# Numerical Solution of Systems with Stochastic Uncertainties : A General Purpose Framework for Stochastic Finite Elements

Keese, Andreas

This work develops numerical techniques for the simulation of systems with stochastic parameters, modelled by stochastic partial differential equations (SPDEs). After treating the theory of linear and nonlinear elliptic SPDEs, discretisation techniques are presented. The spatial discretisation is performed by existing simulation software and the stochastic discretisation is carried out by directly integrating statistics or by expansions in tensor products of finite element shape functions times stochastic functions. Monte Carlo and Smolyak integration techniques are employed for the direct integration of statistics, whereas the discretisation by series expansions is realised either by orthogonal projections or by Galerkin methods, which yield large systems of coupled block equations. For the solution of linear SPDEs, efficient representations of the linear block equations are developed and used in iterative solvers. Due to the size of the equations, a parallel solver is supplied. The solution of nonlinear SPDEs is performed by approximate and by quasi-Newton methods. An adaptive refinement of the stochastic ansatz-spaces is implemented based on the solution of dual problems. The numerical techniques described in this thesis are implemented in a general purpose software for stochastic finite elements that allows to introduce stochastic uncertainties into existing simulation codes and that permits to propagate the input uncertainties to the system response.

Inhalt der Arbeit ist die numerische Simulation von Systemen mit stochastischen Parametern, die durch stochastische partielle Differentialgleichungen (SPDGLn) beschrieben werden. Es werden die Theorie linearer und nichtlinearer elliptischer SPDGLn sowie Diskretisierungsverfahren beschrieben. Für die räumliche Diskretisierung wird eine existierende Simulationssoftware verwendet, während die stochastische Diskretisierung durch die direkte numerische Integration von Statistiken unter Verwendung von Monte Carlo- und Smolyak-Quadraturverfahren oder durch Reihenentwicklungen in Tensorprodukten finiter Elemente und stochastischer Ansatzfunktionen erfolgt. Die Reihenentwicklung wird dabei durch orthogonale Projektionen oder durch Galerkinverfahren gewonnen. Bei der Anwendung stochastischer Galerkinvervahren entstehen große Systeme gekoppelter Blockgleichungssysteme, welche hier durch iterative Verfahren gelöst werden. Zur Lösung linearer SPDGln werden effiziente Darstellungen der Gleichungssysteme und iterative Löser entwickelt. Aufgrund der Größe der entstehenden Gleichungssysteme wird ein paralleler Löser bereitgestellt. Die Lösung nichtlinearer SPDGLn geschieht durch approximative und Quasi-Newtonverfahren. Ein duales Verfahren ermöglicht die adaptive Verfeinerung der Lösung. Diese Verfahren werden in einer Allzwecksoftware für stochastische finite Elemente implementiert, die es erlaubt, existierende Simulationscodes um stochastische Unsicherheiten zu erweitern.

Citation style:

Total: