Demonstrating Controlled Change for Autonomous Space Vehicles
Recent research discusses concepts of infield changes to overcome the drawbacks of conventional lab-based system design processes. In this paper, we evaluate the concept of controlled change by applying it to a demonstration of a potential future space exploration scenario with mobile robots. The robots are capable of executing several image computations for exploration, object detection and pose estimation, which can be allocated to both FPGA-and processor resources of a System-on-Chip. The demonstrator addresses three scenarios which cover application-, environment-, and platform change. The system adapts itself to any of the named changes. This capability can increase the autonomy of future space missions. Exemplary, the demonstrator executes adaption of applications during operation to fulfill the mission goals, adaption of reliability under changing environment conditions, and adaption to sensor failure.
Preview
Cite
Access Statistic
Rights
License Holder: © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Use and reproduction:
All rights reserved