Hardware-beschleunigte Bildmerkmale mit Subpixel-Genauigkeit zur SLAM Lokalisierung und Objekterkennung
Die Navigation von autonomen Systemen wird durch den Fortschritt der Technik und durch die steigenden Anforderungen der Anwendungen immer komplexer. Eines der wichtigsten offenen Probleme ist die Genauigkeit und die Robustheit der merkmalsbasierten SLAM-Lokalisierung für Anwendungen im dreidimensionalen Raum. In dieser Arbeit werden Methoden zur Optimierung der Merkmalserkennung mit Subpixel-genauer Bestimmung der Merkmalsposition für merkmalsbasiserte 6-DoF SLAM Verfahren untersucht. Zusätzlich wird eine Erweiterung des Merkmalsdeskriptors mit Farbinformationen und einer Subpixel-genauen Rotation des Deskriptor-Patterns betrachtet. Aus den Ergebnissen der Untersuchung wird das Subpixel-accurate Oriented AGAST and Rotated BRIEF (SOARB) Verfahren zur Merkmalserkennung entwickelt, dass trotz der effizienten und Ressourcen-optimierten Implementierung eine Verbesserung der Lokalisierung und Kartenerstellung in Relation zu anderen vergleichbaren Verfahren erreicht. Durch den Einsatz eines PCIe FPGA-Beschleunigers und der Xilinx SDAccel HW-SW-Codesign Umgebung mit OpenCL Unterstützung wird eine FPGA-basierte Version des SOARB Algorithmus zur Anbindung an SLAM-Systeme gezeigt. Die FPGA-Implementierung des SOARB-Verfahrens erreicht dabei Bildraten von 41 Bildern/s. Sie ist damit um Faktor 2,6x schneller als die schnellste getestete GPU-basierte Implementierung der OpenCV-Bibliothek mit Sub-pixel-genauer Bestimmung der Merkmalsposition. Durch eine geringe Leistungsaufnahme von 13,7W der FPGA-Komponente kann die Leistungseffizienz (Bilder/s pro Watt) des Gesamtsystems im Vergleich zu einer ebenfalls erstellten SOARB GPU-Referenzimplementierung um den Faktor 1,28x gesteigert werden. Der SOARB-Algorithmus wird zur Evaluation in das RTAB-Map SLAM System integriert und erreicht in Tests mit Bildaufnahme-Sequenzen aus dem Straßenverkehr eine Verbesserung des Translations- und Rotationsfehlers von durchschnittlich 22% und 19% im Vergleich zu dem häufig genutzten ORB-Verfahren. Die maximale Verbesserung des Root Mean Square Errors (RMSE) liegt bei 50% für die Translation und 40% für die Rotation. Durch einen Deskriptor mit Farbinformationen kann das SOARB-RGB Verfahren in der Evaluation mit dem Oxford Datensatz zur Bewertung von affinen kovarianten Merkmalen ein sehr gutes Inlier-Verhältnis von 99,2% über die ersten drei Bildvergleiche aller Datensätze erzielen.
The navigation of autonomous systems is becoming more and more complex due to advances in technology and the increasing demands of applications. One of the most critical open issues is the accuracy and robustness of feature-based SLAM localization for three-dimensional SLAM applications. In this work the optimization of feature detection with subpixel-accurate features points for feature-based 6-DoF SLAM methods is investigated. In addition, an extension of the feature descriptor with color information and sub-pixel accurate rotation of the descriptor pattern is evaluated. This work develops a Subpixel-accurate Oriented AGAST and Rotated BRIEF (SOARB) feature extraction that, despite the efficient and resource-optimized implementation, improves localization and mapping compared to other comparable algorithms. Using a PCIe FPGA accelerator and the Xilinx SDAccel HW-SW Codesign environment with OpenCL support an FPGA-based version of the SOARB algorithm for interfacing to SLAM systems is demonstrated. The hardware implementation uses high-throughput pipeline processing and parallel units for computation. For faster processing, the subpixel interpolation and a bilinear interpolation is performed in fixed-point arithmetic and the angle calculation is implemented using a CORDIC method. The FPGA implementation of the SOARB algorithm achieves frame rates of 41 frames/s. Thus, it is a factor of 2.6 times faster than the fastest of the tested GPU-based OpenCV implementation with subpixel-accurate feature positions. With a low power consumption of 13.7W of the FPGA component, the overall system power efficiency (fps per watt) can be increased by a factor of 1.28x compared to an implemented SOARB-GPU reference implementation. For evaluation the SOARB algorithm is integrated into the RTAB Map SLAM system. It achieves an average of 22% and 19% improvement in translational and rotational errors compared to the commonly used ORB feature extraction in tests with dataset sequences for autonomous driving. The maximum improvement in root mean square error (RMSE) is 50% for translation and 40% for rotation. To analyze the impact of descriptor with color information, the SOARB-RGB method ist evaluated using the Oxford dataset for affine covariant features. The SOARB-RGB achieves a very good inlier-ratio of 99.2% over the first three dataset image of all datasets.
Preview
Cite
Access Statistic
Rights
Use and reproduction:
All rights reserved