Feedback

Heizen und Klimatisieren von batterieelektrischen Stadtbussen durch umschaltbare R744-Wärmepumpenmodule

Affiliation/Institute
Institut für Thermodynamik
Peteranderl, Christian

Stadtbusse weisen einen relativ hohen Energiebedarf zum Heizen und Klimatisieren des Fahrgastraums gegenüber anderen Fahrzeugarten wie Pkws oder Lkws auf, wofür die vergleichsweise große Außenfläche und die häufigen Türöffnungen ursächlich sind. Bei aktuellen batterieelektrischen Stadtbussen mit einem elektrischen Heizer reduziert sich an kalten Tagen mit Umgebungstemperaturen unter 0 °C die Fahrreichweite um etwa 50 %. Eine Wärmepumpe kann die Fahrreichweite in diesen Fällen deutlich erhöhen, wobei die derzeit eingesetzten Kältemittel R134a und R1234yf eine eingeschränkte Heizeffizienz aufweisen und darüber hinaus aus ökologischen Gründen umstritten sind. Mit dem natürlichen Kältemittel R744 (Kohlenstoffdioxid, CO2) werden diese Defizite aufgehoben.
Ein modulares Wärmepumpen- und Klimaanlagensystem ermöglicht in einem Stadtbus die Verwendung von Pkw-Komponenten. Die Anzahl der Module kann bei den lokal begrenzten Einsatzgebieten von Stadtbussen an die jeweiligen Kundenbedürfnisse und klimatischen Bedingungen angepasst werden. Durch Skaleneffekte der Komponenten aus der Pkw-Produktion ist zudem von einer Erhöhung der Wirtschaftlichkeit auszugehen. Im Rahmen der vorliegenden Arbeit werden autarke, umschaltbare R744-Wärmepumpenmodule für Stadtbusse auf Basis von Pkw-Komponenten hinsichtlich der optimalen Modulanzahl und der Energieeffizienz wissenschaftlich untersucht. Bisher liegen keine wissenschaftlichen Untersuchungen zu modularen Konzepten in der Fahrzeugklimatisierung vor. Darüber hinaus werden die Heiz- und Kühlbedarfe des Innenraums bei realitätsnahen Einsatzszenarien analysiert und daraus Minimalanforderungen für batterieelektrische Stadtbusse abgeleitet. Diese Ergebnisse werden zur Bewertung der R744-Module herangezogen. Mit dem konzipierten Prototypen eines R744-Moduls wird die Funktionsfähigkeit nachgewiesen und Messungen zur Validierung eines Simulationsmodells durchgeführt. Das Simulationsmodell des R744-Prototypenmoduls liefert eine gute Übereinstimmung mit den Messdaten. Im Modell werden anschließend weitere Optimierungsmaßnahmen umgesetzt und darauf aufbauend die Maximalleistungen ermittelt sowie eine energieeffiziente Regelungsstrategie hergeleitet. Die Simulationsuntersuchungen haben gezeigt, dass im Heizfall bei geringen Lasten die aktive Anzahl an Modulen zugunsten eines energieeffizienteren Betriebs zu reduzieren sind, während im Kühlfall alle Module zu betreiben sind. In den Referenzstädten München, Stockholm, Ankara und Dubai sind drei Module zum Heizen und Kühlen eines charakteristischen Stadtbus-Innenraums für ein typisches Betriebsjahr erforderlich. Für Granada werden zwei Module und für Moskau vier Module benötigt. Die Fahrreichweite eines batterieelektrischen Stadtbusses kann im Heizfall bei -15 °C Umgebungstemperatur mit drei R744-Modulen um bis zu 52 % gegenüber einer R134a-Wärmepumpe mit elektrischem Heizer erhöht werden. Im Jahresenergievergleich dieser Technologien werden in den genannten gemäßigten bis kalten Referenzstädten 25 % des elektrischen Stroms zum Heizen und Klimatisieren und somit entsprechend Treibhausgas-Emissionen eingespart. Die vorgestellten R744-Wärmepumpenmodule auf Basis von Pkw-Komponenten stellen eine mögliche Schlüsseltechnologie zur Effizienzsteigerung und Verbreitung von batterieelektrischen Stadtbussen für einen Großteil der weltweiten urbanen Klimaregionen dar.

City buses exhibit relatively high energy demands for heating and air conditioning the passenger cabin compared to other types of vehicles such as cars or trucks. This is due to the large external area and the frequent door openings. Heating a current battery electric city bus on cold days with ambient temperatures below 0 °C will reduce the driving range by approximately 50%. For this application a heat pump can increase the driving range significantly. The currently used refrigerants R134a and R1234yf have limited heating efficiency and are also topics of controversy due to their negative environmental impact. With the natural refrigerant R744 (carbon dioxide, CO2) these issues are resolved. A modular heat pump and air conditioning system makes it possible to use passenger car components in a city bus. The number of modules can be adapted to customer requirements and the climatic conditions determined for the locally limited areas where city buses are operational. Economies of scale will be achieved by using components from the passenger car industry. In the present work independent reversible R744 heat pump modules for city buses based on passenger car components are scientifically investigated with regard to the ideal number of modules and energy efficiency. So far, no scientific studies on modular concepts in vehicle HVAC systems are known. In addition, the heating and cooling demands of the cabin in realistic use cases are analysed and their minimum is deduced for battery electric city buses. This is used to evaluate the R744 modules. With the designed prototype of a R744 module the functionality is verified and measurements are taken to validate a simulation model. The simulation model of the R744 prototype module shows good correlation to the measurement data. Further optimisation steps are implemented in the model and, based on this, the maximum performance is determined and an energy-efficient control strategy is derived. The simulation studies have shown that in heating mode the active number of modules is reduced at low energy demands to ensure energy-efficient operation, while in cooling mode all modules should be activated. In the reference cities of Munich, Stockholm, Ankara and Dubai, three modules for heating and cooling a characteristic city bus cabin are required for a typical year of operation. Two modules are needed in Granada and four modules in Moscow. The driving range of a battery electric city bus can be improved in heating mode at -15 °C ambient temperature by up to 52% with three R744 modules compared to an R134a heat pump with electric heater. The comparison of annual energy consumption in the abovementioned moderately cold to cold reference cities shows that 25% of the electricity for heating and air conditioning as well as corresponding ratios of greenhouse gas emissions are saved.
The presented R744 heat pump modules based on passenger car components represent a potential key technology for increasing the efficiency and market share of battery electric city buses for a large part of the world’s urban climate regions.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction: