Feedback

Speech Enhancement Exploiting the Source-Filter Model

Imagining everyday life without mobile telephony is nowadays hardly possible. Calls are being made in every thinkable situation and environment. Hence, the microphone will not only pick up the user’s speech but also sound from the surroundings which is likely to impede the understanding of the conversational partner. Modern speech enhancement systems are able to mitigate such effects and most users are not even aware of their existence.
In this thesis the development of a modern single-channel speech  enhancement approach is presented, which uses the divide and conquer principle to combat environmental noise in microphone signals. Though initially motivated by mobile telephony applications, this approach can be applied whenever speech is to be retrieved from a corrupted signal. The approach uses the so-called source-filter model to divide the problem into two subproblems which are then subsequently conquered by enhancing the source (the excitation signal) and the filter (the spectral envelope) separately. Both enhanced signals are then used to denoise the corrupted signal. The estimation of spectral envelopes has quite some history and some approaches already exist for speech enhancement. However, they typically neglect the
excitation signal which leads to the inability of enhancing the fine structure properly. Both individual enhancement approaches exploit benefits of the cepstral domain which offers, e.g., advantageous mathematical properties and straightforward synthesis of excitation-like signals.
We investigate traditional model-based schemes like Gaussian mixture models (GMMs), classical signal processing-based, as well as modern deep neural network (DNN)-based approaches in this thesis. The enhanced signals are not used directly to enhance the corrupted signal (e.g., to synthesize a clean speech signal) but as so-called a priori signal-to-noise ratio (SNR) estimate in a traditional statistical speech enhancement system. Such a traditional system consists of a noise power estimator, an a priori SNR estimator, and a spectral weighting rule that is usually driven by the results of the aforementioned estimators and subsequently employed to retrieve the clean speech estimate from the noisy
observation.
As a result the new approach obtains significantly higher noise attenuation compared to current state-of-the-art systems while maintaining a quite comparable speech component quality and speech intelligibility. In consequence, the overall quality of the enhanced speech signal turns out to be superior as compared to state-of-the-art speech ehnahcement approaches.

Mobiltelefonie ist aus dem heutigen Leben nicht mehr wegzudenken. Telefonate werden in beliebigen Situationen an beliebigen Orten geführt und dabei nimmt das Mikrofon nicht nur die Sprache des Nutzers auf, sondern auch die Umgebungsgeräusche, welche das Verständnis des Gesprächspartners stark beeinflussen können. Moderne Systeme können durch
Sprachverbesserungsalgorithmen solchen Effekten entgegenwirken, dabei ist vielen Nutzern nicht einmal bewusst, dass diese Algorithmen existieren.
In dieser Arbeit wird die Entwicklung eines einkanaligen Sprachverbesserungssystems vorgestellt. Der Ansatz setzt auf das Teile-und-herrsche-Verfahren, um störende Umgebungsgeräusche aus Mikrofonsignalen herauszufiltern. Dieses Verfahren kann für sämtliche Fälle angewendet werden, in denen Sprache aus verrauschten Signalen extrahiert werden soll. Der Ansatz nutzt das Quelle-Filter-Modell, um das ursprüngliche Problem in zwei Unterprobleme aufzuteilen, die anschließend gelöst werden, indem die Quelle (das Anregungssignal) und das Filter (die spektrale Einhüllende) separat verbessert werden. Die verbesserten Signale werden gemeinsam genutzt, um das gestörte Mikrofonsignal zu entrauschen. Die Schätzung von spektralen Einhüllenden wurde bereits in der Vergangenheit erforscht und
zum Teil auch für die Sprachverbesserung angewandt. Typischerweise wird dabei jedoch das Anregungssignal vernachlässigt, so dass die spektrale Feinstruktur des Mikrofonsignals nicht verbessert werden kann. Beide Ansätze nutzen jeweils die Eigenschaften der cepstralen Domäne, die unter anderem vorteilhafte mathematische Eigenschaften mit sich bringen, sowie die Möglichkeit, Prototypen eines Anregungssignals zu erzeugen.
Wir untersuchen modellbasierte Ansätze, wie z.B. Gaußsche Mischmodelle, klassische signalverarbeitungsbasierte Lösungen und auch moderne tiefe neuronale Netzwerke in dieser Arbeit. Die so verbesserten Signale werden nicht direkt zur Sprachsignalverbesserung genutzt (z.B. Sprachsynthese), sondern als sogenannter A-priori-Signal-zu-Rauschleistungs-Schätzwert in einem traditionellen statistischen Sprachverbesserungssystem. Dieses besteht
aus einem Störleistungs-Schätzer, einem A-priori-Signal-zu-Rauschleistungs-Schätzer und einer spektralen Gewichtungsregel, die üblicherweise mit Hilfe der Ergebnisse der beiden Schätzer berechnet wird. Schließlich wird eine Schätzung des sauberen Sprachsignals aus der Mikrofonaufnahme gewonnen.
Der neue Ansatz bietet eine signifikant höhere Dämpfung des Störgeräuschs als der bisherige Stand der Technik. Dabei wird eine vergleichbare Qualität der Sprachkomponente und der Sprachverständlichkeit gewährleistet. Somit konnte die Gesamtqualität des verbesserten Sprachsignals gegenüber dem Stand der Technik erhöht werden.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction:
All rights reserved