

136

Appendix B

Design Rules

This chapter summarizes all design rules for a good design of object-oriented component
model libraries that were developed in chapter 2 based on general considerations about li-
brary structuring and experiences from available component model libraries.

Design Rule 1: Class names should begin with an uppercase letter whereas object
names should begin with a lowercase letter. Exceptions to this rule
are allowed for object names if they refer to common abbreviations
marked by an uppercase letter and if chances are low to mistake them
as class names.

Design Rule 2: Inheritance should only be used if the relation between two classes can
be described as an is-a-relation.

Design Rule 3: Multiple inheritance should only be used if each inheritance relation
fulfills design rule 2.

Design Rule 4: Multiple inheritance should be avoided whenever possible.

Design Rule 5: The object-oriented structure of the component model library should
be constantly monitored and re-evaluated during the initial design pro-
cess since it can hardly be changed later on.

Design Rule 6: Component model libraries should feature an inheritance structure that
is as flat as possible.

137

Appendix C

Steady-State Object-Oriented

Modeling of Fluid Systems

This chapter describes most of the steady-state component models in the Modelica library
HVAC which is part of the new component model library presented in chapter 4 whose structure
is shown in figure 4.2. The presented models were developed in cooperation with Tegethoff
and Kossel and are used in the Modelica lectures at TU Braunschweig and in the Modelica
training courses offered by TLK-Thermo. A brief introduction to the library and to a possible
application is also given in Richter et al. (2006).

C.1 Connectors

The connector models used in the HVAC library do not support flow reversal which is the main
difference to the connector models presented in section 4.2. The two connector models called
FluidConnectorA and FluidConnectorB contain the pressure p, the specific enthalpy h, and
the mass flow rate ṁ as shown in code listing C.1.

import SI = Modelica.SIunits;

connector FluidConnectorA ”Fluid inlet connector”

SI.AbsolutePressure p ”Pressure”;
flow SI.MassFlowRate m flow ”Mass flow rate”;

input SI.SpecificEnthalpy h ”Specific enthalpy”;
end FluidConnectorA;

connector FluidConnectorB ”Fluid outlet connector”

SI.AbsolutePressure p ”Pressure”;
flow SI.MassFlowRate m flow ”Mass flow rate”;

output SI.SpecificEnthalpy h ”Specific enthalpy”;

138

C.2. Compressor Model

end FluidConnectorB;

Code Listing C.1: Fluid connector models in HVAC library.

The main difference between the two connector models besides the different icons is the use
of input/output for the specific enthalpy. This ensures that it is not possible to connect two
connectors of type FluidConnectorB with each other.

C.2 Compressor Model

Two different compressor models are available in the HVAC library, a simple and an advanced
one. The simple compressor model assumes constant parameter values for the volumetric effi-
ciency λeff and for the isentropic efficiency ηeff ,is . The following set of equations is formulated
in the SimpleCompressor model

ṁin + ṁout = 0 (C.1a)

ηeff ,is =
hd ,is − hs
hd − hs

(C.1b)

ṁin = %in n V λeff (C.1c)

where V is the displacement volume and n the speed. The subscript d refers to the discharge
side, s to the suction side, and is to isentropic conditions. The advanced compressor model
formulates the efficiencies depending on the pressure ratio π, the maximum pressure ratio
πmax at which the suction mass flow becomes zero, and the speed n. The following relations
are for example used in the AdvancedBock110 model

π =
pd
ps

(C.2a)

λeff =
(
πmax − π
πmax − 1

)2 (
a n2 + b n+ 1

)
(C.2b)

ηeff ,is =
πmax − π
πmax

+
(
πmax − π
πmax

)π
(C.2c)

C.3 Gas Cooler Model

The gas cooler model in the HVAC library uses an efficiency η to determine the outlet specific
enthalpy. The pressure drop is neglected. The outlet temperature reaches the temperature
of the secondary fluid (i.e., the ambient temperature) for the ideal case η = 1. The following
set of equations describes the gas cooler

ṁin + ṁout = 0 (C.3a)

pout = pin (C.3b)

η =
hin − hout

hin − hout ,id
(C.3c)

hout ,id = h pT (pout , Tambient) (C.3d)

where hout ,id is the ideal outlet specific enthalpy determined using the outlet pressure and
the ambient temperature according to equation (C.3d).

139

Chapter C. Steady-State Object-Oriented Modeling of Fluid Systems

C.4 Evaporator Model

The evaporator model in the HVAC library uses the analytical exponential solution for the
air temperature as derived for example by Tegethoff (1999, equation (134)). Again, the
pressure drop is neglected. The specific heat capacity of air cp,air is furthermore assumed to
be constant. The inlet air temperature Tin,air , the air mass flow rate ṁair , and the product of
heat transfer coefficient k and heat transfer area A are parameters in the evaporator model.
The following set of equations is used

ṁin + ṁout = 0 (C.4a)

pout = pin (C.4b)

Tout ,air = Tin + (Tin,air − Tin) exp
(

−kA
cp,air ṁair

)
(C.4c)

(Tin,air − Tout ,air)cp,air ṁair = ṁin(hout − hin) (C.4d)

C.5 Internal Heat Exchanger

Different models for internal heat exchangers exist in the HVAC library. The one presented in
this section can only be used for one-phase fluids on both sides and assumes constant specific
heat capacities. An efficiency ε is used that describes the amount of heat transferred between
the two fluid streams. The following set of equations is used

ṁ1/2 ,in + ṁ1/2 ,out = 0 (C.5a)

p1/2 = p1/2 (C.5b)

ṁ1 ,in h1 ,in + ṁ1 ,out h1 ,out + Q̇ = 0 (C.5c)

ṁ2 ,in h2 ,in + ṁ2 ,out h2 ,out − Q̇ = 0 (C.5d)

ε =
T1 ,in − T1 ,out

T1 ,in − T2 ,out
(C.5e)

where the two subscripts 1 and 2 refer to the high-pressure and the low-pressure side of the
internal heat exchanger respectively.

C.6 Accumulator Model

The accumulator model in the HVAC library describes a point on the dew line. The following
set of equations is used

ṁin + ṁout = 0 (C.6a)

pout = pin (C.6b)

hout = hin (C.6c)

hout = hg (C.6d)

140

C.7. Valve Model

C.7 Valve Model

The valve model in the HVAC library is very similar to the valve model used as a demonstrator
in chapter 3 and presented in code listing 3.1. The following equations are used

ṁin + ṁout = 0 (C.7a)

hout = hin (C.7b)

ṁin = Aeff

√
2 %in(pin − pout) (C.7c)

where Aeff is the effective flow area.

C.8 Loop Breaker Model

Connecting a couple of the presented component to a closed-loop system results in an overde-
termined system of equations since a static mass balance is formulated in each component
model. This can be overcome by removing the mass balance equation from one of the compo-
nent models presented in the previous sections with the disadvantage that the chosen model
must exactly be used once in each system. A better approach is to introduce a new component
model that does not formulate a mass balance and that can be used as a loop breaker for a
closed-loop system. The following set of equations is formulated in this additional component
model

hout = hin (C.8a)

pout = pin (C.8b)

141

Appendix D

Partial Derivatives of Fluid

Properties

Using external fluid property libraries has the disadvantage that the simulation tool (e.g.,
Dymola) cannot explicitly compute time derivatives when differentiating property functions
during index reduction. A simple solution to this problem is to provide derivative functions
for each external function that is differentiated. The derivative functions are implemented
in TILFluids using Bridgman’s table (see Bejan, 1988) for the one-phase region and a ho-
mogeneous model to describe the two-phase region. In the following two sections, all partial
derivatives required to compute the time derivative of density are derived for %(p, h). In the
last section, all other important partial derivatives with respect to p and h for the one- and
the two-phase region are listed.

The time derivative of density can be written as

d%

dt
=
(
∂%

∂p

)
h

dp

dt
+
(
∂%

∂h

)
p

dh

dt
(D.1)

In order to compute the two partial derivatives, a case differentiation between a one-phase
state and a two-phase state is required. The equations for the two different cases are derived
in the following sections. Some equations are simpler to derive for the specific volume instead
of the density. The resulting partial derivatives of specific volume can be transformed into
partial derivatives of density using the following simple relation

∂v

∂%
= − 1

%2
(D.2)

D.1 One-Phase State

Bridgman’s table (see Bejan, 1988) can be used to derive the equations for the partial deriva-
tives for the one-phase state as a function of β, κ, and cp yielding(

∂%

∂h

)
p

= −β%
cp

(D.3)(
∂%

∂p

)
h

=
−Tβ2 + β + κ%cp

cp
(D.4)

142

D.2. Two-Phase State

where β is the isobaric coefficient of expansion, κ is the isothermal compressibility, and cp

is the specific heat capacity at constant pressure which can be determined from medium
properties

β = −1
%

(
∂%

∂T

)
p

, κ =
1
%

(
∂%

∂p

)
T

, cp =
(
∂u

∂T

)
p

(D.5)

D.2 Two-Phase State

The equations for the partial derivatives for the two-phase state can be derived using a
homogeneous model to describe the fluid flow

v = vl +
h− hl
hg − hl

(vg − vl) (D.6)

where the quotient at the right-hand side describes the quality x of the two-phase refrigerant

x =
h− hl
hg − hl

(D.7)

This yields the following differentiation(
∂v

∂h

)
p

=
vg − vl
hg − hl

(D.8)

The partial derivative of specific volume with respect to pressure can be written as(
∂v

∂p

)
h

=
dvl
dp

+
dx

dp
(vg − vl) + x

(
dvg
dp
− dvl
dp

)
(D.9)

where

dx

dp
=
−dhl

dp (hg − hl)− (h− hl)
(
dhg

dp −
dhl
dp

)
(hg − hl)2

(D.10)

with

dhl
dp

= vl(1− βlT) + cp,l
dT

dp
(D.11)

dhg
dp

= vg(1− βgT) + cp,g
dT

dp
(D.12)

The derivatives of density at the phase boundaries can be expressed as

dvl
dp

= βlvl
dT

dp
− κlvl (D.13)

dvg
dp

= βgvg
dT

dp
− κgvg (D.14)

The derivative of temperature in equation (D.11) - (D.14) can be derived from the Clausius-
Clapeyron relation (see Baehr, 2002)

dT

dp
= T

vg − vl
hg − hl

(D.15)

143

Chapter D. Partial Derivatives of Fluid Properties

D.3 Further Partial Derivatives

This section lists all in TILFluids implemented partial derivatives for the one- and the two-
phase region except for the partial derivatives of density which have been derived in details
in der last two sections.

Temperature

For the one-phase region (
∂T

∂h

)
p

=
1
cp

(D.16)(
∂T

∂p

)
h

=
−v + βTv

cp
(D.17)

For the two-phase region (
∂T

∂h

)
p

= 0 (D.18)(
∂T

∂p

)
h

=
dT

dp
(D.19)

Specific Entropy

For the one-phase region (
∂s

∂h

)
p

=
1
T

(D.20)(
∂s

∂p

)
h

= − v
T

(D.21)

For the two-phase region (
∂s

∂h

)
p

=
sg − sl
hg − hl

(D.22)(
∂s

∂p

)
h

=
dsl
dp

+
dx

dp
(sg − sl) + x

(
dsg
dp
− dsl
dp

)
(D.23)

where

dsl
dp

=
cpl
T

dT

dp
− βlvl (D.24)

dsg
dp

=
cpg
T

dT

dp
− βgvg (D.25)

144

Appendix E

Additional Component and System

Models

The most important component models implemented in the new component model library
are presented in chapter 4. Additional component models are introduced in chapters 6 and
7 when describing two demonstrating example applications. This chapter presents some
additional component models.

E.1 The StateViewerInterface

In order to allow for the automated numbering of medium objects in simulations of closed
cycles, a special component called StateViewerInterface is used that can be seen in fig-
ure 4.1 in front of the compressor. This component breaks the algebraic loop that would
otherwise exist for the index that is defined in the fluid ports of the new component model
library (see code listing 4.1).

model StateViewerInterface ”Component to define starting point for index”

FluidPort inlet ”Inlet fluid port”;
FluidPort outlet ”Outlet fluid port”;
parameter Integer startIndex = 0 ”Start value for index”;

equation
inlet.m flow + outlet.m flow = 0 ”Mass balance”;
inlet.H flow + outlet.H flow = 0 ”Energy balance”;
inlet.p = outlet.p ”Momentum balance”;

outlet.index = startIndex;

... // further code omitted

end BaseComponent;

Code Listing E.1: Code for StateViewerInterface.

145

Chapter E. Additional Component and System Models

E.2 Model for Prototype Peltier Heat Exchanger

A model for a prototype Peltier heat exchanger combining component models from the new
component model library and from the Modelica Standard Library with additional new com-
ponent models is presented in chapter 6. Figure E.1 shows the velocity vectors within a single
channel as shown in figure 6.3 obtained from a CFD simulation carried out using FLUENT
6.0. For the CFD simulation, an inlet volume flow rate of V̇ = 1 l

min and a temperature
ϑ = 20 ◦C were chosen.

Figure E.1: Numerical results from CFD simulation of water flow through single aluminium
channel.

For the computation of the coefficient of heat transfer α, an average velocity of wm = 0.7 m
s

is assumed according to the results shown in figure E.1. The fluid properties of water at
ϑ = 20 ◦C are

%(20◦C) = 998
kg
m3

ν(20◦C) = 1.003 · 10−6 m

s

cp(20◦C) = 4184
J

kg ·K
λ(20◦C) = 589.5 · 10−3 W

m ·K

From these properties, the Reynolds and the Prandtl number can be computed to be

Re =
wm dh
ν

= 48, 853

Pr =
ν % cp
λ

= 7.00

using a hydraulic diameter dh = 0.07 m. From this, the Nusselt number can be computed
(see for example Köhler, 2007b)

Nu = f3

ξ

8
(Re − 1000)Pr

1 + 12.7

√
ξ

8
(Pr2/3 − 1)

{
1 +

(
dh
L

) 2
3

}
= 481.99

146

E.2. Model for Prototype Peltier Heat Exchanger

where the length is L ≈ 200 mm, f3 = 1.0, and

ξ = (1.82 log10(Re)− 1.64)−2 = 0.021

The coefficient of heat transfer α can now be computed to be

α =
Nu λ

dh
= 4121

W

m2 ·K

Figure E.2 shows the complete system setup in Dymola to simulate the prototype Peltier
water-water heat exchanger using components models from various libraries.

