Werkzeugintegrierte Erwärmungstechnologie zur Verarbeitung thermoplastischer Faser-Kunststoff-Verbundwerkstoffe
Hybride Strukturen auf Basis thermoplastischer Faser-Kunststoff-Verbunde (FKV) bieten ein großes Potenzial, Anforderungen an Gewichtsreduzierung und Funktionalisierung von Bauteilen zu erfüllen. Eine vielversprechende Möglichkeit, hybride Strukturen, die aus flächigen FKV-Halbzeugen und Thermoplastspritzguss bestehen, herzustellen, ist die Prozesskombination aus Thermoformen und Spritzgießen. Die Herausforderung bei dieser Prozesskombination besteht in der Temperaturführung des Materials über die gesamte Prozesskette. Die Temperaturführung wirkt sich wesentlich auf die resultierende Verbundfestigkeit als Bauteilqualitätsmerkmal aus, ist jedoch abhängig von der jeweiligen Materialpaarung. Gleichzeitig muss angenommen werden, dass durch eine falsche Temperaturführung Materialschädigungen und hohe Energieverbräuche entstehen. Bekannte Technologien zur Erwärmung von Materialien innerhalb der Prozesskette sind entweder auf elektrisch leitende Materialien (z. B. bei der Induktion) beschränkt oder nicht effizient integrierbar und führen so zu langen Zykluszeiten oder Temperaturverlusten im Material. Vor diesem Hintergrund setzt sich die Arbeit ein grundlegendes Verständnis einer effizienten, werkzeugintegrierten Erwärmung von thermoplastischen FKV als Hauptziel.
Hybrid structures based on fibre-reinforced thermoplastic (FRP) composites offer great potentials for meeting the requirements of weight reduction and functionalisation of components. A promising possibility to produce hybrid structures consisting of flat FRP semi-finished products and short fibre-reinforced thermoplastics is the process combination of thermoforming and injection moulding. The challenge with this process combination is the temperature control of the material over the entire process chain. The temperature control has a significant effect on the resulting composite strength as a component quality feature, but is dependent on the respective material pairing. At the same time, it must be assumed that incorrect temperature control may result in material damage and high energy consumption. Established technologies for heating materials within the process chain are either limited to electrically conductive materials (e.g. in induction) or cannot be integrated efficiently and thus lead to long cycle times or temperature losses in the material. Against this background, the main objective of this work is to achieve a fundamental understanding of efficient, mould-integrated heating of thermoplastic FRP. Knowledge of the relevant material-dependent process window is important for the design of the heating technology. In order to determine this, the influence of process parameters (mould temperature, process temperature, injection pressure, etc.) on the resulting bond strength is investigated on the one hand, and the thermal process window (melting and recrystallisation behaviour, degradation, etc.) is identified using thermoanalytical methods on the other hand. These findings are incorporated into the subsequent technology selection. The result of this selection suggests the use of infrared (IR) radiation for material heating. Their use requires a constructive conception of a mould with the integration of transparent mould inserts that protect the emitters and still allow them a viewing area in the mould. Depending on the expected mechanical loads, various transparent materials are characterised and a spinel ceramic is selected for further consideration. With the construction of a functional demonstrator, a technology and process evaluation is carried out. The results suggest the conclusion that mould-integrated heating is suitable for energy- and time-efficient heating in the injection moulding process. Within the framework of the process evaluation, the heating process with mould-integrated heating technology is examined with regard to the temperature control of thermoplastic FRP in comparison to external IR heating, inductive heating and electrical resistance heating, whereby the mould-integrated heating shows the best heating behaviour in each case. By describing the heat radiation in the system under consideration and the heat conduction in the semi-finished product, the transient temperature distribution can be represented, by the help of which efficient process control can be achieved. The integration of the heating process into the mould enables a cycle time reduction of 28.4 % compared to the reference process and enables significant energy savings in operation by lowering the process and mould temperatures to the minimum processing temperatures. The approaches to technology transfer of mould-integrated heating to the production of more complex hybrid components and to the direct impregnation of thermoplastic FRP in the mould show great potentials for improving the economic efficiency of production processes.
Preview
Cite
Access Statistic
![](https://leopard.tu-braunschweig.de/images/epusta/epustalogo_small.png)
Rights
Use and reproduction:
All rights reserved