Feedback

Spiking neural networks for nonlinear regression

GND
1290797439
ORCID
0000-0003-4615-9271
Affiliation/Institute
Institut für Rechnergestützte Modellierung im Bauingenieurwesen
Henkes, Alexander; Eshraghian, Jason K.;
GND
1197623434
ORCID
0000-0002-2542-1130
Affiliation/Institute
Institut für Rechnergestützte Modellierung im Bauingenieurwesen
Wessels, Henning

Spiking neural networks (SNN), also often referred to as the third generation of neural networks, carry the potential for a massive reduction in memory and energy consumption over traditional, second-generation neural networks. Inspired by the undisputed efficiency of the human brain, they introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware. Energy efficiency plays a crucial role in many engineering applications, for instance, in structural health monitoring. Machine learning in engineering contexts, especially in data-driven mechanics, focuses on regression. While regression with SNN has already been discussed in a variety of publications, in this contribution, we provide a novel formulation for its accuracy and energy efficiency. In particular, a network topology for decoding binary spike trains to real numbers is introduced, using the membrane potential of spiking neurons. Several different spiking neural architectures, ranging from simple spiking feed-forward to complex spiking long short-term memory neural networks, are derived. Since the proposed architectures do not contain any dense layers, they exploit the full potential of SNN in terms of energy efficiency. At the same time, the accuracy of the proposed SNN architectures is demonstrated by numerical examples, namely different material models. Linear and nonlinear, as well as history-dependent material models, are examined. While this contribution focuses on mechanical examples, the interested reader may regress any custom function by adapting the published source code.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction: