Feedback

Design and Characterization of Electrically Conductive Structures Additively Manufactured by Material Extrusion

ORCID
0000-0001-8211-6346
Affiliation/Institute
Institute for Engineering Design, Technische Universität Braunschweig
Watschke, Hagen;
Affiliation/Institute
Design and Characterization of Electrically Conductive Structures Additively Manufactured by Material Extrusion
Hilbig, Karl;
GND
1139782940
Affiliation/Institute
Institute for Engineering Design, Technische Universität Braunschweig
Vietor, Thomas

Multi-material additive manufacturing offers new design freedom for functional integration and opens new possibilities in innovative part design, for instance, a local integration of electrically conductive structures or heat radiant surfaces. Detailed experimental investigations on materials with three different fillers (carbon black (CB), carbon nanotubes (CNT) and nano copper wires) were conducted to identify process-specific influencing factors on electrical conductivity and resistive heating. In this regard, raster angle orientation, extrusion temperature, speed and flow rate were investigated. A variation of the raster angle (0°, ±45°, and 90°) shows the highest influence on resistivity. An angle of 0° had the lowest electrical resistance and the highest temperature increase due to resistive heating. The material filled with nano copper wires showed the highest electrical conductivity followed by the CNT filled material and materials filled with CB. Both current–voltage characteristics and voltage-dependent heat distribution of the surface temperature were determined by using a thermographic camera. The highest temperature increase was achieved by the CNT filled material. The materials filled with CB and nano copper wires showed increased electrical resistance depending on temperature. Based on the experiments, solution principles and design rules for additively manufactured electrically conductive structures are derived

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction: