Production of highly aligned microfiber bundles from polymethyl methacrylate via stable jet electrospinning for organic solid‐state lasers
The fabrication of micron-sized poly(methyl methacrylate) (PMMA) polymer optical fibers doped with rhodamine B as an organic dye is demonstrated. Highly aligned and defect-free fibers are fabricated by using the stable jet electrospinning (SJES) method and systematically varying critical parameters such as solvent type and polymer concentration. At optimal conditions, for example, a polymer concentration of 35 wt% of PMMA in butanone, ribbon-shaped fibers with a smooth surface and diameter of about 20 μm could be spun using SJES mode and deposited on a rotating drum as target in a highly aligned manner. Photoluminescence spectra of the doped fibers excited longitudinally and transversely with a laser show an excitation peak with full-width-at-half-maximum of only 5.05 nm and a low lasing threshold at a pump energy of 0.55 μJ, indicating that SJES could become a new source of amplified optics components or organic solid-state fiber lasers.