Feedback

Improved regularity assumptions for partial outer convexification of mixed-integer PDE-constrained optimization problems

ORCID
0000-0003-0654-6613
Affiliation/Institute
Institut für Mathematische Optimierung, Technische Universität Braunschweig
Manns, Paul;
ORCID
0000-0002-3441-8822
Affiliation/Institute
Institut für Mathematische Optimierung, Technische Universität Braunschweig
Kirches, Christian

Partial outer convexification is a relaxation technique for MIOCPs being constrained by time-dependent differential equations. Sum-Up-Rounding algorithms allow to approximate feasible points of the relaxed, convexified continuous problem with binary ones that are feasible up to an arbitrarily small δ > 0. We show that this approximation property holds for ODEs and semilinear PDEs under mild regularity assumptions on the nonlinearity and the solution trajectory of the PDE. In particular, requirements of differentiability and uniformly bounded derivatives on the involved functions from previous work are not necessary to show convergence of the method.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction: