SEU fault classification by fault injection for an FPGA in the space instrument SOPHI
Fault injection through partial dynamic reconfiguration can simulate upsets in configuration memory of SRAM-based FPGAs. FT-UNSHADES 2 is an automated set-up, which runs multiple fault injection campaigns in batch mode, while automatically applying stimuli and comparing output vectors. This work presents the results of fault injection runs of an FPGA design intended for the data processing unit (DPU) of the Solar Orbiter Polarimetric and Helioseismic Imager (SoPHI) instrument on solar orbiter. In this DPU SRAM FPGAs are connected to a processor through a radiation hardened antifuse FPGA. This antifuse FPGA houses the configuration and data interfaces to the SRAM FPGAs of the DPU. When radiation induced errors occur in the SRAM FPGA, the antifuse FPGA isolates these errors and recovers operation. The fault injection campaign gave insight on fault induced behavior on the interfaces of the SRAM FPGA, allowed to categorize them, and create statistics of the different categories. This paper describes the mechanisms of fault detection isolation and recovery in the SRAM/antifuse FPGA interfaces and tests them with the faulty output vectors from fault injection.
Preview
Cite
Access Statistic
Rights
License Holder: © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Use and reproduction:
All rights reserved