Feedback

Efficient low-rank approximation of the stochastic Galerkin matrix in tensor formats

Affiliation/Institute
Leipzig : Max Planck Inst. for Mathematics in the Sciences
Espig, Mike;
Affiliation/Institute
Leipzig : Max Planck Inst. for Mathematics in the Sciences
Hackbusch, Wolfgang;
Affiliation/Institute
Technische Universität Braunschweig
Litvinenko, Alexander;
Affiliation/Institute
Technische Universität Braunschweig
Matthies, Hermann G.;
Affiliation/Institute
Technische Universität Braunschweig
Wähnert, Philipp

In this article we describe an efficient approximation of the stochastic Galerkin matrix which stems from a stationary diffusion equation. The uncertain permeability coefficient is assumed to be a log-normal random field with given covariance and mean functions. The approximation is done in the canonical tensor format and then compared numerically with the tensor train and hierarchical tensor formats. It will be shown that under additional assumptions the approximation error depends only on smoothness of the covariance function and does not depend either on the number of random variables nor the degree of the multivariate Hermite polynomials.

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction:
All rights reserved