Feedback

Modified release kinetics in dual filament 3D printed individualized oral dosage forms

GND
1187666807
ORCID
0000-0002-3706-4716
Affiliation/Institute
Institut für Partikeltechnik
Tidau, Marius;
GND
1055014934
ORCID
0000-0001-6936-9795
Affiliation/Institute
Institut für Partikeltechnik
Finke, Jan Henrik

On demand production of totally customizable combinative preparations is a central goal of a patient-centric pharmaceutical supply chain. Additive manufacturing techniques like fused deposition modeling (FDM) could be key technologies towards such individualized dosage forms. As so far only a limited number of studies on 3D printed combinative preparations applying FDM have been reported, a core-shell dosage form was the focus of the present study. Dosage forms with an initial and a sustained release part with theophylline as model API were successfully produced applying a dual nozzle FDM 3D printer. Investigations identified microstructural defects at the interface between the two formulations by means of µCT analysis. Dissolution testing proved the achievement of the intended release profile. In combination with additionally characterized release profile of single material prints of different shapes, the combinative release profiles could be predicted by developing model equations and taking into account the geometric composition. As these model approaches can accordingly facilitate the prediction of API release from 3D printed combinative preparations with only data from single material release. This is a first step towards a truly individualized and reliable patient-centric pharmaceutical supply via 3D printing.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction: