Feedback

Genetic networks of antibacterial responses of eukaryotic cells. Bioinformatics analysis and modeling

Affiliation/Institute
Max-Planck-Institut für biophysikalische Chemie
Shelest, Ekaterina

This work describes the development of new methods to construction of promoter models as one of necessary steps of regulatory networks construction. Identification of characteristic promoter features shows the role of specific transcription factors (TFs) in triggering the response, which in turn sheds light on the signaling pathways activating these TFs. Treating reported results of microarray analyses together with other available information about the genes expressed in different cellular systems under consideration, we search for distinguishing features of the promoters of coexpressed genes. The application of such promoter models enables to identify additional candidate genes belonging to the same regulatory network. Four novel approaches are presented in this work: (i) subtractive approach to matrix generation; (ii) distance distribution approach; (iii) "seed" sets approach; (iv) complementary pairs approach. These approaches help to solve serious problems in promoter model construction such as the doubtful reliability of positive training sets ("seed" sets approach) and lack of knowledge about the exact signaling pathways triggering the gene expression (complementary pairs approach); the subtractive approach to matrix generation allows to refine positional weight matrices (PWM) for heterogeneous sets of binding sites, thus to improve the PWM search for single TFBS. A significant improvement of the specificity of promoter analysis has been achieved by applying statistical methods for characterizing TFBS combinations at over-represented distances rather than the mere identification of single potential TFBS (distance distributions approach). The newly developed methods were applied to the description of four defensive eukaryotic systems in terms of transcription regulation. The obtained models enabled us to gain better insights into the pathways of the corresponding signaling networks.

Diese Arbeit beschreibt die Entwicklung mehrerer neuer Methoden zur Konstruktion von Promotormodellen als einen der notwendigen Schritte zur Konstruktion regulatorischer Netzwerke. Die Identifizierung charakteristischer Eigenschaften von Promotoren zeigt die Rolle bestimmter Transkriptionsfaktoren (TF) beim Auslösen spezifischer Antworten auf, was wiederum Aufschluss über die Signalwege zur Aktivierung dieser TF gibt. Durch Verarbeitung von Ergebnissen aus Microarray-Analysen zusammen mit weiteren verfügbaren Informationen über die in den betrachteten zellulären Systemen exprimierten Gene suchen wir nach kennzeichnenden Eigenschaften koregulierter Promotoren. Die Applikation solcher Promotermodelle ermöglicht die Identifizierung zusätzlicher Kandidatengene, die demselben regulatorischen Netzwerk angehören. Vier neue Ansätze werden in dieser Arbeit präsentiert: (i) der subtraktive Ansatz zur Matrixerzeugung; (ii) der Distanzverteilungsansatz; (iii) der "seed"-Set-Ansatz; (iv) der Ansatz komplementärer Paare. Diese Ansätze helfen, beträchtliche Probleme der Promotormodellkonstruktion zu lösen, wie die zweifelhafte Zuverlässigkeit positiver Trainingsets ("seed"-Set-Ansatz) und der Mangel an Wissen über die präzisen Signalwege, die bestimmte Genexpressionsereignisse auslösen (Ansatz komplementärer Paare). Der subtraktive Ansatz zur Matrixerzeugung erlaubt, Positionsgewichtungsmatrizen (PWM) für heterogene Sets von Bindungsstellen zu verfeinern und dadurch die PWM-Suche für einzelne TFBSs zur verbessern. Eine signifikante Verbesserung der Spezifität der Promotoranalyse wurde durch die Anwendung statistischer Methoden zur Charakterisierung von TFBS-Kombinationen in überrepräsentierten Distanzen anstelle der bloßen Identifizierung einzelner potentieller TFBSs erreicht. Die neuentwickelten Methoden wurden zur Beschreibung von vier eukaryotischen Abwehrsystemen verwendet. Die erhaltenen Modelle eröffneten tiefergehende Einsichten in die Pfade der zugehörigen Signalnetzwerke.

Preview

Cite

Citation style:
Could not load citation form.

Access Statistic

Total:
Downloads:
Abtractviews:
Last 12 Month:
Downloads:
Abtractviews:

Rights

Use and reproduction:
All rights reserved