Figure E.2: Setup of simulation for tube-and-tube Peltier heat exchanger in Dymola.

147

	Front Page
	Abstract
	Kurzfassung
	Table of Contents
	1 Introduction
	1.1 Motivation
	1.2 A Brief History of Modeling Languages
	1.3 State of the Art in Thermodynamic System Simulations
	1.4 Objectives
	1.5 Structure of the Thesis

	2 Object-Oriented Modeling
	2.1 Introduction
	2.2 Classes
	2.3 Object-Oriented Relations
	2.3.1 Composition
	2.3.2 Aggregation
	2.3.3 Inheritance
	2.3.4 Multiple Inheritance

	2.4 Polymorphism
	2.4.1 Exchangeable Object Type
	2.4.2 Replaceable Local Class

	2.5 More Pitfalls in Object-Oriented Modeling
	2.6 Accessing Object Attributes
	2.6.1 Connectors
	2.6.2 Direct Access
	2.6.3 Modifiers
	2.6.4 inner/outer-Concept

	2.7 Evaluation of Existing Libraries

	3 Modeling of Thermo-Physical Fluid Properties
	3.1 Introduction
	3.2 Function-Based Computation of Fluid Properties
	3.3 Object-Based Computation of Fluid Properties
	3.4 Calling External Fluid Property Computation Codes
	3.4.1 Architecture of the Modelica Layer (Modelica_ExternalMedia)
	3.4.2 Architecture of the C/C++ Layer (ExternalMedia)

	3.5 Advanced Object-Based Computation of Fluid Properties
	3.5.1 Architecture of the Modelica Layer (TILFluids)
	3.5.2 Architecture of the C/C++ Layer (TILFluidsLib)
	3.5.3 Interfaced External Fluid Property Computation Codes
	3.5.4 Comparison of Computational Efficiency

	4 Object-Oriented Modeling of Fluid Systems
	4.1 Introduction
	4.2 Connectors and Connection Equations
	4.3 Conservation Laws
	4.4 Accumulator Model
	4.5 Heat Transfer and Pressure Drop Models
	4.5.1 Single-Phase Refrigerant Flows
	4.5.2 Two-Phase Refrigerant Flows
	4.5.3 Gas Flows
	4.5.4 Solids

	4.6 Smooth Transition Functions
	4.7 Cells for Refrigerants, Liquids, Gases, and Solids
	4.7.1 Refrigerant Cell
	4.7.2 Gas Cell
	4.7.3 Liquid Cell
	4.7.4 Wall Cell

	4.8 Heat Exchangers
	4.8.1 Sandwich Concept
	4.8.2 Class Structure
	4.8.3 Initialization

	4.9 Compressor Model
	4.10 Basic Component Models
	4.10.1 System Information Manager
	4.10.2 Pressure State
	4.10.3 Partial Base Component
	4.10.4 Boundaries

	4.11 Numerical Aspects

	5 Visualization
	5.1 Introduction
	5.2 Automated Generation of UML Class Diagrams
	5.3 Thermodynamic Phase Diagrams
	5.4 Online Visualization during Initialization

	6 Thermoelectric Applications
	6.1 Introduction
	6.2 Thermoelectric Refrigeration
	6.3 Prototype Peltier Heat Exchanger
	6.4 Peltier Heat Exchanger Model
	6.5 Measurements
	6.6 Numerical Results

	7 Ejector Refrigeration System
	7.1 Introduction
	7.2 Ejector Refrigeration Systems
	7.3 A Brief History of CO2 as Refrigerant
	7.4 State of the Art
	7.5 Layout of the Test Stand
	7.6 Ejector Model
	7.7 Measurements
	7.8 Numerical Results

	8 Conclusions and Outlook
	8.1 Conclusions
	8.2 Future Development

	9 References
	A Nomenclature
	B Design Rules
	C Steady-State Object-Oriented Modeling of Fluid Systems
	C.1 Connectors
	C.2 Compressor Model
	C.3 Gas Cooler Model
	C.4 Evaporator Model
	C.5 Internal Heat Exchanger
	C.6 Accumulator Model
	C.7 Valve Model
	C.8 Loop Breaker Model

	D Partial Derivatives of Fluid Properties
	D.1 One-Phase State
	D.2 Two-Phase State
	D.3 Further Partial Derivatives

	E Additional Component and System Models
	E.1 The StateViewerInterface
	E.2 Model for Prototype Peltier Heat Exchanger

