Sulfide Detection by Gold-Amalgam Microelectrodes in Artificial Wastewater
Gold amalgam microelectrodes (GAMEs) have been characterized and successfully calibrated to measure >1.5 mM (30 mg L−1) sulfide in artificial wastewater (AWW) using cathodic stripping voltammetry (CSV). Microbial sulfide generation in two types of AWW was traced. Artificial wastewater type 1 (AWW1) held the potential for almost 50% conversion of sulfur compounds at a maximum rate of ~4.3 ± 0.5 µM h−1 while AWW 2 held a potential for 75–100% conversion at a rate of 165 µM h−1. In addition, the GAMEs were thoroughly examined during fabrication, maturation, and aging. An earlier described plating method was found to result in varying electrode surfaces due to excess mercury deposition and, therefore, deviating stripping signals. The limited shelf life of GAMEs has been proposed previously. This study shows the extent of electrode surface changes during amalgam formation and the wear and tear of application. As a result, suggestions to optimize fabrication and application are discussed to provide reliable measurements and proceed toward a future commercialization.
Preview
Cite
Access Statistic
