Feedback

Injection 3D Concrete Printing (I3DCP) : Basic Principles and Case Studies

GND
1162637331
Affiliation/Institute
Institute of Structural Design, Technische Universität Braunschweig
Hack, Norman;
ORCID
0000-0002-3182-5086
Affiliation/Institute
Institute of Building Materials, Concrete Construction and Fire Safety, Technische Universität Braunschweig
Dressler, Inka; Brohmann, Leon;
GND
1206132760
Affiliation/Institute
Institute of Structural Design, Technische Universität Braunschweig
Gantner, Stefan;
GND
1013503112
Affiliation/Institute
Institute of Building Materials, Concrete Construction and Fire Safety, Technische Universität Braunschweig
Lowke, Dirk;
GND
120917262
Affiliation/Institute
Institute of Structural Design, Technische Universität Braunschweig
Kloft, Harald

Today, the majority of research in 3D concrete printing focuses on one of the three methods: firstly, material extrusion; secondly, particle-bed binding; and thirdly, material jetting. Common to all these technologies is that the material is applied in horizontal layers. In this paper, a novel 3D concrete printing technology is presented which challenges this principle: the so-called Injection 3D Concrete Printing (I3DCP) technology is based on the concept that a fluid material (M1) is robotically injected into a material (M2) with specific rheological properties, causing material M1 to maintain a stable position within material M2. Different to the layered deposition of horizontal strands, intricate concrete structures can be created through printing spatially free trajectories, that are unconstrained by gravitational forces during printing. In this paper, three versions of this method were investigated, described, and evaluated for their potential in construction: A) injecting a fine grain concrete into a non-hardening suspension; B) injecting a non-hardening suspension into a fine grain concrete; and C) injecting a fine grain concrete with specific properties into a fine grain concrete with different properties. In an interdisciplinary research approach, various material combinations were developed and validated through physical experiments. For each of the three versions, first architectural applications were developed and functional prototypes were fabricated. These initial results confirmed both the technological and economic feasibility of the I3DCP process, and demonstrate the potential to further expand the scope of this novel technology.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction: